0000000000346907

AUTHOR

I. Riihimäki

showing 17 related works from this author

Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure

2006

Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …

Arrhenius equationNuclear and High Energy PhysicsIsotopeAnnealing (metallurgy)Radiochemistrychemistry.chemical_elementRadon01 natural sciences030218 nuclear medicine & medical imagingRadon exposureIon03 medical and health sciencessymbols.namesake0302 clinical medicineRecoilchemistrySputtering0103 physical sciencessymbols010306 general physicsInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Particle detectors made of high-resistivity Czochralski silicon

2005

We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 O cm and 1.9 kO cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, g-rays, lithium ions and electrons. Cz-Si was found to be more…

PhysicsNuclear and High Energy PhysicsSiliconbusiness.industrychemistry.chemical_elementFloat-zone siliconRadiationFluencechemistryElectrical resistivity and conductivityOptoelectronicsWaferIrradiationbusinessInstrumentationRadiation hardeningNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Migration kinetics of ion-implanted beryllium in glassy carbon

2008

Abstract Migration kinetics of low-concentration implanted 7 Be in glassy carbon has been studied by the modified radiotracer technique at temperatures 1285 °C and 1340 °C. The annealed sample concentration profiles show two distinctive components: (i) Main profile broadening assigned to beryllium trapping in defects during annealing. (ii) Tail parts on both sides of the profile maximum related to faster migration. Of the latter the profile representing bulk diffusion lies on the region free of defect influence and is well described by concentration-independent diffusivity. The features of the concentration profile broadening towards the sample surface indicate partial Be trapping in defect…

010302 applied physicsAnnealing (metallurgy)Mechanical EngineeringAnalytical chemistrychemistry.chemical_elementDiamond02 engineering and technologyGeneral ChemistryTrappingengineering.materialGlassy carbon021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesElectronic Optical and Magnetic MaterialsIonchemistryImpurity0103 physical sciencesMaterials ChemistryengineeringElectrical and Electronic EngineeringBeryllium0210 nano-technologyDiamond and Related Materials
researchProduct

Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species

2009

Experimental linear energy transfer values of heavy ions in silicon are presented with comparison to estimations from different semi empirical codes widely used among the community. This paper completes the experimental LET data for the RADEF cocktail ions in silicon.

PhysicsNuclear and High Energy PhysicsSiliconLinear energy transferchemistry.chemical_elementProbability density functionIonNuclear physicsTime of flightNuclear Energy and EngineeringIon acceleratorschemistryElectrical and Electronic EngineeringAtomic physicsNuclear ExperimentIEEE Transactions on Nuclear Science
researchProduct

Particle Detectors made of High Resistivity Czochralski Grown Silicon

2004

We describe the fabrication process of fullsize silicon microstrip detectors processed on silicon wafers grown by magnetic Czochralski method. Defect analysis by DLTS spectroscopy as well as minority carrier lifetime measurements by µPCD method are presented. The electrical and detection properties of the Czochralski silicon detectors are comparable to those of leading commercial detector manufacturers. The radiation hardness of the Czochralski silicon detectors was proved to be superior to the devices made of traditional Float Zone silicon material.

Materials scienceFabricationSiliconHybrid silicon laserbusiness.industrychemistry.chemical_elementCarrier lifetimeFloat-zone siliconCondensed Matter PhysicsAtomic and Molecular Physics and OpticsMonocrystalline siliconchemistryOptoelectronicsWaferbusinessRadiation hardeningMathematical PhysicsPhysica Scripta
researchProduct

Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons

2004

Abstract We processed pin-diodes on Czochralski silicon (Cz-Si), standard Float Zone silicon (Fz-Si) and oxygenated Fz-Si. The diodes were irradiated with 10, 20, and 30 MeV protons. Depletion voltages and leakage currents were measured as a function of the irradiation dose. Additionally, the samples were characterized by TCT and DLTS methods. The high-resistivity Cz-Si was found to be more radiation hard than the other studied materials.

PhysicsNuclear and High Energy PhysicsSiliconAnalytical chemistrychemistry.chemical_elementFloat-zone siliconRadiationLow energychemistryIrradiationInstrumentationRadiation hardeningLeakage (electronics)DiodeNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Self-diffusion of silicon in molybdenum disilicide

2004

The self-diffusion of silicon in single crystal MoSi2 was studied by means of a radiotracer technique using the short-lived radioisotope 31Si (half-life ), which was produced and implanted into the samples at the ion-guide isotope separator on-line device at the University of Jyvaskyla in Finland. Diffusion annealing and subsequent serial sectioning of the specimens were performed immediately after the radiotracer implantation. In the entire temperature region investigated (835–1124 K), the 31Si diffusivities in both principal directions of the tetragonal MoSi2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster than parallel to it. In previous s…

