0000000000185998

AUTHOR

V. Muñoz

showing 51 related works from this author

Surface passivation of gallium selenide by nitrogen implantation

2002

In this paper we report on the characterization of nitrogen-implanted single-crystal GaSe samples. Nitrogen atoms were implanted at 80 keV, with doses ranging from 4 × 10 13 to 10 15 N + ions cm -2 . Next, samples were aged in open air and characterized by small-area XPS, together with an unimplanted clean surface, in order to quantify the effects of the nitrogen implantation. In general, we found that the oxidation was fully prevented in N + -implanted samples.

PassivationGallium selenideInorganic chemistrychemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsNitrogenSurfaces Coatings and FilmsIonIon implantationchemistryX-ray photoelectron spectroscopyMaterials ChemistrySurface structureOpen airSurface and Interface Analysis
researchProduct

Vapor growth of Hg1−xCdxI2 on glass using CdTe buffer

2001

Abstract Vapor phase epitaxy (VPE) of Hg1−xCdxI2 layers on glass substrates covered by a CdTe buffer layer has been studied. The buffer layers of 2–4 μm thickness were formed by VPE using polycrystalline CdTe and Cd metal sources. The Hg1−xCdxI2 layers were grown using a (Hg1−yCdy)1−z(I2)z polycrystalline source, with a composition in the range of y=0.1–0.5 and z=0.5–0.8. Scanning electron microscopy and X-ray diffraction studies have shown that the composition and structure of Hg1−xCdxI2 layers depend strongly on the VPE conditions. Varying the growth time and source composition, it has been possible to obtain Hg1−xCdxI2 layers with the composition x in the range from approximately 0 (HgI2…

DiffractionScanning electron microscopeChemistrybusiness.industryMetals and AlloysAnalytical chemistrySurfaces and InterfacesEpitaxyCadmium telluride photovoltaicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMetalTetragonal crystal systemOpticsvisual_artMaterials Chemistryvisual_art.visual_art_mediumCrystallitebusinessLayer (electronics)Thin Solid Films
researchProduct

Dynamics of thermally induced optical nonlinearity in GaSe thin slabs

1996

A study of the nonlinear effects shown by thin slabs of GaSe metaled with Au is presented.

Condensed Matter::Quantum Gasesendocrine systemanimal structuresMaterials sciencegenetic structuresbusiness.industryDynamics (mechanics)Physics::OpticsFísicaNonlinear opticsCondensed Matter Physicseye diseasesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPhysics::Fluid DynamicsCondensed Matter::Soft Condensed MatterOptical nonlinearityOpticsPhysics::Plasma Physicssense organsElectrical and Electronic EngineeringbusinessMicrowave and Optical Technology Letters
researchProduct

Numerical analysis of thermally induced optical nonlinearity in GaSe layered crystal

1996

A numerical approach to studying thermally induced optical nonlinearity in semiconductors is presented. A transient finite difference algorithm is applied to solve the thermal diffusion equation coupled with the nonlinear absorbance-transmittance of Au/GaSe/Au samples with an applied electric field. The presented analysis can deal with any arbitrary axisymmetric dependence of the input power over the sample and external electric field, and provides information about the steady state and transitory effects in the transmittance.

Steady stateCondensed matter physicsComputer Networks and Communicationsbusiness.industryChemistryFinite difference methodNonlinear opticsÒpticaThermal diffusivityAtomic and Molecular Physics and OpticsNonlinear systemOpticsElectric fieldTransmittanceTransient (oscillation)CristallsElectrical and Electronic Engineeringbusiness
researchProduct

CdTe crystal growth process by the Bridgman method: numerical simulation

2001

Abstract Numerical simulation of the CdTe crystal growth process by the Bridgman method is made by using the commercial computational code FLUENT for the mathematical solution of the governing equations. To reduce computational effort, we have made use of a two level strategy. In the first level we have considered the whole system formed by the ampoule with the liquid–solid charge, the furnace, and the air between them. The heat transfer is assumed to occur by conduction, convection and radiation between the furnace and the ampoule, and only by conduction through the ampoule wall and the solid and liquid CdTe. In the second level we focus on the ampoule and its content, using the values of …

ConvectionChemistryMineralogyCrystal growthMechanicsCondensed Matter PhysicsThermal conductionAmpouleInorganic ChemistryTemperature gradientHeat transferThermalMaterials ChemistryFluentJournal of Crystal Growth
researchProduct

Observation of the Cinnabar Phase in ZnSe at High Pressure

2002

In this paper we describe the results of an energy dispersive X-ray diffraction experiment carried out in the ZnSe 1 m x Te x alloy and pure ZnSe under high pressure. In the downstroke the cinnabar phase is observed between the rocksalt and the zincblende phases. The analysis of the whole series of compositions ( x =0, 0.05, 0.1 and 0.2) enables us to establish its lattice parameters in ZnSe ( a =3.785 + and c =8.844 + at 10.5 GPa). The X-ray diffraction pattern simulation suggests that the internal parameters u and v are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe. The cinnabar's stability range decreases as the Te content is reduce…

DiffractionPhase transitionCrystallographyMaterials scienceCinnabarHigh pressureLattice (order)AlloyX-ray crystallographyAnalytical chemistryengineeringengineering.materialCondensed Matter PhysicsHigh Pressure Research
researchProduct

The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides

1996

Transmittance periodic oscillations are observed in GaSe and InSe on excitation with optical pulses. Such oscillations are explained in terms of photoacoustic generation of dilatational waves, which become resonant within the crystal. Spectral analysis of those oscillations in samples of different thickness has led to an accurate determination of the longitudinal acoustic‐wave velocity along the crystallographic axis c. Julio.Pellicer@uv.es ; Chantal.Ferrer@uv.es ; Vicente.Munoz@uv.es

OscillationsGallium SelenidesGeneral Physics and Astronomychemistry.chemical_elementPhotoacoustic imaging in biomedicineMonocrystalsMolecular physicsResonanceCrystalOptics:FÍSICA [UNESCO]TransmittanceGallium Selenides ; Indium Selenides ; Monocrystals ; Oscillations ; Photoacoustic Effect ; Resonance ; Sound Velocity ; Sound WavesSound VelocityGalliumSound WavesPhotoacoustic effectPhotoacoustic EffectIndium Selenidesbusiness.industryUNESCO::FÍSICAResonancechemistrybusinessExcitationIndium
researchProduct

