0000000000479304
AUTHOR
Alessandro Tamburini
Energy harvesting by waste acid/base neutralization via bipolar membrane reverse electrodialysis
Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of t…
CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: High efficiency assessment for different design options under the current legislative EU framework
Abstract Integrated power plants in “dual purpose” configuration may represent a viable option for energy cost abatement of desalted water produced by MED-TVC (Multiple Effect Distillation along with Thermal Vapour Compression). In this paper an existing large MED-TVC plant with a 36,000 m 3 /day capacity is studied: a plant retrofit is designed, based on a steam power plant with condensation and steam extraction used to drive the steam ejector. As the plant operates in CHP (Combined Heat and Power) mode, the possibility to assess the integrated “CHP + MED-TVC” as high efficiency cogeneration according to Directive 2004/8/EC is discussed. Based on a model developed in Engineering Equation S…
SOLID-LIQUID SUSPENSIONS IN UNBAFFLED TANKS
Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled tanks. However, they might provide significant advantages in a wide range of applications like crystallization processes as well as for food and pharmaceutical industries, where the presence of baffles is often undesirable. In the present work solid-liquid suspension in an unbaffled stirred tank was investigated. A novel experimental method (steady cone radius method) was devised to ease the evaluation of the minimum impeller speed for complete particle suspension (Njs). Experiments encompassed a quite wide range of particle sizes, densities and solids concentration. The Njs…
On the assessment of power consumption and critical impeller speed in vortexing unbaffled stirred tanks
Abstract Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a number of processes and bio-processes where the presence of baffles is undesirable. Notwithstanding the increasing industrial interest towards unbaffled tanks, available experimental information on their behaviour is still very poor, even for important parameters such as mechanical power drawn and critical impeller speed (Ncr) at which the transition between non-aerated (sub-critical regime) and aerated (super-critical regime) conditions occurs. In this work the influence of Reynolds and Froude numbers on power consumption characteristics of unbaffled stirred tanks is presented…
Suspension phenomena in solid-liquid agitated systems
Performance Comparison of Alternative Hollow-Fiber Modules for Hemodialysis by Means of a CFD-Based Model
Commercial hemodialyzers are hollow-fiber cylindrical modules with dimensions and inlet–outlet configurations dictated mostly by practice. However, alternative configurations are possible, and one may ask how they would behave in terms of performance. In principle, it would be possible to depart from the standard counter-flow design, while still keeping high clearance values, thanks to the increase in the shell-side Sherwood number (Sh) due to the cross-flow. To elucidate these aspects, a previously developed computational model was used in which blood and dialysate are treated as flowing through two interpenetrating porous media. Measured Darcy permeabilities and mass transfer coefficients…
SIMULAZIONI CFD DEL CAMPO DI MOTO A BASSO NUMERO DI REYNOLDS IN BIOREATTORI AGITATI CON E SENZA SETTI FRANGIVORTICE
I recipienti meccanicamente agitati sono apparecchiature frequenti dell’industria chimica di processo. Questi sono tipicamente dotati di setti frangivortice (recipienti baffled) atti a rompere il moto prettamente tangenziale tipico dei recipienti sprovvisti di setti (recipienti unbaffled) e convertirlo in moto assiale e radiale. La presenza dei setti evita inoltre nella zona centrale del sistema la formazione del vortice d’aria che può talvolta essere indesiderato o in taluni casi creare instabilità una volta arrivato alla girante. I recipienti unbaffled sono considerati quindi dei miscelatori meno efficienti rispetto a quelli provvisti di setti. Tali sistemi sono pertanto ad oggi impiegati…
Experimental investigation of two-side heat transfer in spacer-filled channels
Abstract In Membrane Distillation (MD), spacers support the membranes and promote mixing, thus reducing temperature polarization. Their efficient design requires a knowledge of the distribution of the local heat transfer coefficient h and of its dependence on Reynolds number, spacer geometry and flow-spacer relative orientation. In previous work, we applied Thermochromic Liquid Crystals (TLC) and digital image processing to the measurement of h distributions for different spacer configurations; data were used to validate CFD simulations and select turbulence models. For constructive reasons, the test section allowed only one-side heat transfer, while in most MD configurations (e.g. spiral-w…
Electromembrane Processes: Experiments and Modelling
This Special Issue of Membranes journal focuses on electromembrane processes and is motivated by the increasing interest of the scientific community towards their characterization by experiments and modelling for several applications [...]
The REAPower Project
Abstract Reverse electrodialysis technology has grown significantly in the last decade, gaining a fast increase in its technology readiness level and presenting some interesting examples of pilot systems operating under very different real environments. Among these, one was able to operate in a saltwork in Marsala (Sicily, Italy) with real concentrated brine and real saline waters (i.e., either seawater or brackish water), producing electric power in the order of 1 kW. This pilot plant was one of the main achievements of the European REAPower research project. This chapter presents an overview of the main research efforts and results achieved in the framework of this project starting from t…
Towards sustainable production of minerals and chemicals through seawater brine treatment using Eutectic freeze crystallization and Electrodialysis with bipolar membranes
European policy encourages the adoption of sustainable systems that promote the efficient use and recovery of minerals and chemicals. In this respect, desalination brines do contain a dramatic amount of valuable minerals and can be valorized through appropriate treatments rather than releasing them into the environment. This paper proposes an innovative brine recovery system for obtaining high purity chemicals through the integration of Eutectic Freeze Crystallization (EFC) and Electrodialysis with Bipolar Membrane (EDBM) technologies. Two separate laboratory-scale experimental campaigns were carried out to validate the potential integration of the two processes. Mirabilite (Na2SO4∙10H2O) h…
Particle distribution in unbaffled stirred vessels
The present work is devoted to providing an insight into the solid-particle distribution within top-covered unbaffled stirred tanks via purposely collected local experimental data. Experiments were carried out on a lab- scale unbaffled stirred tank by making use of a recently introduced technique named Laser Sheet Image Analysis (LSIA). In its original formulation, the technique includes an image post-processing procedure to delete reflection effects on results. In the framework of the present work, a method combining the use of purposely produced fluorescent particles and a suitable camera high pass filter was devised and presented. Results collected with (new method) and without (old fash…
CFD prediction of concentration polarization phenomena in spacer-filled channels for Reverse Electrodialysis
Abstract Salinity Gradient Power generation through Reverse Electrodialysis (SGP-RE) is a promising technology to convert the chemical potential difference of a salinity gradient into electric energy. In SGP-RE systems, as in most membrane processes, concentration polarization phenomena may affect the theoretical driving force and thus the performance of the process. Operating conditions, including the feed solution flow rate and concentration and the channels׳ geometrical configuration, may greatly influence both the polarization effect and the pumping energy consumption. The present work uses CFD to investigate the dependence of concentration polarization and pressure drop on flow rate, f…
CFD simulation of channels for direct and reverse electrodialysis