Arrhenius equationSelf-diffusionSiliconAnnealing (metallurgy)Molybdenum disilicideAnalytical chemistrychemistry.chemical_elementCondensed Matter PhysicsThermal diffusivitysymbols.namesakechemistry.chemical_compoundTetragonal crystal systemchemistrysymbolsSingle crystalNuclear chemistryPhilosophical Magazine
researchProduct

Results of proton irradiations of large area strip detectors made on high-resistivity Czochralski silicon

2004

Abstract We have processed full-size strip detectors on Czochralski grown silicon wafers with resistivity of about 1.2 kΩ cm. Wafers grown with Czochralski method intrinsically contain high concentrations of oxygen, and thus have potential for high radiation tolerance. Detectors and test diodes were irradiated with 10 MeV protons. The 1-MeV neutron equivalent irradiation doses were 1.6×1014 and 8.5×1013 cm−2 for detectors, and up to 5.0×1014 cm−3 for test diodes. After irradiations, depletion voltages and leakage currents were measured. Czochralski silicon devices proved to be significantly more radiation hard than the reference devices made on traditional detector materials.

PhysicsNuclear and High Energy PhysicsSiliconbusiness.industryDetectorchemistry.chemical_elementRadiationchemistryElectrical resistivity and conductivityOptoelectronicsWaferIrradiationbusinessInstrumentationDiodeLeakage (electronics)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Mobility determination of lead isotopes in glass for retrospective radon measurements

2008

In retrospective radon measurements, the 22-y half life of (210)Pb is used as an advantage. (210)Pb is often considered to be relatively immobile in glass after alpha recoil implanted by (222)Rn progenies. The diffusion of (210)Pb could, however, lead to uncertain wrong retrospective radon exposure estimations if (210)Pb is mobile and can escape from glass, or lost as a result of cleaning-induced surface modification. This diffusion was studied by a radiotracer technique, where (209)Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the ion guide isotope separator on-line technique, the (209)Pb atoms were implanted into the glass with an energy of …

Time FactorsMaterials scienceAnnealing (metallurgy)DetergentsEnthalpyAnalytical chemistrychemistry.chemical_elementRadonIonDiffusionNuclear physicssymbols.namesakeRecoilRadiology Nuclear Medicine and imagingLead RadioisotopesRadiometryArrhenius equationModels StatisticalRadiationRadiological and Ultrasound TechnologyIsotopeTemperaturePublic Health Environmental and Occupational HealthLead RadioisotopesGeneral MedicineCyclotronschemistryRadonsymbolsGlassRadiation Protection Dosimetry
researchProduct

Fluence effect on ion-implanted As diffusion in relaxed SiGe

2005

A systematic study on the fluence (5 × 108 − 4 × 1014 cm−2) dependence of ion-implanted As diffusion in relaxed Si1 − xGex alloys (with x = 0.2, 0.35 and 0.5) and silicon has been performed by the modified radiotracer and secondary ion mass spectrometry techniques. With fluences above 4 × 1011 cm−2 a clear fluence-dependent enhancement in arsenic diffusion was noted for Si1 − xGex. In case of arsenic-implanted silicon such fluence dependency was not observed. This can be assigned to enhanced implantation-induced damage formation and more deficient radiation damage recovery of SiGe.

010302 applied physicsMaterials scienceSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFluenceIonSecondary ion mass spectrometrychemistry0103 physical sciencesRadiation damageDiffusion (business)0210 nano-technologyArsenicEurophysics Letters
researchProduct

Upgrades for the RADEF Facility

2007

RADEF includes heavy ion and proton beam lines for irradiation of space electronics. A special beam cocktail for back side irradiations has been developed. Also, experimental LET values of its two heaviest ions have been determined.

PhysicsProtonSpace electronicsNuclear TheoryCyclotronHeavy ion irradiationlaw.inventionIonNuclear physicslawPhysics::Accelerator PhysicsHeavy ionIrradiationNuclear ExperimentBeam (structure)2007 IEEE Radiation Effects Data Workshop
researchProduct

Versatile use of ion beams for diffusion studies by the modified radiotracer technique

2004

Abstract In the modified radiotracer technique ion beams within a broad energy range are employed. They include energetic light particles ensuring radioactive isotope production via nuclear reactions, keV-ion implantation of radiotracers and sputtering by low energy heavy ions for depth profiling. If the involved ion–solid interactions are properly taken into account, the technique provides an effective means for solid-state diffusion studies under demanding conditions. The various aspects related to the modified radiotracer technique are surveyed and discussed. The reliability of the procedure is demonstrated by comparisons with corresponding profiles obtained by secondary ion mass spectro…