Pressure and temperature dependence of the band-gap in CdTe

2003

In this paper we report on isothermal compression measurements (up to 5 GPa and 500 K) of the optical absorption edge of 1 μm epitaxial layers of CdTe growth by metalorganic chemical vapor deposition (MOCVD) on GaS substrates. The isothermal blue shift under pressure of the direct energy gap (Γ v 15 → Γ c 1 ) in the zinc-blende phase is about 7.1 × 10 -2 eV GPa -1 and is found to be independent of temperature within the experimental errors. The isobaric red shift in the stability range of the zinc-blende phase is about -3.76 × 10 -4 eV K -1 . Regarding the phase transitions, no discontinuity in the energy gap has been found in the narrow pressure range where the cinnabar phase can be presen…

Phase transitionAbsorption spectroscopybusiness.industryBand gapChemistryAnalytical chemistryCondensed Matter PhysicsIsothermal processElectronic Optical and Magnetic MaterialsBlueshiftOpticsAbsorption edgeIsobaric processMetalorganic vapour phase epitaxybusinessphysica status solidi (b)
researchProduct

Vapor phase epitaxy of Hg1−xCdxI2 on sapphire

1998

Abstract We demonstrate the possibility of growing Hg 1− x Cd x I 2 layers on sapphire substrates by vapor-phase epitaxy (VPE). The successful growth has been carried out using an α-HgI 2 polycrystalline source and a CdTe buffer layer grown on sapphire by metalorganic vapor phase epitaxy (MOVPE) before the Hg 1− x Cd x I 2 VPE growth. The Hg 1− x Cd x I 2 /sapphire 20–40 μm thick layers with a uniform composition in the range of x =0.2–0.6 were grown at 220–250°C for 70–300 h. The layers were studied by scanning electron microscopy, energy disperse X-ray analysis and X-ray diffractometry. Results on the layer characterization are reported and the effect of VPE conditions on the layer proper…

Inorganic ChemistryChemistryScanning electron microscopeMaterials ChemistrySapphireAnalytical chemistryMetalorganic vapour phase epitaxyCrystalliteCondensed Matter PhysicsEpitaxyLayer (electronics)Cadmium telluride photovoltaicsSolid solutionJournal of Crystal Growth
researchProduct

Direct to Indirect Crossover in III-VI Layered Compounds and Alloys under Pressure

1999

The pressure dependence of the optical absorption edge of In1± xGaxSe (0 < x < 0.2) and GaTe has been investigated in order to determine the direct to indirect crossover pressure and the energy difference between the absolute and subsidiary minima of the conduction band at ambient pressure. In the In1± xGaxSe alloy, the crossover pressure decreases with increasing Ga proportion. For InSe, from the extrapolation to x = 0 the band crossover is found to occur at 4.3 GPa and the subsidiary minimum of the conduction band is located, at ambient pressure, (0.32 0.02) eV above the absolute minimum. In addition, the energy difference between the conduction band minima is shown to decrease linearly w…

Condensed matter physicsChemistryAlloyCrossoverExtrapolationCrystal structureengineering.materialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsElectronic statesMaxima and minimaAbsorption edgeengineeringAmbient pressurephysica status solidi (b)
researchProduct

Band-to-Band and Band-to-Acceptor Photoluminescence Studies in InSe under Pressure

1999

We report on photoluminescence (PL) measurements under pressure on p-type N-doped InSe at 10 K and on n-type Si-doped InSe at room temperature. Low-temperature PL of N-doped InSe is dominated by a band-to-acceptor peak. From the pressure dependence of the ionization energy of the N related shallow acceptor, the pressure change of the hole effective mass is estimated through the Gerlach-Pollmann model for hydrogenic levels in uniaxial crystals and discussed in the framework of a k p model. Room temperature PL in Si-doped InSe is dominated by a band-to-band peak exhibiting a pressure shift in agreement with previous works. This PL peak has been measured up to 7 GPa and a steep reversible decr…

Effective mass (solid-state physics)PhotoluminescenceSemiconductorUniaxial crystalCondensed matter physicsChemistrybusiness.industryIonization energyPressure dependenceCondensed Matter PhysicsbusinessAcceptorElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Photoluminescence study of radiative transitions in ZnTe bulk crystals

1998

Abstract This paper focuses on photoluminescence (PL) and selective photoluminescence (SPL) of ZnTe bulk crystals grown by the cold traveling heater method. The crystals exhibit a PL response with a much more intense excitonic zone than the one due to free-to-bound and donor–acceptor bands, denoting a good sample quality. In particular, we have investigated the Y 1 and Y 2 peaks which, in epitaxial layers, have usually been associated with structural defects. On bulk samples they have not been detected so far because of different masked mechanisms. SPL measurements show that the electrons are the most likely involved carriers for this emission. Additionally, the analysis of the PL variation…

Range (particle radiation)Materials sciencePhotoluminescencebusiness.industryMineralogyActivation energyElectronCondensed Matter PhysicsEpitaxyMolecular physicsInorganic ChemistrySemiconductorMaterials ChemistryRadiative transferbusinessLuminescenceJournal of Crystal Growth
researchProduct

Effects of pressure and temperature on the dielectric constant of GaS, GaSe, and InSe:  Role of the electronic contribution

1999

In this work we report on direct measurements of the temperature and pressure dependences of the low-frequency dielectric constant along c axis $({\ensuremath{\varepsilon}}_{\ensuremath{\parallel}})$ of GaS, GaSe, and InSe. The temperature dependence of both the ordinary and extraordinary refractive indexes is also presented. A large increase of ${\ensuremath{\varepsilon}}_{\ensuremath{\parallel}}$ under pressure has been observed. In the framework of a rigid ion model, the lattice contribution to ${\ensuremath{\varepsilon}}_{\ensuremath{\parallel}}$ is shown to increase slightly under pressure, due to the change of the angle between the anion-cation bond and the layer plane. Consequently, …

