0000000000346907
AUTHOR
I. Riihimäki
Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure
Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …
Particle detectors made of high-resistivity Czochralski silicon
We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 O cm and 1.9 kO cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, g-rays, lithium ions and electrons. Cz-Si was found to be more…
Migration kinetics of ion-implanted beryllium in glassy carbon
Abstract Migration kinetics of low-concentration implanted 7 Be in glassy carbon has been studied by the modified radiotracer technique at temperatures 1285 °C and 1340 °C. The annealed sample concentration profiles show two distinctive components: (i) Main profile broadening assigned to beryllium trapping in defects during annealing. (ii) Tail parts on both sides of the profile maximum related to faster migration. Of the latter the profile representing bulk diffusion lies on the region free of defect influence and is well described by concentration-independent diffusivity. The features of the concentration profile broadening towards the sample surface indicate partial Be trapping in defect…
Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species
Experimental linear energy transfer values of heavy ions in silicon are presented with comparison to estimations from different semi empirical codes widely used among the community. This paper completes the experimental LET data for the RADEF cocktail ions in silicon.
Particle Detectors made of High Resistivity Czochralski Grown Silicon
We describe the fabrication process of fullsize silicon microstrip detectors processed on silicon wafers grown by magnetic Czochralski method. Defect analysis by DLTS spectroscopy as well as minority carrier lifetime measurements by µPCD method are presented. The electrical and detection properties of the Czochralski silicon detectors are comparable to those of leading commercial detector manufacturers. The radiation hardness of the Czochralski silicon detectors was proved to be superior to the devices made of traditional Float Zone silicon material.
Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons
Abstract We processed pin-diodes on Czochralski silicon (Cz-Si), standard Float Zone silicon (Fz-Si) and oxygenated Fz-Si. The diodes were irradiated with 10, 20, and 30 MeV protons. Depletion voltages and leakage currents were measured as a function of the irradiation dose. Additionally, the samples were characterized by TCT and DLTS methods. The high-resistivity Cz-Si was found to be more radiation hard than the other studied materials.
Self-diffusion of silicon in molybdenum disilicide
The self-diffusion of silicon in single crystal MoSi2 was studied by means of a radiotracer technique using the short-lived radioisotope 31Si (half-life ), which was produced and implanted into the samples at the ion-guide isotope separator on-line device at the University of Jyvaskyla in Finland. Diffusion annealing and subsequent serial sectioning of the specimens were performed immediately after the radiotracer implantation. In the entire temperature region investigated (835–1124 K), the 31Si diffusivities in both principal directions of the tetragonal MoSi2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster than parallel to it. In previous s…
Results of proton irradiations of large area strip detectors made on high-resistivity Czochralski silicon
Abstract We have processed full-size strip detectors on Czochralski grown silicon wafers with resistivity of about 1.2 kΩ cm. Wafers grown with Czochralski method intrinsically contain high concentrations of oxygen, and thus have potential for high radiation tolerance. Detectors and test diodes were irradiated with 10 MeV protons. The 1-MeV neutron equivalent irradiation doses were 1.6×1014 and 8.5×1013 cm−2 for detectors, and up to 5.0×1014 cm−3 for test diodes. After irradiations, depletion voltages and leakage currents were measured. Czochralski silicon devices proved to be significantly more radiation hard than the reference devices made on traditional detector materials.
Mobility determination of lead isotopes in glass for retrospective radon measurements
In retrospective radon measurements, the 22-y half life of (210)Pb is used as an advantage. (210)Pb is often considered to be relatively immobile in glass after alpha recoil implanted by (222)Rn progenies. The diffusion of (210)Pb could, however, lead to uncertain wrong retrospective radon exposure estimations if (210)Pb is mobile and can escape from glass, or lost as a result of cleaning-induced surface modification. This diffusion was studied by a radiotracer technique, where (209)Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the ion guide isotope separator on-line technique, the (209)Pb atoms were implanted into the glass with an energy of …
Fluence effect on ion-implanted As diffusion in relaxed SiGe
A systematic study on the fluence (5 × 108 − 4 × 1014 cm−2) dependence of ion-implanted As diffusion in relaxed Si1 − xGex alloys (with x = 0.2, 0.35 and 0.5) and silicon has been performed by the modified radiotracer and secondary ion mass spectrometry techniques. With fluences above 4 × 1011 cm−2 a clear fluence-dependent enhancement in arsenic diffusion was noted for Si1 − xGex. In case of arsenic-implanted silicon such fluence dependency was not observed. This can be assigned to enhanced implantation-induced damage formation and more deficient radiation damage recovery of SiGe.