Flows within very thin channels, typically filled with spacers, can be often encountered in many processes such as electrodialysis (ED) and reverse electrodialysis (RED). Although the ED and the RED processes have been studied for a long time, the optimization of the fluid dynamics within the channels is still an open problem. In the present work, realized within the EU-FP7 funded REAPower project, computational fluid dynamics simulations were carried out in order to predict the fluid flow field inside a single ED/RED channel. Some different configurations were tested which includes: an empty channel, a channel provided with a spacer, and a channel filled with a purposely manufactured fiber…
A simulation tool for analysis and design of reverse electrodialysis using concentrated brines
Abstract Reverse electrodialysis (SGP-RE or RED) represents a viable technology for the conversion of the salinity gradient power into electric power. A comprehensive model is proposed for the RED process using sea or brackish water and concentrated brine as feed solutions. The goals were (i) reliably describing the physical phenomena involved in the process and (ii) providing information for optimal equipment design. For such purposes, the model has been developed at two different scales of description: a lower scale for the repeating unit of the system (cell pair), and a higher scale for the entire equipment (stack). The model was implemented in a process simulator, validated against orig…
Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique
The availability of experimental information on particle distribution inside stirred tanks is a topic of great importance for many industrial applications such as catalysis and polymerization. The measurement of solid particle distribution is not simple and the development of suitable measuring techniques is still an open problem in chemical engineering research. In this work, a non-intrusive optical technique for measuring particle concentration fields in solid–liquid systems is discussed. The “Laser Sheet Image Analysis” (LSIA) technique described here makes use of a laser sheet, a digital camera for image acquisition and a suitable procedure for post-processing. It is able to provide sol…
CFD simulation of Electrodialysis channels equipped with profiled membranes
Electrodialysis (ED) is a membrane-based electrochemical process that remove ions from a solution. The main use of ED is for the production of drinking water by brackish water desalination, but there are several other applications. ED is characterized by the coexistence and the interaction of different physical phenomena that affect the stack performance. Among them, fluid dynamics and mass transport are crucial: concentration polarization affects the limiting current density and the non-Ohmic voltage drop due to the chemical potential difference between the two solutions; pressure drop affects the pumping power consumption. Moreover, the total energy consumption depends also on the Ohmic v…
Influence of Operational Strategies for the Recovery of Magnesium Hydroxide from Brines at a Pilot Scale
The continuous depletion of minerals caused by land mining and the increase in their demand have pushed the development of novel sustainable technological processes for mineral recovery from unconventional sources. In this context, magnesium (Mg) has gained considerable attention for its peculiar properties and high relevance of its compounds, such as magnesium hydroxide, Mg(OH)2. In the present work, the influence of several operating conditions on the Mg(OH)2 precipitation process was thoroughly investigated by adopting a novel multiple feed-plug flow reactor. The influence of (i) initial Mg2+ concentrations in the feed stream; (ii) brine and alkaline flow rates; and (iii) the product rec…
CFD MODELLING OF PARTICLE SUSPENSION IN STIRRED TANKS
Mixing of solid particles into liquids in mechanically agitated vessels is a topic of primary importance for several industrial applications. A great deal of research efforts has been devoted so far to the assessment of the minimum impeller speed (Njs) able to guarantee that all particles are suspended. Conversely, only little attention has been paid to the evaluation of the amount of solid particles that are suspended at impeller speeds N lower than Njs, despite the fact that in a number of industrial applications agitation speeds smaller than Njs are actually adopted [1,2]. The present work deals with dense solid-liquid partial suspensions in baffled stirred tanks and particularly focuses…
Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines
Abstract This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant – located in the South of Italy – represents the final accomplishment of the REAPower project ( www.reapower.eu ). A RED unit equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03 M NaClequivalent) and saturated brine (4–5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with…
CFD modelling of profiled membranes channels for reverse electrodialysis
Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations were perform…
A continuous plug flow reactor for magnesium recovery from concentrated brine
Magnesium is one of the eight most abundant elements on the world and the third most abun- dant in the sea, buc practically only two countries (Russia and China) control the world market for this compound. Product purity, Mg recovery, crystal morphology and granulometric distribution of precipitated particles were examined through careful laboratory analysis and results from different tests were compared, in order to identify the effect of allcaline species’ nature and concentration on precipitation phenomena.
Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine
Abstract The disposal of industrial wastewater effluents represents a critical environmental issue. This work focuses on the treatment of the spent brine produced by the regeneration of ion exchange resins employed for water softening. For the first time, a comprehensive techno-economic assessment and an analysis of the energy requirements of the treatment chain are carried out, via the simulation of ad hoc implemented models. The chain is composed of nanofiltration, double-stage crystallization and multi-effect distillation. The valuable product is the brine produced by the multi-effect distillation, which can be re-used for the regeneration. Therefore, the treatment chain’s economic feasi…
Effect of Design Features and Operating Conditions on the Performance of a Bipolar Membrane-Based Acid/Base Flow Battery
In the context of renewable energy sources, storage systems have been proposed as a solution to the issues related to fluctuations in the production and consumption of electric power. The EU funded BAoBaB project is aimed at developing the Acid/Base Flow battery (AB-FB), an environment-friendly, cost-competitive, grid-scale battery storage system based on the cyclic coupling of Bipolar Membrane ElectroDialysis (BMED) and its reverse, the Bipolar Membrane Reverse ElectroDialysis (BMRED) (Pärnamäe et al., 2020). Bipolar membranes promote catalytically water dissociation, thus allowing the storage of electric power in the form of acidic and alkaline solutions (pH gradient), obtained from their…
Determination of limiting current density and current efficiency in electrodialysis units
Abstract A crucial parameter for the design and operation of electrodialysis (ED) units is the limiting current density (LCD). This is often identified with the diffusion-limited current density, which corresponds to the complete solute depletion in the layer adjacent to the membrane. Current-voltage curves obtained from measurements with electrodes in contact with the solution (i.e. without membranes) are consistent with this interpretation and exhibit a horizontal plateau identifying LCD. However, real ED systems show more complex behaviours, with a reduced-slope tract instead of a plateau and a third region in which the current increases more markedly (overlimiting current). The phenomen…
Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine
Abstract The coupling of Reverse Electrodialysis with Membrane Distillation is a promising option for the conversion of waste heat into electricity. This study evaluates the performances of the integrated system under different operating conditions, employing validated model and correlations. This work provides a detailed description of the behaviour of a real RED-MD heat engine and indicates the set of inlet concentrations, velocities and equipment size which returns the highest cycle exergy efficiency. These operating conditions were selected for the pilot plant developed within the EU-funded project RED Heat to Power. For the first time, a perspective analysis was also included, consider…
The REAPower Project: Power Production From Saline Waters and Concentrated Brines
Aim of this chapter is that of describing in detail the REAPower project from the very beginning up to the testing of the pilot plant built at the end of the project.