PhysicsPhase transitionTemperature and pressureCondensed matter physicsLattice (order)Direct and indirect band gapsDielectricPressure coefficientIonPhysical Review B
researchProduct

High-pressure x-ray-absorption study of GaSe

2002

The III-VI layered semiconductor InSe has been studied by high-pressure single crystal x-ray absorption spectroscopy up to a maximum pressure of 14 GPa. The In-Se distance has been measured in both the low- pressure layered phase and the high-pressure NaCl phase. The bond compressibility in the layered phase is lower than the ``a'' crystallographic parameter compressibility, which implies an increase of the angle between the In-Se bond and the layer plane. Under plausible hypothesis, a description of the evolution of the whole structure with pressure is given. In particular, the intralayer distance is observed to increase with increasing pressure. A plausible precursor defect and a simple m…

010302 applied physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Materials scienceCondensed matter physicsAbsorption spectroscopybusiness.industryPlane (geometry)[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]X-ray02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticsSemiconductorPhase (matter)0103 physical sciencesCompressibility[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyAbsorption (electromagnetic radiation)businessSingle crystalComputingMilieux_MISCELLANEOUS
researchProduct

Cinnabar phase in ZnSe at high pressure

2001

We have performed an energy-dispersive x-ray-diffraction experiment on ${\mathrm{ZnSe}}_{1\ensuremath{-}x}{\mathrm{Te}}_{x}$ alloys under high pressure with $x=0,$ 0.05, 0.1, and 0.2. In the downstroke a hexagonal phase appears. We suggest that this phase is cinnabar, whose stability range decreases as the Te content is reduced. The analysis of the whole series of compositions enables us to establish its lattice parameters in ZnSe $(a=3.785\AA{}$ and $c=8.844\AA{}$ at 10.5 GPa). The extinction of some diffraction peaks also suggests that the internal parameters u and $v$ are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe.

DiffractionMaterials scienceOpticsCinnabarbusiness.industryHigh pressureLattice (order)Hexagonal phaseAnalytical chemistrybusinessPhysical Review B
researchProduct

Vapor phase epitaxy of Hg1−xCdxI2 layers on CdTe substrates

1997

Vapor phase epitaxy (VPE) has been studied to grow Hg1 − xCdxI2 epitaxial layers on CdTe bulk substrates. The effect of the VPE growth conditions on the morphology, composition and crystalline quality of Hg1 − xCdxI2CdTe heterostructures has been investigated. It has been shown that 10–30 μm thick Hg1 − xCdxI2 layers can be successfully grown using an α-HgI2 polycrystalline source under isothermal conditions at a temperature in the range 170–240°C for the time period 20–50 h. Interestingly, the VPE growth was found to consist of two successiv stages with different kinetics as follows: (1) a fast growth of an HgI2 platelet layer on the CdTe substrate surface and (2) a slow growth of an Hg1 −…

Morphology (linguistics)ChemistryStereochemistryKineticsAnalytical chemistryHeterojunctionCondensed Matter PhysicsEpitaxyIsothermal processCadmium telluride photovoltaicsInorganic ChemistryMaterials ChemistryCrystalliteLayer (electronics)Journal of Crystal Growth
researchProduct

Precursor effects of the Rhombohedral-to-Cubic Phase Transition in Indium Selenide

2002

We report on the observation of precursor effects of the rhombohedral-to-cubic phase transition in Indium Selenide (InSe) with several experimental techniques. The pressure at which these precursor defects are first observed depends on the sensitivity of the experimental technique. In transport measurements, which are very sensitive to low defect concentrations, precursor effects are observed 5 to 6 GPa below the phase transition pressure whereas in X-ray diffraction measurements precursor effects are only observed 2 GPa below the phase transition pressure. We report optical absorption measurements, in which the precursor effects are shown by the growth and propagation of dark linear defect…

Diffractionchemistry.chemical_classificationPhase transitionCondensed matter physicsBase (chemistry)digestive oral and skin physiologychemistry.chemical_elementTrigonal crystal systemCondensed Matter PhysicsStress fieldchemistry.chemical_compoundCrystallographychemistrySelenideAbsorption (chemistry)IndiumHigh Pressure Research
researchProduct

Pressure Dependence of the Bandgap Bowing in Zinc-Blende ZnTe 1− x Se x

2002

We report on the pressure dependence of the bandgap bowing in the ZnTe 1 m x Se x alloy, in the whole composition range. The bandgap bowing parameter is shown to increase almost linearly with pressure from 1.23 at ambient pressure to 1.6 at 7 GPa. Saturation effects observed in the pressure dependence for x =0.1 and x =0.2 are shown to be related to the direct-to-indirect crossover. Results are discussed and interpreted in the framework of structural relaxation models for gap bowing. A prediction of these models (the negative bowing of the o 15 m ;X 1 transition) is shown to be compatible with the fact that the direct-to-indirect crossover pressure increases with the Se content.

Materials scienceCondensed matter physicsBand gapBowingRelaxation (NMR)Alloychemistry.chemical_elementZincPressure dependenceengineering.materialCondensed Matter PhysicschemistryengineeringSaturation (magnetic)Ambient pressureHigh Pressure Research
researchProduct

Scanning electron microscopy study of twins in ZnSe single crystals grown by solid-phase recrystallization

2001

ZnSe single crystals were grown from n-type microcrystalline boules by a solid phase recrystallization (SPR) method. During SPR, twinned regions appear with different electronic recombination properties. The recrystallizations were performed under different atmospheres, Ar or Se, and pressures to investigate the influence of growth conditions on these structural features. Recombination properties were studied by means of cathodoluminescence (CL) and remote-electron beam induced current (REBIC). Wavelength dispersive X-ray (WDX) mappings were also performed to analyze possible differences in stoichiometry related to the presence of extended defects.