Upgrades for the RADEF Facility
RADEF includes heavy ion and proton beam lines for irradiation of space electronics. A special beam cocktail for back side irradiations has been developed. Also, experimental LET values of its two heaviest ions have been determined.
Versatile use of ion beams for diffusion studies by the modified radiotracer technique
Abstract In the modified radiotracer technique ion beams within a broad energy range are employed. They include energetic light particles ensuring radioactive isotope production via nuclear reactions, keV-ion implantation of radiotracers and sputtering by low energy heavy ions for depth profiling. If the involved ion–solid interactions are properly taken into account, the technique provides an effective means for solid-state diffusion studies under demanding conditions. The various aspects related to the modified radiotracer technique are surveyed and discussed. The reliability of the procedure is demonstrated by comparisons with corresponding profiles obtained by secondary ion mass spectro…
The effect of oxygenation on the radiation hardness of silicon studied by surface photovoltage method
The effect of oxygenation on the radiation hardness of silicon detectors was studied. Oxygen-enriched and standard float-zone silicon pin-diodes and oxidized samples were processed and irradiated with 15-MeV protons. After the irradiations, the surface photovoltage (SPV) method was applied to extract minority carrier diffusion lengths of the silicon samples. Adding oxygen to silicon was found to improve the radiation hardness of silicon. The effect was visible in minority carrier diffusion lengths as well as in reverse bias leakage currents. The suitability of SPV method for characterizing irradiated silicon samples was proved.
Si self-diffusion in cubic B20-structured FeSi
Self-diffusion of implanted 31Si in the e-phase FeSi (cubic B20-structure) has been determined in the temperature range 660–810 °C using the modified radiotracer technique. With an activation enthalpy of 2.30 eV and a pre-exponential factor of 15×10−8 m2 s−1 the silicon diffusivity was found to be slightly slower than Ge impurity diffusion in FeSi. This difference is proposed to originate from attractive elastic interactions prevailing between the slightly oversized Ge atoms and the Si sublattice vacancies. The results confirm the argument that 71Ge radioisotopes may be used to substitute the short-lived 31Si radiotracers when estimating self-diffusion in silicides.
Utilisation of a sputtering device for targetry and diffusion studies
A novel device for versatile sputtering applications is described. The apparatus design is realised for fulfilling the demands of both nuclear physics experiment target production and serial sectioning in solid-state diffusion studies with radiotracers. Results of several tests are reported, characterising the devise performance in these two differing applications.
Arsenic diffusion in relaxedSi1−xGex
The intrinsic As diffusion properties have been determined in relaxed ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ epilayers. The properties were studied as a function of composition x for the full range of materials with $x=0,$ 0.20, 0.35, 0.50, 0.65, 0.8, and 1. The activation enthalpy ${E}_{a}$ was found to drop systematically from 3.8 eV $(x=0)$ to 2.4 eV $(x=1).$ Comparisons with other impurity atom- and self-diffusion results in Si, Ge, and SiGe show that both interstitials and vacancies contribute as diffusion vehicles in the composition range $0l~xl~0.35$ and that vacancy mechanism dominates diffusion in the composition range $0.35lxl~1.$
Annealing study of oxygenated and non-oxygenated float zone silicon irradiated with protons
Abstract Introducing oxygen into the silicon material is believed to improve the radiation hardness of silicon detectors. In this study, oxygenated and non-oxygenated silicon samples were processed and irradiated with 15 MeV protons. In order to speed up the defect reactions after the exposure to particle radiation, the samples were heat treated at elevated temperatures. In this way, the long-term stability of silicon detectors in hostile radiation environment could be estimated. Current–voltage measurements and Surface Photovoltage (SPV) method were used to characterize the samples.