Reverse electrodialysis heat engine for sustainable power production
Abstract Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED He…
Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment
Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…
Exergy analysis of reverse electrodialysis
Abstract Reverse electrodialysis in closed loop configurations is a promising membrane technology in the energy conversion and storage fields. One of the main advantages of closed-loop reverse electrodialysis is the possibility of using a wide range of operating concentrations, flow rates and different salts for generating the salinity gradient. In this work, an original exergy analysis of the reverse electrodialysis process was carried out in order to investigate reverse electrodialysis performance in terms of energetic and exergetic efficiency parameters in a wide range of operating conditions. A mono-dimensional model of the reverse electrodialysis process was developed, in which all sou…
Recovery of magnesium hydroxide from real bitterns
Pressure drop at low reynolds numbers in woven-spacer-filled channels for membrane processes: CFD prediction and experimental validation
The energy consumption due to pumping power is a crucial issue in membrane processes. Spacers provide mechanical stability and promote mixing, yet increasing pressure drop. Woven spacers and their behaviour at low Reynolds numbers are less studied in the literature. Nevertheless, they are typical of some membrane technologies, as reverse electrodialysis (RED). RED is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ion-exchange membranes. The mechanical energy required for pumping the feed solutions, can dramatically reduce the net power output. In this work computational fluid dynamics (CFD)…
Mining minerals and critical raw materials from bittern: Understanding metal ions fate in saltwork ponds
Seawater represents a potential resource for raw materials extraction. Although NaCl is the most representative mineral extracted other valuable compounds such as Mg, Li, Sr, Rb and B and elements at trace level (Cs, Co, In, Sc, Ga and Ge) are also contained in this “liquid mine”. Most of them are considered as Critical Raw Materials by the European Union. Solar saltworks, providing concentration factors of up-to 20 to 40, offer a perfect platform for the development of minerals and metal recovery schemes taking benefit of the concentration and purification achieved along the evaporation saltwork ponds. However, the geochemistry of these elements in this environment has not been yet thoroug…
Limiting current phenomena in electro-membrane processes: local occurrence or stack-dependent one?
Background Electro-membrane processes are gaining great interest in the field of desalination and brine valorisation. However, limiting current phenomena can be a bottleneck for their techno-economic performances. In the present work, the in-out distribution of current density is measured to elucidate the achievement of limiting conditions in real stacks. Materials and Methods A 10-cell pairs Electrodialysis stack (10×40 cm2 active area), equipped with four-segmented electrodes, was tested. NaCl solutions at an inlet concentration ranging from 0.5 to 60 g/l were fed at velocities of either 2 or 4 cm/s in parallel flow. Current density-voltage curves were built by applying equal increasing s…
Modelling and Simulation of Gas–liquid Hydrodynamics in a Rectangular Air-lift Reactor
Abstract Computational Fluid Dynamics is a quite well established tool for carrying out realistic simulations of process apparatuses. However, as a difference from single phase systems, for multiphase systems the development of CFD models is still in progress. Among the two-phase systems, gas–liquid systems are characterised by an additional complexity level, related to the fact that bubble sizes are not known in advance, being rather the result of formation and breakage-coalescence dynamics and therefore of complex phenomena related to flow dynamics and interfacial effects. In the present work, Euler–Euler Reynolds-averaged flow simulations of an air-lift reactor are reported. All bubbles …
Salt extraction regeneration technologies
Abstract A salinity gradient power heat engine is a novel sustainable technology for the conversion of low-grade waste heat (T This chapter presents an overview of the main regeneration technologies based on the “salt extraction strategy” reported in the literature. A salt extraction regeneration unit takes advantage of the property of specific chemical compounds to shift from a soluble form to separable species in solution allowing the salt transfer between the exhausted solutions and aiding their regeneration. The regeneration processes reported here are classified into (i) switchable solubility salts and (ii) thermolytic salts. The first class includes compounds characterized by thermal…
A hierarchical model for novel schemes of electrodialysis desalination
Abstract A new hierarchical model for the electrodialysis (ED) process is presented. The model has been implemented into gPROMs Modelbuilder (PSE), allowing the development of a distributed-parameters simulation tool that combines the effectiveness of a semi-empirical modelling approach to the flexibility of a layered arrangement of modelling scales. Thanks to its structure, the tool makes possible the simulation of many different and complex layouts, requiring only membrane properties as input parameters (e.g. membrane resistance or salt and water permeability). The model has been validated against original experimental data obtained from a lab scale ED test rig. Simulation results concern…
Particle Suspension in Vortexing Unbaffled Stirred Tanks
Three-phase processes in which particle suspension has to be achieved in conjunction with gas dispersion are traditionally carried out in sparged, baffled stirred tanks. The operation of such tanks can suffer, however, from particles tending to block the sparger holes. A viable alternative might be provided by uncovered unbaffled stirred tanks (UUSTs), where gas self-injection can occur when the free-surface vortex reaches the impeller blades and gas bubbles begin to be ingested by the liquid. In this work, the particle suspension and liquid aeration performances in three-phase UUSTs were experimentally investigated and compared with relevant literature correlations concerning baffled syste…
CFD prediction of solid particle distribution in baffled stirred vessels under partial to complete suspension conditions
Solid-liquid mixing within tanks agitated by stirrers can be easily encountered in many industrial processes. It is common to find an industrial tank operating at an impeller speed N lower than the minimum agitation speed for the suspension of solid particles: under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work evaluates the capability of a Computational Fluid Dynamics (CFD) model to reliably predict the particle distribution throughout the tank under either partial or complete suspension conditions. A flat bottomed baffled tank stirred by a Rushton turbine was investigated. Both tr…