Nuclear reactionNuclear and High Energy PhysicsRange (particle radiation)PhotonIon beamChemistryAnalytical chemistry010403 inorganic & nuclear chemistry01 natural sciences7. Clean energy0104 chemical sciencesIonSecondary ion mass spectrometrySputtering0103 physical sciencesDiffusion (business)010306 general physicsInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The effect of oxygenation on the radiation hardness of silicon studied by surface photovoltage method

2002

The effect of oxygenation on the radiation hardness of silicon detectors was studied. Oxygen-enriched and standard float-zone silicon pin-diodes and oxidized samples were processed and irradiated with 15-MeV protons. After the irradiations, the surface photovoltage (SPV) method was applied to extract minority carrier diffusion lengths of the silicon samples. Adding oxygen to silicon was found to improve the radiation hardness of silicon. The effect was visible in minority carrier diffusion lengths as well as in reverse bias leakage currents. The suitability of SPV method for characterizing irradiated silicon samples was proved.

inorganic chemicalsNuclear and High Energy PhysicsMaterials scienceSiliconPhysics::Instrumentation and Detectorsbusiness.industrySurface photovoltageDetectortechnology industry and agriculturechemistry.chemical_elementCarrier lifetimeequipment and suppliescomplex mixturesOxygenstomatognathic diseasesNuclear Energy and EngineeringchemistryOptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardeningLeakage (electronics)IEEE Transactions on Nuclear Science
researchProduct

Si self-diffusion in cubic B20-structured FeSi

2008

Self-diffusion of implanted 31Si in the e-phase FeSi (cubic B20-structure) has been determined in the temperature range 660–810 °C using the modified radiotracer technique. With an activation enthalpy of 2.30 eV and a pre-exponential factor of 15×10−8 m2 s−1 the silicon diffusivity was found to be slightly slower than Ge impurity diffusion in FeSi. This difference is proposed to originate from attractive elastic interactions prevailing between the slightly oversized Ge atoms and the Si sublattice vacancies. The results confirm the argument that 71Ge radioisotopes may be used to substitute the short-lived 31Si radiotracers when estimating self-diffusion in silicides.

Self-diffusionMaterials scienceSiliconCondensed matter physicsEnthalpyGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyThermal diffusivity01 natural scienceschemistryImpurity diffusion0103 physical sciences010306 general physics0210 nano-technologyEPL (Europhysics Letters)
researchProduct

Utilisation of a sputtering device for targetry and diffusion studies

2004

A novel device for versatile sputtering applications is described. The apparatus design is realised for fulfilling the demands of both nuclear physics experiment target production and serial sectioning in solid-state diffusion studies with radiotracers. Results of several tests are reported, characterising the devise performance in these two differing applications.

Nuclear and High Energy PhysicsFabricationMaterials scienceSputtering0103 physical sciencesNanotechnology02 engineering and technologyDiffusion (business)021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Arsenic diffusion in relaxedSi1−xGex

2003

The intrinsic As diffusion properties have been determined in relaxed ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ epilayers. The properties were studied as a function of composition x for the full range of materials with $x=0,$ 0.20, 0.35, 0.50, 0.65, 0.8, and 1. The activation enthalpy ${E}_{a}$ was found to drop systematically from 3.8 eV $(x=0)$ to 2.4 eV $(x=1).$ Comparisons with other impurity atom- and self-diffusion results in Si, Ge, and SiGe show that both interstitials and vacancies contribute as diffusion vehicles in the composition range $0l~xl~0.35$ and that vacancy mechanism dominates diffusion in the composition range $0.35lxl~1.$

010302 applied physicsMaterials scienceCondensed matter physicschemistryImpurityVacancy defect0103 physical sciencesEnthalpychemistry.chemical_elementAtomic physics010306 general physics01 natural sciencesArsenicPhysical Review B
researchProduct

Annealing study of oxygenated and non-oxygenated float zone silicon irradiated with protons

2003

Abstract Introducing oxygen into the silicon material is believed to improve the radiation hardness of silicon detectors. In this study, oxygenated and non-oxygenated silicon samples were processed and irradiated with 15 MeV protons. In order to speed up the defect reactions after the exposure to particle radiation, the samples were heat treated at elevated temperatures. In this way, the long-term stability of silicon detectors in hostile radiation environment could be estimated. Current–voltage measurements and Surface Photovoltage (SPV) method were used to characterize the samples.

inorganic chemicalsPhysicsNuclear and High Energy PhysicsSiliconPhysics::Instrumentation and Detectorsbusiness.industryAnnealing (metallurgy)Surface photovoltagetechnology industry and agricultureAnalytical chemistrychemistry.chemical_elementRadiationFloat-zone siliconequipment and suppliescomplex mixtureschemistryOptoelectronicsIrradiationParticle radiationbusinessInstrumentationRadiation hardeningNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct