0000000000116323
AUTHOR
Georgios Tsiligiannis
Dynamic Test Methods for COTS SRAMs
International audience; In previous works, we have demonstrated the importance of dynamic mode testing of SRAM components under ionizing radiation. Several types of failures are difficult to expose when the device is tested under static (retention) mode. With the purpose of exploring and defining the most complete testing procedures and reveal the potential hazardous behaviors of SRAM devices, we present novel methods for the dynamic mode radiation testing of SRAMs. The proposed methods are based on different word address accessing schemes and data background: Fast Row, Fast Column, Pseudorandom, Adjacent (Gray) and Inverse Adjacent (Gray). These methods are evaluated by heavy ion and atmos…
Heavy-Ion Radiation Impact on a 4Mb FRAM under Different Test Conditions
The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of different test modes (static and dynamic) on this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry. Dynamic tests results show a high sensitivity of this memory to heavy-ions.
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Mechanisms of Electron-Induced Single Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Heavy-Ion Radiation Impact on a 4 Mb FRAM Under Different Test Modes and Conditions
International audience; The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of dynamic and static test modes as well as several stimuli on the error rate of this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry, with a possible effect due to fluence. Dynamic tests results show a high sensitivity of this memory to switching activity of this peripheral circuitry.
A Methodology for the Analysis of Memory Response to Radiation through Bitmap Superposition and Slicing
A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.
Soft errors in commercial off-the-shelf static random access memories
International audience; This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the …
SEE on Different Layers of Stacked-SRAMs
International audience; This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The …
Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems
International audience; Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory
International audience; This paper identifies the failure modes of a commercial 130-nm ferroelectric random access memory. The devices were irradiated with heavy-ion and pulsed focused X-ray beams. Various failure modes are observed, which generate characteristic error patterns, affecting isolated bits, words, groups of pages, and sometimes entire regions of the memory array. The underlying mechanisms are discussed.
Investigation on MCU Clustering Methodologies for Cross-Section Estimation of RAMs
International audience; Various failure scenarios may occur during irradiation testing of SRAMs, which may generate different characteristic Multiple Cell Upset (MCU) error patterns. This work proposes a method based on spatial and temporal criteria to identify them.
Methodologies for the Statistical Analysis of Memory Response to Radiation
International audience; Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study.