Materials sciencebusiness.industryMechanical EngineeringAnalytical chemistryRecrystallization (metallurgy)CathodoluminescenceCondensed Matter PhysicsWavelengthOpticsMicrocrystallineMechanics of MaterialsGeneral Materials SciencebusinessScanning electron microscopy studyStoichiometryRecombinationMaterials Science and Engineering: B
researchProduct

Optical Absorption of Zinc Selenide Doped with Cobalt (Zn1-xCoxSe) under Hydrostatic Pressure

2000

Optical absorption of the diluted magnetic semiconductor Zn 1-x Co x Se (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14 GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.5 to 1.8 eV, with a negligible pressure shift (i.e. (0.45 ± 0.05) meV/GPa) which we have identified as the Co 2+ (3d 7 ) internal transition 4 A 2 (F) → 4 T 1 (P) and (ii) an onset in the energy range 2 to 2.7 eV which redshifts with pressure (dE/dP = (-8.1 ± 0.6) meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co 2+ (3d 7 ) levels. On the assumption that tho…

chemistry.chemical_compoundAbsorption spectroscopyAbsorption edgeChemistryHydrostatic pressureDopingAnalytical chemistryZinc selenideMagnetic semiconductorCondensed Matter PhysicsAbsorption (electromagnetic radiation)Diamond anvil cellElectronic Optical and Magnetic Materialsphysica status solidi (a)
researchProduct

Pressure Dependence of the Low-Frequency Dielectric Constant in III-VI Semiconductors

1999

In this work we report on the pressure dependence of the low-frequency dielectric constant parallel to the c-axis (e∥) in GaS, GaSe, and InSe as obtained from direct capacitance measurements. A large increase of e∥ with pressure has been observed. The pressure change of the lattice polarizability along the c-axis is calculated in the framework of a rigid-ion model from the change of the angle of the anion–cation bond with respect to the layer plane, which results in a slight increase of the lattice contribution. Consequently, the pressure behaviour of e∥ is proposed to arise from the large increase of the electronic polarizability along the c-axis. This is explained through a decrease of th…

Phase transitionCondensed matter physicsChemistrybusiness.industryDielectricLow frequencyPressure dependenceCondensed Matter PhysicsCapacitanceElectronic Optical and Magnetic MaterialsSemiconductorPolarizabilityLattice (order)businessphysica status solidi (b)
researchProduct

Optical absorption of zinc selenide doped with cobalt (Zn1−xCoxSe) under hydrostatic pressure

2000

Abstract The optical absorption of the diluted magnetic semiconductor Zn1−xCOxSe (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.6−1.8eV, with a negligible pressure shift (i.e., 0.45 ± 0.05 meV/GPa) which we have identified as the Co2+(3d7) internal transition 4A2(F)→+4T1(P) and (ii) an onset in the energy range 2−2.7eV which redshifts with pressure (−8.1±0.6meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co2+(3d7) levels.

chemistry.chemical_compoundRange (particle radiation)chemistryAbsorption edgeDopingHydrostatic pressureAnalytical chemistrychemistry.chemical_elementZinc selenideMagnetic semiconductorCondensed Matter PhysicsAbsorption (electromagnetic radiation)CobaltHigh Pressure Research
researchProduct

Cathodoluminescence and photoluminescence study of plastically deformed ZnTe bulk single crystals

2001

Samples of zinc telluride bulk single crystals, which were deformed in uniaxial compression, have been studied by photoluminescence (PL) and cathodoluminescence (CL). As a particular feature the deformed samples present a PL emission band peaked at 603 nm, whose intensity increases as the plastic deformation does. This band is related to the density of dislocations produced during the interaction of slip systems. This hypothesis is supported by CL images. which reveal the activation of the successive slip systems corresponding to different levels of deformation.

PhotoluminescenceMaterials scienceZinc tellurideCondensed matter physicsFísica de materialesMineralogyUniaxial compressionCathodoluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsEmission bandchemistry.chemical_compoundchemistryMaterials ChemistryElectrical and Electronic EngineeringDislocationDeformation (engineering)Intensity (heat transfer)
researchProduct

Non radiative recombination centers in ZnO nanorods

2013

ABSTRACTNowadays, the nature of the non radiative recombination centres in ZnO is a matter of controversy; they have been related to extended defects, zinc vacancy complexes, and surface defects, among other possible candidates. We present herein the optical characterization of catalyst free ZnO nanorods grown by atmospheric MOCVD by microRaman and cathodoluminescence spectroscopies. The correlation between the defect related Raman modes and the cathodoluminescence emission along the nanorods permits to establish a relation between the non radiative recombination centers and the defects responsible for the local Raman modes, which have been related to Zn interstitial complexes.

Materials sciencebusiness.industryCathodoluminescenceCharacterization (materials science)Catalysissymbols.namesakeChemical physicssymbolsOptoelectronicsNanorodMetalorganic vapour phase epitaxyLuminescencebusinessRaman spectroscopyNon-radiative recombinationMRS Proceedings
researchProduct

Anisotropy of the refractive index and absorption coefficient in the layer plane of gallium telluride single crystals

1995

Refractive index and absorption coefficient of GaTe for light polarized in the optical axis directions in the layer plane are determined from transmission measurements. The refractive index is determined in the wavelength range from 0.7 to 25 μm and the absorption coefficient in the range of energies from 1.6 to 2 eV at room temperature and at 30 K. The optical constants are found to be anisotropic in the layer plane. The refractive index dispersion is interpreted through a Phillips-Van Vechten model and the Penn gaps for each direction are found to be E pg (⊥b) = 3.37 eV and E pg (∥b) = 3.58 eV. In the long-wavelength region a polar phonon contribution is also taken into account. The absor…

ChemistryPhononbusiness.industryPhysics::OpticsCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic MaterialsOptical axischemistry.chemical_compoundOpticsAbsorption edgeAttenuation coefficientTellurideAbsorptancebusinessAnisotropyRefractive indexPhysica Status Solidi (a)
researchProduct

Growth and characterization of GdxHg1−xSe crystals

2008

Abstract The growth of GdxHg1−xSe crystals by the vertical Bridgman method was studied in the composition range 0⩽x⩽0.1. The structural and electronic properties of GdxHg1−xSe crystals were investigated as a function of composition. It was found that an increase in gadolinium content up to x=0.01 results in a decrease of structural defects and an increase in electron mobility up to the maximum value of μ77≈2.8×105 cm2/V s. Structural defects start to increase at x>0.01, and the formation of Gd2Se3 amorphous phase takes place at x>0.03. On the base of the electron-spin resonance investigation, it was shown that the Gd incorporates into the HgSe host in Gd3+ charge state at the concentration …

chemistry.chemical_classificationElectron mobilityRange (particle radiation)Base (chemistry)GadoliniumDopingAnalytical chemistryResonancechemistry.chemical_elementElectronic structureCondensed Matter Physicslaw.inventionInorganic ChemistryNuclear magnetic resonancechemistrylawMaterials ChemistryElectron paramagnetic resonanceJournal of Crystal Growth
researchProduct

Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass

1997

In this work we report on steady-state and time-resolved photoluminescence (PL) measurements in nitrogen-doped p-type indium selenide in the 33--210-K temperature range. In samples with low nitrogen concentration the photoluminescence spectrum consists of exciton-related peaks and a band-to-acceptor recombination peak (2.1-\ensuremath{\mu}s lifetime) with LO-phonon replica. An ionization energy of 65.5 meV is proposed for the nitrogen-related acceptor. A long-lived (18 \ensuremath{\mu}s) component, which consists of an asymmetric broadband centered around the acceptor peak, has been also detected by means of time-resolved PL. Samples with a higher nitrogen concentration show a PL spectrum t…

PhysicsPhotoluminescenceAnalytical chemistrychemistry.chemical_elementFísicaAtmospheric temperature rangeAcceptorNitrogenchemistry.chemical_compoundEffective mass (solid-state physics)chemistrySelenideIonization energyIndium
researchProduct

Refractive index of GaTe under high pressure

2000

In this paper we describe two experiments, in the near- and mid-infrared, designed to investigate the evolution under pressure of the GaTe refractive index for polarization parallel and perpendicular to the crystallographic c-axis (in the layer plane). The refractive index dispersion for both light polarizations has been determined up to 5.5 GPa. It is found that the refractive index increases faster in the direction perpendicular to the c-axis than along the c-axis. To find out the origin of such a difference we used a Phillips-Van Vechten model and arrived at the conclusion that it is due to the different pressure behaviour of the Penn gap for each polarization.

business.industryBand gapChemistryInfraredCondensed Matter PhysicsPolarization (waves)Electronic Optical and Magnetic MaterialsOpticsHigh pressureDispersion relationMaterials ChemistryPerpendicularElectrical and Electronic EngineeringbusinessStep-index profileRefractive indexSemiconductor Science and Technology
researchProduct

High pressure EXAFS on GaTe single crystal including polarization

1999

Extended X-ray absorption fine structureChemistryHigh pressureAnalytical chemistryCondensed Matter PhysicsPolarization (waves)Single crystalElectronic Optical and Magnetic Materials
researchProduct

Heat transfer simulation in a vertical Bridgman CdTe growth configuration

1999

Modelling and numerical simulation of crystal growth processes have been shown to be powerful tools in order to understand the physical effects of different parameters on the growth conditions. In this study a finite difference/control volume technique for the study of heat transfer has been employed. This model takes into account the whole system: furnace temperature profile, air gap between furnace walls and ampoule, ampoule geometry, crucible coating if any, solid and liquid CdTe thermal properties, conduction, convection and radiation of heat and phase change. We have used the commercial code FLUENT for the numerical resolution that can be running on a personal computer. Results show th…

ConvectionChemistryMineralogyMechanicsCondensed Matter PhysicsThermal conductionAmpouleControl volumeInorganic ChemistryThermal radiationHeat transferThermalPersonal computerMaterials ChemistryJournal of Crystal Growth
researchProduct

High-pressure x-ray absorption study of GaTe including polarization

2000

The evolution of the local structure in GaTe under pressure is studied by x-ray absorption spectroscopy experiments at the Ga K-edge (10.368 keV) on oriented single crystals. Taking advantage of the linearly polarized character of synchrotron radiation, the pressure evolution of both the Ga-Te and the in-plane Ga-Ga bond lengths could be determined, in spite of the small amplitude of the latter. Our measurements show that both distances are much less compressible than what could be inferred from the bulk compressibility, which evidences a strong variation of Ga-Ga-Te and Te-Ga-Te angles under pressure. The Te-Te intralayer distance perpendicular to the layers is observed to increase with in…

Bond lengthMaterials scienceAbsorption spectroscopyExtended X-ray absorption fine structureLinear polarizationCompressibilitySynchrotron radiationAtomic physicsAnisotropyMolecular physicsX-ray absorption fine structure
researchProduct

Specific features of the electronic structure of III–VI layered semiconductors: recent results on structural and optical measurements under pressure …

2003

In this paper we review some recent results on the electronic structure of III-VI layered semiconductors and its dependence under pressure, stressing the specific features that differentiate their behaviour from that of tetrahedrally coordinated semiconductors. We will focus on several unexpected results that have led to changes in the image that was currently accepted a few years ago. Intralayer bond angles change under pressure and the layer thickness remains virtually constant or increases. As a consequence, models based in intra- and inter-layer deformation potentials fail in explaining the low pressure nonlinearity of the band gap. Numerical-atomic-orbital/density-functional-theory ele…

Condensed matter physicsBand gapbusiness.industryChemistryMineralogyElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMolecular geometrySemiconductorAbsorption edgeDensity of statesDeformation (engineering)Electronic band structurebusinessphysica status solidi (b)
researchProduct

Some fundamentals of the vapor and solution growth of ZnSe and ZnO

1999

Abstract Some fundamentals of ZnSe and ZnO vapor and solution growth are investigated. Residual water present in gases or gaseous mixtures such as H 2 , Ar or H 2 +H 2 O is shown to act as a sublimation activator in the vapor-phase transport of both compounds. The processes involved in the growth by chemically activated sublimation with such gases and gas mixtures have been studied by close-spaced vapor transport (CSVT). The ZnSe growth rate is found to be constant, while in the ZnO case a high initial growth rate is followed by slower growth subsequently. Using a theoretical model, the thermodynamic constants of the transport – energies of activation, sublimation and condensation and entha…

ChemistryInorganic chemistryAnalytical chemistrychemistry.chemical_elementCondensed Matter PhysicsInorganic ChemistrySolventDifferential thermal analysisActivator (phosphor)Materials ChemistryChlorineSublimation (phase transition)Growth rateStandard enthalpy change of formationPhase diagramJournal of Crystal Growth
researchProduct

Effect of plastic deformation on photoluminescence of ZnTe bulk monocrystals

1999

Abstract In this work ZnTe bulk single crystals have been deformed by axial compression with the aim of analyzing the luminescence properties related to intrinsic structural defects like dislocations. Plastic deformation greatly decreases the overall PL response, near-band-edge luminescence as well as deep level-related emissions. Results indicate a close relationship between the so-called Y1 and Y2 bands and the density of generated dislocations. Plastic deformation also produces an emission band at 603 nm whose intensity is proportional to the amount of introduced deformation.

Work (thermodynamics)Materials sciencePhotoluminescenceCondensed matter physicsMineralogyCondensed Matter PhysicsInorganic ChemistryCondensed Matter::Materials ScienceClose relationshipAxial compressionMaterials ChemistryDislocationDeformation (engineering)LuminescenceIntensity (heat transfer)Journal of Crystal Growth
researchProduct

Temperature and pressure dependence of the optical absorption in hexagonal MnTe

2000

The absorption edge of hexagonal (NiAs structure) antiferromagnetic MnTe has been measured by means of light transmission experiments carried out at different temperatures in the range 16--420 K $(P=1\mathrm{bar})$ and hydrostatic pressures up to 9 GPa $(T=295\mathrm{K}).$ An indirect band gap has been found, in agreement with previous band-structure calculations, with an energy of ${E}_{\mathrm{ig}}=1.272\ifmmode\pm\else\textpm\fi{}0.013\mathrm{eV}$ at room temperature and pressure. The temperature dependence of the absorption edge is linear above the N\'eel temperature ${T}_{N}=310\mathrm{K},$ with a temperature coefficient $dE/dT=\ensuremath{-}(3.5\ifmmode\pm\else\textpm\fi{}0.1)\ifmmode…

PhysicsMagnetizationCondensed matter physicsAbsorption edgeAntiferromagnetismAbsorption (logic)Pressure coefficientTemperature coefficientEnergy (signal processing)Bar (unit)Physical Review B
researchProduct

Deep center luminescence versus surface preparation of ZnSe single crystals

2001

A close relationship between the photoluminescence emissions labeled Y and S, related to dislocations and extended structural defects, and the preparation of the surface state of ZnSe single crystals before PL (photoluminescence) measurements has been established. The samples were obtained by solid-phase recrystallization under different pressure conditions. An easy method for achieving good quality surfaces with a very significant reduction of such Y and S PL emissions is proposed.

PhotoluminescenceMaterials scienceMechanics of MaterialsClose relationshipSurface preparationMechanical EngineeringAnalytical chemistryRecrystallization (metallurgy)General Materials ScienceCondensed Matter PhysicsLuminescenceJournal of Materials Research
researchProduct

Selective area vapor-phase epitaxy and structural properties of Hg1 − xCdxTe on sapphire

1997

Selective area (SA) Hg1 − xCdxTesapphire layers have been grown using the recently developed technique of the vapor-phase epitaxy (VPE) of Hg1 − xCdxTe layers on CdTesapphire heteroepitaxial substrates (HS), which we have called “VPE on HS technique” (Sochinskii et al., J. Crystal Growth 149 (1995) 35; 161 (1996) 195). First, planar CdTe (1 1 1) 5–7 μm thick layers were grown on sapphire (0 0 0 1) wafers by metalorganic vapor-phase epitaxy (MOVPE) at 340°C for 1–2.5 h using dimethylcadmium and di-isopropyltellurium as precursors. Second, CdTe/sapphire mesas were formed using standard photolithography in the form of alternating parallel linear arrays consisting of 500 × 70 μm2 elements. Thir…

Inorganic ChemistryScanning electron microscopeChemistryMaterials ChemistryAnalytical chemistrySapphireCrystal growthMetalorganic vapour phase epitaxySubstrate (electronics)Condensed Matter PhysicsEpitaxyRutherford backscattering spectrometryCadmium telluride photovoltaicsJournal of Crystal Growth
researchProduct

Electronic structure and optical properties of CdTe rock-salt high pressure phase

2003

This paper reports on optical absorption and reflectance measurements in thin CdTe samples up to 15 GPa. All studied samples become virtually opaque at the pressure transition between the zinc-blende and rock-salt phases (3.9 GPa). As pressure increases up to 10 GPa, a relative transparency region is observed between 1.2 eV and 2.4 eV, whose high energy edge shifts to higher photon energies. Above 10 GPa the transparency region gradually shrinks and disappears at about 11 GPa. The low energy side of the absorption spectrum is attributed to free carrier absorption, as electronic structure calculations show that rock-salt CdTe is a semimetal or a low gap semiconductor. Band filling effects lo…

Phase transitionAbsorption spectroscopyCondensed matter physicsbusiness.industryChemistryBand gapCondensed Matter PhysicsSemimetalElectronic Optical and Magnetic MaterialsOpticsAttenuation coefficientPhase (matter)Free carrier absorptionAbsorption (electromagnetic radiation)businessphysica status solidi (b)
researchProduct

Vibrational Properties of InSe under Pressure: Experiment and Theory

1996

The pressure dependence of the phonon modes in the layered semiconductor γ-InSe has been investigated experimentally and theoretically for pressures up to 11 GPa. The mode Gruneisen parameters of all Raman-active zone-center phonons have been determined by Raman scattering under pressure. In addition, features corresponding to second and third-order scattering processes are apparent in the Raman spectra under resonance conditions, from which information about zone-edge modes can be obtained. For the assignment of the observed Raman features to vibrational modes we have calculated the phonon dispersion curves using a rigid-ion model including couplings to first-nearest neighbors and long-ran…

DiffractionChemistryScatteringPhononAnalytical chemistryPressure experimentCondensed Matter PhysicsMolecular physicsResonance (particle physics)Electronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeMolecular vibrationsymbolsRaman spectroscopyRaman scatteringphysica status solidi (b)
researchProduct

A new approach to the crystal growth of Hg1−xMnxTe by the cold travelling heater method (CTHM)