On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients
Abstract Electrical energy storage can enhance the efficiency in the use of fluctuating renewable sources, e.g. solar and wind energy. The Acid/Base Flow Battery is an innovative and sustainable process to store electrical energy in the form of pH and salinity gradients via electrodialytic reversible techniques. Two electromembrane processes are involved: Bipolar Membrane Electrodialysis during the charge phase and its opposite, Bipolar Membrane Reverse Electrodialysis, during the discharge phase. For the first time, the present work aims at predicting the performance of this energy storage device via the development of a dynamic mathematical model based on a multi-scale approach with distr…
ASSESSMENT OF THE MINIMUM POWER REQUIREMENTS FOR COMPLETE SUSPENSION IN TOP-COVERED UNBAFFLED STIRRED TANKS
CFD Predictions of Sufficient Suspension Conditions in Solid-Liquid Agitated Tanks
Abstract Most research efforts on mechanically agitated solid-liquid contactors have been devoted to the assessment of the minimum impeller speed for complete off-bottom suspension, N js . Actually, many industrial vessels are operated at impeller speeds slightly lower than N js (Oldshue, 1983; Rieger et al., 1988). This suggests that the sufficient suspension condition, which is quantitatively specified in this paper by introducing a suitably defined quantity N ss , may represent a valid alternative to that of complete suspension. In the present work time-dependent RANS simulations were carried out with the aim of predicting the achievement of sufficient suspension conditions. The Eulerian…
Reverse Electrodialysis: Applications to Different Case Studies
Salinity gradient is a non-conventional renewable energy form which is widely available worldwide. Reverse Electrodialysis is a promising and innovative technology able to convert directly this chemical renewable energy into electricity. This paper presents a number of different scenarios where salinity gradients are naturally available or they result from industrial/urban activities. A sophisticated model accounting for all the main phenomena (including all the detrimental ones) occurring within a Reverse Electrodialysis unit has been purposely developed. The model is used to calculate how much electric energy can be harvested from the above-mentioned salinity gradients.
Salinity gradient engines
Abstract This chapter is devoted to the description of a new class of heat engines based on salinity gradient technology and able to convert low-grade heat into power. The salinity gradient power (SGP) process is employed within a closed loop composed of two different sections: (i) the SGP unit devoted to the energy production, and (ii) a regeneration unit fed by the solutions exiting from the SGP unit and able to restore the initial concentration, thus regenerating the salinity gradient. The main features, limits and perspectives of this novel heat engine are described along with an overview of the state of the art presented in the literature and an example of exergetic analysis of the cyc…
Modellazione matematica di una Acid/Base Flow Battery: un dispositivo innovativo di accumulo di energia elettrica basato su gradienti di salinità e di pH
La Acid/Base Flow Battery (AB-FB) è una batteria innovativa che rappresenta un metodo sostenibile di immagazzinare energia elettrica. Questa batteria può, in linea teorica, garantire una densità di energia pari a 11 kWh/m3 che è un valore maggiore rispetto a quello fornito dalle tecnologie attualmente più utilizzate nel mondo quali quelle che sfruttano l’energia idroelettrica, l’energia osmotica o ancora l’aria compressa. La batteria AB-FB accumula energia sottoforma di gradienti di salinità e di pH. In particolare, essa funziona grazie ad una unità chiamata “stack” al cui interno ospita una serie di canali che permettono il passaggio di soluzioni elettrolitiche a diversi pH e concentrazion…
Valorization of seawater desalination brines through the integration of Eutectic Freeze Crystallization and Electrodialysis with Bipolar Membranes innovative technologies
European policy encourages the adoption of sustainable systems that promote the efficient use and recovery of resources. Accordingly, this study proposes integrating two innovative technologies, including Eutectic Freeze Crystallization (EFC) and Electrodialysis with Bipolar Membranes (EDBM), for treating seawater desalination brines. Two experimental campaigns were conducted to assess the viability of this novel treatment chain. Using two lab-test rig units, the effect of various operating conditions on the outputs and general performance of both EFC and EDBM was evaluated. Firstly, results showed that EFC could manage seawater brines to (i) obtain pure sodium sulphate, and fresh water in …
A novel 2D model for the assessment of deformation-induced flow redistribution phenomena in electrodialysis units
Characterization of pressure retarded osmosis lab-scale systems
Power generation from salinity gradient is a viable alternative to produce energy from renewable sources. Pressure Retarded Osmosis (PRO) is one of the technologies proposed so far for the exploitation of such energy source. In the present preliminary work, two different geometry modules were tested under atmospheric pressure (i.e. forward osmosis or depressurized-PRO conditions). The first one is a conventional planar geometry cell. The second is a customized cylindrical membrane module, able to mechanically support the osmotic membrane along with the spacers. The latter, thanks to its design, allows membranes and spacers to be easily changed for testing purposes. A novel simplified proced…
Electrodialysis with bipolar membranes for the generation of NaOH and HCl solutions from brines: an inter-laboratory evaluation of thin and ultrathin non-woven cloth-based ion-exchange membranes
The SEArcularMINE project aims to recover critical raw materials (CRMs) from brines from saltworks, thus facing a CRM shortage within Europe. To promote a fully circular scheme, the project valorises concentrated brines using electrodialysis with bipolar membranes (EDBM) to generate the required amounts of reactants (i.e., acids and bases). Regarding the performances of new non-woven cloth ion-exchange membranes (Suez): (i) an ultra-thin non-woven polyester cloth and (ii) a thin polypropylene cloth acting as the support structures were assessed. Additionally, the anion layer includes a catalyst to promote the water dissociation reaction. The effect of current density (100, 200, and 300 A m&…
Effect of membrane profiles on the limiting current density in electrodialysis
In the present work, we experimenrtally investigated the effect of different membrane profiles on the LCD, testing also different operating conditions.
Analysis of Operational Parameters in Acid and Base Production Using an Electrodialysis with Bipolar Membranes Pilot Plant
In agreement with the Water Framework Directive, Circular Economy and European Union (EU) Green Deal packages, the EU-funded WATER-MINING project aims to validate next-generation water resource solutions at the pre-commercial demonstration scale in order to provide water management and recovery of valuable materials from alternative sources. In the framework of the WATER-MINING project, desalination brines from the Lampedusa (Italy) seawater reverse osmosis (SWRO) plant will be used to produce freshwater and recover valuable salts by integrating different technologies. In particular, electrodialysis with bipolar membranes (EDBM) will be used to produce chemicals (NaOH and HCl). A novel EDBM…
Electrodialysis with capacitive electrodes (CED): hierarchical process modelling for water desalination
The present work describes the development of the first dynamic model for CED
CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution
Abstract Industrial tanks devoted to the mixing of solid particles into liquids are often operated at an impeller speed N less than Njs (defined as the lowest speed allowing the suspension of all particles): under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work is devoted to assessing the capability of Computational Fluid Dynamics (CFD) in predicting the particle distribution throughout the tank. The CFD model proposed by Tamburini et al. [58] and successfully applied to the prediction of the sediment amount and shape was adopted here to simulate the particle distribution under partia…
Operation and perspectives of the first reverse electrodialysis pilot plant fed with brackish water and brines
This work describes the performance of the first RED prototype plant fed with real brackish water and saltworks brine
Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant
Abstract In this paper an exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with Multi Effect Distillation-Thermal Vapour Compression plant is performed; the goal of the study is to show how these methodologies provide a rational criterion to allocate production costs on electricity and freshwater in such a dual purpose system. After a brief overview on the methodology and a description of reference plant, exergy analysis is carried out to calculate exergy flows and exergy efficiencies at component level. A detailed description of the adopted thermoeconomic model is given. In a first scenario, cost accounting is performed assuming that th…
The acid–base flow battery : Sustainable energy storage via reversible water dissociation with bipolar membranes
The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot pla…
Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis
Abstract Salinity gradient heat engines represent an innovative and promising way to convert low-grade heat into electricity by employing salinity gradient technology in a closed-loop configuration. Among the aqueous solutions which can be used as working fluid, ammonium bicarbonate-water solutions appear very promising due to their capability to decompose at low temperature. In this work, an experimentally validated model for a reverse electrodialysis heat engine fed with ammonium bicarbonate-water solutions was developed. The model consists of two validated sub-models purposely integrated, one for the reverse electrodialysis unit and the other for the stripping/absorption regeneration uni…
Reactive crystallisation process for magnesium recovery from concentrated brines
Seawater brines, generated either by natural or anthropic processes, often cause significant environmental issues related to their disposal. A clear example is the case of brines from desalination plants, which can have severe environmental impacts on the receiving water body. On the other side, brines can represent a rich and appealing source of raw materials, especially when they are very concentrated, as it happens with bitterns (i.e. exhausted brines) produced in saltworks. In particular, magnesium concentration can reach values up to 30-40 kg/m3 of brine, which is 20-30 times that of typical seawater. An experimental campaign has been carried out in the present work for assessing the p…
Multi-physical modelling of Reverse ElectroDialysis
Energy extraction from salinity gradients (salinity gradient power, SGP) represents a novel and valuable renewable energy source. Among the existing SGP technologies, reverse electrodialysis (RED) is the oldest and one of the most promising. RED is a membrane-based electrochemical process that directly converts the salinity gradient energy into electric current. More precisely, in a RED unit two solutions at different concentration flow in two series of alternated channels, which are formed by piling two alternated series of cation and anion exchange membranes (CEMs and AEMs, respectively). The chemical potential difference between the two solutions generates an electric potential differenc…
Numerical simulations supporting process models of chemical engineering: applications for membrane systems
This work presents computational fluid dynamics simulations aimed at characterizing flow and mass/heat transport mechanisms in spacer-filled channels for membrane processes, with particular reference to (reverse) electrodyalisis and membrane distillation.
Characterization of magnesium hydroxide from highly concentrated MgCl2 solutions
Reverse Electrodialysis with seawater and concentrated brine: a comprehensive process modelling
EXPERIMENTAL INVESTIGATION OF DILUTE SOLID-LIQUID SUSPENSION IN AN UNBAFFLED STIRRED VESSELS BY A NOVEL PULSED LASER BASED IMAGE ANALYSIS TECHNIQUE
The availability of experimental information on solid distribution inside stirred tanks is a topic of great importance in several industrial applications. The measurement of solid particle distribution in turbulent multiphase flow is not simple and the development of suitable measurement techniques is still in progress. In this work a novel non-intrusive technique for measuring particle concentration fields in solid-liquid systems is employed. The technique makes use of a laser sheet, a high sensitivity digital camera for image acquisition and a Matlab procedure for post-processing the acquired images. Experimental data are here obtained for the case of an unbaffled stirred tank. Stable tor…
Scale-up of electrodialysis with bipolar membrane (EDBM) unit for valorisation of waste brine by experimental analysis
A Bi-objective Optimization Study of an Acid-Base Flow Battery for High Efficiency and Improved Power Density
Electrical energy storage is critical for a broader penetration of renewable energies with intermittent nature, such as solar and wind energy. The Acid/Base Flow Battery (AB-FB) is a unique, sustainable, and environmental-friendly storage technology with high electrolyte solution energy density. The method relies on reversible electrodialytic technologies using bipolar membranes to transform electrical energy into chemical energy related to pH gradients and vice versa. The charge phase is accomplished by using bipolar membrane electrodialysis, whereas the discharge phase is performed via bipolar membrane reverse electrodialysis. In a previous work, we developed an advanced multi-scale proce…
CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension
Abstract In the literature on mechanically agitated solid–liquid systems, several methods are described to estimate the minimum impeller speed Njs at which all particles are suspended, but few studies have been devoted so far to their critical comparative assessment [67] . In the present paper, several alternative Njs prediction methods are applied to CFD results obtained for selected test cases covering a broad range of suspension conditions and impeller speeds. Results are compared with one another and with classic empirical correlations [88] . The aim of the work is to assess the adequacy of different methods for predicting Njs and, more generally, to contribute to a viable CFD-based str…
Coupling of electromembrane processes with reverse osmosis for seawater desalination: Pilot plant demonstration and testing
Reverse osmosis (RO) is the most widespread technology to produce drinking water from seawater (SW). However, the integration of different membrane processes offers interesting alternatives. In this work, electromembrane processes were integrated with RO to desalinate real seawater in a pilot plant with 25 m3/day capacity. Electrodialysis (ED, either two-stage or single stage), shortcut reverse electrodialysis (scRED) and assisted reverse electrodialysis (ARED) pre-desalinated seawater before RO with the ED-ED-RO, ED-RO, and scRED-ARED-RO process schemes. Treated wastewater was used as salt sink in the scRED-ARED tests. The performance of the pilot plant can be summarized as follows: water …
Electrodialysis for wastewater treatment—Part I: Fundamentals and municipal effluents
Abstract Selectivity, high recovery, and chemical-free operation are strengths of electrodialysis. Different configurations have been proposed for several applications. Effluents from municipal wastewater treatment plants (including sludge and supernatants), desalination plants, and animal farms can be treated for recovering water, nutrients, salts, and acids/bases. Although many applications are technoeconomically feasible and competitive with other zero liquid discharge systems, only a few real plants have been installed. However, the research is currently very active, thus paving the way for a widespread use at large scale in the next future.