2001

Abstract In order to obtain crystals with a homogeneous composition and to reduce the Hg high pressure related to the temperature synthesis reaction between the components in elemental form, Hg 1− x Mn x Te bulk crystals were produced by the cold travelling heater method (CTHM). Following the technique initially proposed for the growth of CdHgTe by the Triboulet group, the feed material was a split ingot of two segments, one of HgTe and the other of MnTe, with cross-sectional areas chosen to establish the desired final composition. The growth was carried out at a temperature of 600°C and a rate of 2 mm/h. The Hg 1− x Mn x Te crystals have been characterised by scanning electron microscopy, …

Scanning electron microscopeChemistryAnalytical chemistryInfrared spectroscopyCrystal growthCondensed Matter PhysicsMagnetic susceptibilitylaw.inventionInorganic ChemistrySQUIDlawMaterials ChemistryIngotChemical compositionSolid solutionJournal of Crystal Growth
researchProduct

Effect of structural and compositional inhomogeneities on spin-glass transition in Hg1−x−yCrxMnySe crystals

2004

Abstract We report experimental results on the growth of Hg 1 −x−y Cr x Mn y Se crystals and their magnetic susceptibility χ ( T ) in dependence on the crystal structure and composition. It was found that the crystals with the Mn composition y =0.01–0.08 exhibit the spin-glass transition temperature T g =100–110 K. An increase of y value leads to the saturation of the χ max and T g characteristics in the composition ranges of y >0.06 and y >0.02, respectively. This phenomenon is explained as a result of phase-separated magnetic behavior caused by the formation of HgCr 2 Se 4 inclusions and textures.

Spin glassScanning electron microscopeChemistryTransition temperatureAnalytical chemistryCrystal structureMagnetic semiconductorCondensed Matter PhysicsMagnetic susceptibilityInorganic ChemistryNuclear magnetic resonanceMaterials ChemistryGlass transitionSaturation (magnetic)Journal of Crystal Growth
researchProduct

Growth and characterisation of MnTe crystals

2001

We report on the low temperature growth of MnTe crystals by means of travelling solution methods. Two different processes are considered; a classical THM process using a low temperature presynthesised MnTe ingot, and a modified THM process, in which an increasing length of solvent zone collects the tellurium that was added to the stoichiometric charge to decrease the reaction temperature. Ingots from the two methods are analysed by means of scanning electron microscopy, X-ray diffractometry, resistivity, susceptibility and optical absorption measurements.

Scanning electron microscopeAnalytical chemistrychemistry.chemical_elementCondensed Matter PhysicsMagnetic susceptibilityInorganic ChemistrySolventCrystallographychemistryElectrical resistivity and conductivityMaterials ChemistryAbsorption (chemistry)IngotTelluriumStoichiometryJournal of Crystal Growth
researchProduct

Temperature dependence of refractive index and absorption coefficient of GaSe at 633 nm

1995

Abstract Measurements of the ordinary refractive index and the absorption coefficient ( E /t] to c axis ) of gallium selenide at 633 nm, in the temperature range [20,100] °C, are reported. Useful analytical approximations obtained after a least squares fitting process are provided, as well. These results are basic for any theoretical model of nonlinear and bistable optical devices based on GaSe.

Materials scienceBistabilitybusiness.industryGallium selenidePhysics::OpticsNonlinear opticsAtmospheric temperature rangeAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNonlinear systemOpticsAttenuation coefficientAbsorptanceElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessRefractive indexOptics Communications
researchProduct

Structural defects in Hg1−xCdxI2 layers grown on CdTe substrates by vapor phase epitaxy

1997

Hg1−xCdxI2 20–25-μm-thick layers with a uniform composition in the range of x = 0.1–0.2 were grown on CdTe substrates by vapor phase epitaxy (VPE). The growth was carried out using an α-HgI2 polycrystalline source at 200 °C and in the time range of 30–100 h. The layers were studied by scanning electron microscopy (SEM) and high resolution synchrotron x-ray topography (SXRT). The SEM and SXRT images of Hg1−xCdxI2 VPE layers allow one to identify the defects affecting the layer structure. The two main types of structural defects in the layers are subgrain boundaries and densely spaced striations similar to those referred generally to as vapor grown HgI2 bulk crystals. The effect of the growth…

Materials scienceSemiconductor MaterialsGrain BoundariesScanning electron microscopeVapor phaseGeneral Physics and AstronomyMercury Compounds ; Cadmium Compounds ; Semiconductor Materials ; Vapour Phase Epitaxial Growth ; Semiconductor Growth ; Semiconductor Epitaxial Layers ; Scanning Electron Microscopy ; X-Ray Topography ; Grain BoundariesEpitaxylaw.inventionlaw:FÍSICA [UNESCO]Cadmium CompoundsSemiconductor Epitaxial Layersbusiness.industryMercury CompoundsX-Ray TopographyUNESCO::FÍSICASynchrotronCadmium telluride photovoltaicsCrystallographySemiconductor GrowthOptoelectronicsVapour Phase Epitaxial GrowthGrain boundaryCrystalliteScanning Electron MicroscopybusinessLayer (electronics)
researchProduct

Light-induced transmission nonlinearities in gallium selenide

1999

The intensity of a He–Ne laser (633 nm, 5 mW) transmitted by different GaSe samples is observed to change in correlation with a Nd-yttrium–aluminum–garnet laser pulse (532 nm, 7.8 ns, 3 mJ) which excites them. Such time response has been attributed to a nonlinear optical effect, i.e., a decrease in the refractive index due to the exciton screening by the photogenerated carriers. A calculation of the absorption coefficient and refractive index at different carrier concentrations has led to a reconstruction of transmittance transients which fully agree with the experimental data at different incident intensities and temperatures. Chantal.Ferrer@uv.es ; Jaqueline.Bouvier@uv.es ; Miguel.Andres@…

Absorption coefficientsNonlinear opticsExcitonRefractive indexGeneral Physics and AstronomyIII-VI semiconductorsGallium compounds ; III-VI semiconductors ; Nonlinear optics ; Light transmission ; Refractive index ; Excitons ; Absorption coefficients ; Carrier densitylaw.inventionOpticslaw:FÍSICA [UNESCO]TransmittancePulse (signal processing)business.industryChemistryGallium compoundsUNESCO::FÍSICANonlinear opticsLaserIntensity (physics)Attenuation coefficientLight transmissionOptoelectronicsExcitonsCarrier densitybusinessRefractive index
researchProduct

Scanning electron microscopy characterization of ZnSe single crystals grown by solid-phase recrystallization

2000

ZnSe single crystals were grown from n-type microcrystalline boules by a Solid Phase Recrystallization (SPR) method. The recrystallizations were performed under different atmospheres, Ar or Se, and pressures to investigate the influence of growth conditions on the structural features of the resulting crystals. The samples were mechanically and mechano-chemically polished in a bromine methanol solution and, then, etched in HCl for a short time, before characterization. The homogeneity and the nature of defects in the crystals were studied by Cathodoluminescence (CL) in the scanning electron microscope (SEM). CL measurements show the existence of slip bands in the recrystallized samples, like…

BromineMaterials scienceScanning electron microscopeMechanical EngineeringLüders bandchemistry.chemical_elementCrystal growthCathodoluminescenceCondensed Matter PhysicsCrystallographic defectSpectral lineCrystallographyMicrocrystallinechemistryMechanics of MaterialsGeneral Materials ScienceMaterials Science and Engineering: B
researchProduct

Effects of Conduction Band Structure and Dimensionality of the Electron Gas on Transport Properties of InSe under Pressure

1996

We report Hall effect and resistivity measurements in InSe under pressure. The electron concentration strongly decreases under pressure in samples exhibiting 3D transport behaviour. This is explained by the existence of an excited minimum in the conduction band moving to lower energies under pressure. The related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. In samples exhibiting 2D behaviour the electron concentration remains constant. This behaviour, together with the pressure dependence of the Hall mobility, is consistent with a previous model which considers high mobility 3D electrons and low mobility 2D electrons to contribute to charge trans…

Condensed matter physicsChemistryBand gapFermi levelElectronCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeElectrical resistivity and conductivityHall effectExcited statesymbolsFermi gasQuasi Fermi levelphysica status solidi (b)
researchProduct

Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses

1997

A nonlinear optical effect is shown to occur in gallium and indium selenides at photon energies of the order of 1.5 eV. It corresponds to transitions from a lower-energy valence band to the uppermost one when a nonequilibrium degenerate hole gas is created in the latter by a laser pulse. This inter-valence-band transition is allowed by crystal symmetry. Its oscillator strength is estimated through the $f$-sum rule and turns out to be about two orders of magnitude higher than that of the fundamental transition. The intensity of this effect is stronger when the pump pulse photon energy is close to that of the inter-valence-band transition; a condition that can be fulfilled only in indium sele…

Materials sciencePhotonOscillator strengthchemistry.chemical_elementPhysics::OpticsPhoton energyÒpticaLaserlaw.inventionchemistrylawStimulated emissionGalliumAtomic physicsAbsorption (electromagnetic radiation)Indium
researchProduct

Neutron irradiation defects in gallium sulfide: Optical absorption measurements

1997

Gallium sulfide single crystals have been irradiated with different thermal neutron doses. Defects introduced by neutron irradiation turn out to be optically active, giving rise to absorption bands with energies ranging from 1.2 to 3.2 eV. Bands lying in the band-gap exhibit Gaussian shape. Their energies and widths are independent of the irradiation dose, but their intensities are proportional to it. Thermal annealing is completed in two stages, ending at around 500 and 720 K, respectively. Centers responsible for the absorption bands are proposed to be gallium-vacancy-galliuminterstitial complexes in which the distance between the vacancy (acceptor) and the interstitial (donor) determines…

Energy GapInterstitialsMaterials scienceIII-VI SemiconductorsAnnealing (metallurgy)Band gapVacancies (Crystal)Neutron EffectsUNESCO::FÍSICAGeneral Physics and AstronomyGallium Compounds ; III-VI Semiconductors ; Neutron Effects ; Defect Absorption Spectra ; Energy Gap ; Vacancies (Crystal) ; Interstitials ; Annealing ; Visible SpectraMolecular physicsAcceptorNeutron temperatureAnnealingCrystallographyCondensed Matter::Materials ScienceAbsorption bandVisible Spectra:FÍSICA [UNESCO]Vacancy defectGallium CompoundsIrradiationDefect Absorption SpectraNeutron irradiation
researchProduct

Study of the chemically activated sublimation of ZnSe

1999

Abstract The reactions and processes involved in the growth of ZnSe by chemically activated sublimation in a H 2 atmosphere are studied. The rate of transport as a function of source and substrate temperatures and the difference between them are determined from close spacing vapour transport experiments. According to this process, ZnSe layers are deposited on sapphire substrates by short distance chemically assisted sublimation. The experimental results are analysed and the thermodynamic constants of the transport are determined using a theoretical model for kinetically controlled processes, assuming water to act as sublimation catalyst. A preliminary optical and structural characterisation…

Inorganic ChemistryStereochemistryChemistryMass transferKineticsMaterials ChemistrySapphireAnalytical chemistrySublimation (phase transition)Condensed Matter PhysicsShort distanceCatalysisJournal of Crystal Growth
researchProduct

Low-pressure synthesis and Bridgman growth of Hg1−xMnxTe

1999

To reduce Hg high pressure related to the high-temperature synthesis reaction between the components in elemental form, Hg 1-x Mn x Te bulk crystals were produced by a two-step procedure including (I) the alloy synthesis using HgTe crystals grown by the cold travelling heater method and elemental Mn and Te to complete the desired composition, followed by (II) the Bridgman growth. The growth was carried out at temperature in the range of 700-850°C and rate of 1 mm/h. The Hg 1-x Mn x Te crystals have been characterised by X-ray diffractometry, energy dispersive X-ray analysis, Fourier transformed infrared spectroscopy and Hall effect techniques. Although the distribution coefficient of Mn was…

Range (particle radiation)ChemistryAlloyAnalytical chemistryInfrared spectroscopyengineering.materialCondensed Matter PhysicsInorganic ChemistryPartition coefficientsymbols.namesakeLattice constantFourier transformHall effectMaterials ChemistrysymbolsengineeringChemical compositionJournal of Crystal Growth
researchProduct