CFD study on the influence of water transpiration on flow and mass transfer in channels with bipolar membranes
The future energetic supply based on the massive use of renewable sources poses issues linked to fluctuations of power produced and consumed, thus requiring the use of energy storage systems.
Exergy analysis and thermoeconomic cost accounting of a CHP steam cycle integrated with MED-TVC desalination
In this paper exergy analysis and thermoeconomic cost accounting of a CHP steam cycle integrated with MED-TVC plant is performed; the purpose is to show how this methodology provides a rational criterion to allocate production costs on electricity and freshwater. After a brief overview on methodology and a description of reference plant, exergy analysis is carried out in order to calculate exergy flows and plant exergetic performance. A detailed description of the adopted thermoeconomic model is given. Cost accounting is performed considering two scenarios: in the first, the concentrated brine is disposed back to sea, thus being its exergy content definitively wasted; in the second, convers…
CFD simulation of solid-liquid suspension startup in a stirred tank
Current distribution along electrodialysis stacks and its influence on the current-voltage curve: behaviour from near-zero current to limiting plateau
The current maldistribution along the flow path of electrodialysis (ED) units is a well-known phenomenon. However, it has been poorly quantified via experimental tests so far. This work aimed at measuring the current distribution in an ED stack with 40 cm path length, provided with four-segment electrodes. The current-voltage curve (CVC) of each segment was recorded under several operating conditions of inlet concentrations and feed velocity. In the CVC of the first segment, the current increased approaching a saturation, while in that of the remaining segments it passed through a maximum and then settled at near-zero values when high voltage values were applied. The current fraction on the…
NUMERICAL SIMULATION OF SEDIMENT RESUSPENSION IN MECHANICALLY STIRRED VESSEL
Modelling and characterization of electrodialysis systems for multi-ionic solutions
In this work a simplified approach related to membrane properties is required
CFD modelling of profiled-membrane channels for reverse electrodialysis
Abstract: Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations we…
MISURA DELLA CONCENTRAZIONE DI SOLIDI PARTICELLARI IN SISTEMI SOLIDO-LIQUIDO AGITATI MEDIANTE LASER PULSATO E ANALISI DI IMMAGINI
On some issues in the computational modelling of spacer-filled channels for membrane distillation
Abstract This study addresses issues which arise in the computational and experimental modelling of flow and heat/mass transfer in membrane distillation and other processes adopting spacer-filled channels (either planar or spiral wound), but have not been sufficiently clarified in the literature so far. Most of the argumentations presented are based on original computational results obtained by the authors by finite volume simulations; some literature results are also considered. The questions addressed regard the choice of scales for the reduction of data and the definition of dimensionless numbers ( Re , f , Nu , Sh ); the definition of average heat or mass transfer coefficients; the comb…
Long-run operation of a reverse electrodialysis system fed with wastewaters.
The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main det…
Salinity gradient energy
Abstract Beyond the most common renewable energy sources today exploited for the production of clean energy, salinity gradients power (SGP) has been attracting the increasing interest of scientists and companies involved in the field. This chapter provides an introduction to SGP, reporting a brief history of the technological developments throughout the years, from the beginning to present. A number of different SGP technologies have been developed in the last decades, all based on the concept of harvesting the energy from the controlled mixing of two solutions at different salinities. A theoretical analysis of the energy potential for SGP places this renewable source of energy among those …
On the Reduction of Power Consumption in Vortexing Unbaffled Bioslurry Reactors
Bioremediation of polluted soils via bioslurry reactors is an interesting option among those available nowadays, especially when recalcitrant pollutants are present. Vortexing unbaffled stirred tanks may be a valuable choice to this purpose as they were recently found to be more efficient than baffled vessels for solid suspension processes where mixing time is not a controlling factor. When operated at sufficiently high agitation speeds, the central vortex bottom reaches the impeller and air bubbles start to be distributed throughout the system, thus avoiding any sparger and related clogging issues. In the present work, a vortexing unbaffled stirred tank with solid loadings ranging from 2.5…
Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion
Abstract A Reverse ElectroDialysis Heat Engine (REDHE) system operating with “thermolytic” ammonium hydrogen-carbonate (NH4HCO3) aqueous solutions as working fluids is studied. The engine is constituted by (i) a RED unit to produce electric power by mixing the solutions at different salinity and (ii) a thermally-driven regeneration unit including a stripping and an absorption column to restore the initial salinity gradient thus closing the cycle. In the present work only the RED unit and the stripping column are taken into account. In particular, a simplified integrated process model for the whole cycle was developed: it consists of (i) a lumped parameter model for the RED unit validated wi…
Comparison of different hollow fibre haemodialysis module configurations by a CFD multiscale approach
Objectives The study aims to predict 3-D flow and solute concentrations fields both for blood and dialysate and overall performance parameters (such as dialysate pressure drop and clearance) for different hollow-fibre haemodialysis modules. Methods A multiscale approach was used. At small (unit cell)-scale, dialysate flow and mass transfer around straight cylindrical fibres arranged in regular lattices were simulated. At module-scale, hydraulic permeabilities and mass transfer coefficients derived from small-scale simulations were used to define two different porous media representative of blood and dialysate, sharing the same volume and exchanging solute. Simulations involved different mod…
Investigation of heat transfer in spacer-filled channels by experiments and direct numerical simulations
Abstract The analysis of flow fields and heat or mass transfer phenomena is of great importance in the optimum design of spacer-filled channel geometries for a variety of membrane-based processes. In the present work, models of spacer-filled channels often adopted in Membrane Distillation are simultaneously investigated by experiments and Computational Fluid Dynamics (CFD). Experiments rely on a non-intrusive technique, based on the use of Thermochromic Liquid Crystals (TLC) and digital image processing, and provide the local distribution of the convective heat transfer coefficient on a thermally active wall. CFD relies on steady-state (laminar flow) simulations in the lower end of the Reyn…
Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions
Abstract This work presents a performance analysis of a waste-heat-to-power Reverse Electrodialysis Heat Engine (RED-HE) with a Multi-Effect Distillation (MED) unit as the regeneration stage. The performance of the system is comparatively evaluated using two different salts, sodium chloride and potassium acetate, and investigating the impact of different working solutions concentration and temperature in the RED unit. For both salt solutions, the impact of membrane properties on the system efficiency is analysed by considering reference ionic exchange membranes and high-performing membranes. Detailed mathematical models for the RED and MED units have been used to predict the thermal efficie…
An experimental investigation on ionic shortcut currents reduction in Acid-Base Flow Battery systems
ASSESMENT OF TEMPERATURE POLARIZATION IN MEMBRANE DISTILLATION CHANNELS BY LIQUID CRYSTAL THERMOGRAPHY
AbstractThe measurement of local temperature distributions within a membrane distillation (MD) channel is a crucial step for the optimization of the channel and spacer geometry. This information allows the estimation of temperature polarization phenomena, which can dramatically influence the thermal efficiency of the process and the optimal choice of the geometric configuration (net spacer features, channel size, etc.). In the present work, a recently presented experimental technique, based on the use of thermochromic liquid crystals and digital image analysis, has been employed in order to assess the temperature polarization phenomena. The local heat transfer coefficient distribution on th…
Reverse electrodialysis heat engine with multi-effect distillation: Exergy analysis and perspectives
Abstract The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine is a promising technology with the potential to convert low-grade heat into electric power. The reverse electrodialysis technology has been under investigation in the last years to explore the real potentials for energy generation from natural and artificial solutions, and recent works have been addressing also the potential of its coupling with regeneration strategies, looking at medium and large energy supply purposes. In this work, for the first time, a c…
Modelling hybrid systems for seawater desalination: electromembrane processes (RED, ARED and ED) coupled with RO
The need to reduce energy consumption in seawater reverse osmosis processes has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis and reverse electrodialysis can act as a dilution step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO system. Each process model was validated before being used for a sensitivity analysis in which the effect of the integration on the cost saving in the overall process was assessed. The analysis was performed by changing (R)ED voltage and RO press…
Development of a Membrane Distillation module for solar energy seawater desalination
Abstract Membrane Distillation (MD) processes are gaining growing interest among novel desalination technologies, in particular for small scale applications also coupled with non-conventional energy sources. In the present work an original laboratory scale planar geometry Membrane Distillation unit was designed, built and tested for future coupling with solar energy. Though conceptually simple, the original geometry was developed in order to allow for multi-stage arrangement, compactness, internal heat recovery and possible integration with a polymeric heat exchanger for final brine heating by means of solar energy or waste heat. The laboratory scale unit was tested in order to investigate …
Economic Benefits of Waste Pickling Solution Valorization
An integrated hybrid membrane process, composed of a diffusion dialysis (DD), a membrane distillation (MD) and a reactive precipitation unit (CSTR), is proposed as a promising solution for the valorization and onsite recycling of pickling waste streams. An economic analysis was performed aiming to demonstrate the feasibility of the developed process with a NPV of about EUR 40,000 and a DPBP of 4 years. The investment and operating costs, as well as the avoided costs and the benefits for the company operating the plant, were analyzed with an extensive cost tracking exercise and through face-to-face contact with manufacturers and sector leaders. A mathematical model was implemented using the …
Electrodialysis for wastewater treatment-part II: Industrial effluents
Abstract Electrodialysis and related processes have huge potential in the treatment of effluents from a variety of industrial processes. They can recover water and other valuable products, including heavy metal ions, acids and bases, nutrients, and organics. In recent years, novel and improved systems have been continuously developed as a result of research in the field, showing that the (near) zero liquid discharge approach can be affordable in several industrial applications. A larger market share is expected in the near future.
Multi-physical modelling of reverse electrodialysis
Abstract Reverse electrodialysis (RED) is an electrochemical membrane process that directly converts the energy associated with the concentration difference between two salt solutions into electrical energy by means of a selective controlled mixing. The physics of RED involves the interaction of several phenomena of different nature and space-time scales. Therefore, mathematical modelling and numerical simulation tools are crucial for performance prediction. In this work, a multi-physical modelling approach for the simulation of RED units was developed. A periodic portion of a single cell pair was simulated in two dimensions. Fluid dynamics was simulated by the Navier-Stokes and continuity …
CFD prediction of scalar transport in thin channels for reverse electrodialysis
Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments the other of woven filaments. The transport of two passive scalars, representative of the ions …
Regeneration units for thermolytic salts applications in water & power production: State of the art, experimental and modelling assessment
Abstract Thermolytic solutions are often proposed as high salinity or “draw” stream to generate a chemical potential driving force in Salinity Gradient Power (SGP) and Forward Osmosis (FO) technologies. Depleted “draw” solutions exiting the process can be regenerated by a thermal process powered at very-low grade heat, which is able to decompose the salt into gaseous ammonia and carbon dioxide, which can be stripped and then reabsorbed in the draw solution, restoring its initial concentration. In this work, two different experimental prototypes for the regeneration of ammonium bicarbonate aqueous solution were designed, built and tested. The effect of several operating parameters on the reg…
CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis
Reverse electrodialysis (RE) is a promising technology for electric power generation by converting the chemical potential difference of a salinity gradient, within a stack equipped by selective ion-exchange membranes. Concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry is a fundamental operating parameter for the optimization of the system. In this work, Computational Fluid Dynamic simulations were performed to predict fluid flow and mass transfer in spacer-filled channels for RE applications. A parametric analysis for different spacer geometries was carried out; in particular, woven and non woven spacers were si…
Top-covered unbaffled stirred tanks: experiments and numerical simulations
In this work computational fluid dynamics was employed to predict the flow field of an unbaffled stirred tank from steady to turbulent conditions
Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: Dynamic simulations and control strategy
Abstract The presence of desalination systems in polygeneration facilities is usually limited by important difficulties in operating under non-stationary regimes typical of renewable energy sources. Reverse osmosis, namely the most common desalination technology, is characterised by slow dynamics that rarely adapts to the power fluctuations of renewables. Therefore, the possibility of using electrodialysis coupled with a hybrid photovoltaic/wind energy source was investigated in this work. In particular, the combination of photovoltaic and wind energy is very attractive in order to achieve a more stable energy production, while electrodialysis is claimed to be a more flexible process compar…
Unsteadiness and transition to turbulence in woven spacer filled channels for Membrane Distillation
To characterize the performance of Membrane Distillation (MD) modules, channels filled with woven spacers were investigated by Computational Fluid Dynamics (including Direct Numerical Simulations and the use of the SST k-Ï turbulence model) and by parallel experiments with Thermochromic Liquid Crystals. The cases considered here regard mutually orthogonal filaments with a spacer pitch to channel height ratio P/H=2, two spacer orientations θ with respect to the main flow (0° and 45°), and bulk Reynolds numbers Re from â¼200 to â¼2000, an interval of great interest in practical MD applications. For both values of θ, CFD predicted steady-state flow for Re up to â¼300, and chaotic flow …
CFD analysis of the fluid flow behavior in a reverse electrodialysis stack
Salinity Gradient Power by Reverse Electrodialysis (SGP-RE) technology allows the production of electricity from the different chemical potentials of two differently concentrated salty solutions flowing in alternate channels suitably separated by selective ion exchange membranes. In SGP-RE, as well as in conventional ElectroDialysis (ED) technology, the process performance dramatically depends on the stack geometry and the internal fluid dynamics conditions: optimizing the system geometry in order to guarantee lower pressure drops (DP) and uniform flow rates distribution within the channels is a topic of primary importance. Although literature studies on Computational Fluid Dynamics (CFD) a…
A CFD MODEL FOR THE PERFORMANCE PREDICTION OF HOLLOW FIBRE HAEMODIALYSIS MODULES
Objectives: The model proposed aims to predict how geometric, transport and operative parameters affect the performances of hollow-fibre membrane modules for haemodialysis, especially solute clearance. Methods: A two-scale approach was used. Preliminarily, dialysate flow and mass transfer around fibre bundles were simulated at Unit Cell level, i.e. in a single periodic unit of the bundle. For a given porosity, both regular lattices (square or hexagonal) and random fibre arrangements were studied. From the predicted friction coefficients and Sherwood numbers, permeability and solute exchange terms were derived to be used in a porous media model of the whole module. Solute concentrations on t…
CFD prediction of shell-side flow and mass transfer in regular fiber arrays
Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…
Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and othe…
Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks
Abstract Different computer-based simulation models, able to predict the performance of Reverse ElectroDialysis (RED) systems, are currently used to investigate the potentials of alternative designs, to orient experimental activities and to design/optimize prototypes. The simulation approach described here combines a one-dimensional modelling of a RED stack with a fully three-dimensional finite volume modelling of the electrolyte channels, either planar or equipped with different spacers or profiled membranes. An advanced three-dimensional code was used to provide correlations for the friction coefficient (based on 3-D solutions of the continuity and Navier-Stokes equations) and the Sherwoo…
Performance of a RED system with ammonium hydrogen carbonate solutions
The use of closed-loop salinity gradient power (SGP) technologies has been recently presented as a viable option to generate power using low-grade heat, by coupling a SGP unit with a thermally-driven regeneration process in a closed loop where artificial solutions can be adopted for the conversion of heat into power. Among these, the closed-loop reverse electrodialysis (RED) process presents a number of advantages such as the direct production of electricity, the extreme flexibility in operating conditions and the recently demonstrated large potentials for industrial scale-up. Ammonium hydrogen carbonate (NH4HCO3) is a salt suitable for such closed-loop RED process thanks to its particular …
Suspension phenomena in solidliquid agitated systems
A parametric CFD study of hollow fiber membrane modules for hemodialysis
Hemodialysis is a membrane-based process in which solute transport from the patient’s blood to a rinsing solution (dialysate) occurs by diffusion and ultrafiltration. Devices used in hemodialysis are cylindrical modules filled with hollow-fiber membranes which allow the removal of toxic substances and metabolic wastes from the blood, but inhibit the passage of proteins and cells to the dialysate. A predictive porous-media model of hemodialysis was developed and validated against experimental data. Unlike previous literature models, it requires only basic membrane properties (hydraulic and diffusive permeabilities and reflection coefficients) instead of relying on empirically adjusted global…
The first operating thermolytic reverse electrodialysis heat engine
Abstract Thermolytic reverse electrodialysis heat engine (t-RED HE) has been recently proposed as a technology for converting low-temperature waste heat into electricity. The construction and operation of the first world lab-scale prototype unit are reported. The system consists of: (i) a reverse electrodialysis unit where, the concentration gradient between two solutions of thermolytic salts is converted into electricity and (ii) a thermally-driven regeneration unit where low-temperature heat is used to restore the initial conditions of the two feed streams. Regeneration is based on a degradation process of salts into gaseous ammonia and carbon dioxide, which can be removed almost entirely…
A novel colorimetric experimental technique for the characterisation of metal hydroxides reactive crystallization phenomena
The reactive crystallization of metal hydroxides constitutes a field of raising interest driven by the importance of metals recovery and the wide industrial applications of their hydroxides. A popular example is related to the case of magnesium hydroxide (Mg(OH)2), which is widely employed in the fields of water treatment, desulphurization of fuel gases, pharmaceutical industry, refractory field and flame retardants
Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale
Environmental concerns regarding the disposal of seawater reverse osmosis brines require the development of new valorization strategies. Electrodialysis with bipolar membrane (EDBM) technology enables the production of acid and base from a salty waste stream. In this study, an EDBM pilot plant with a membrane area of 19.2 m2 was tested. This total membrane area results much larger (i.e., more than 16 times larger) than those reported in the literature so far for the production of HCl and NaOH aqueous solutions, starting from NaCl brines. The pilot unit was tested both in continuous and discontinuous operation modes, at different current densities (200-500 A m-2). Particularly, three differe…
An Ion Exchange Membrane Crystallisation reactor for Magnesium recovery from brines
CrIEM technology is a novel ion exchange application that allows reactive crystallization for separation of valuable species (e.g. Mg from brines) with a large flexibility in the choice of reactants.
A dynamic model for MED-TVC transient operation
Abstract The Multi Effect Distillation (MED) process is often proposed as a key technology for the construction of new thermal desalination plants, especially within solar-powered cogeneration schemes. With this respect, the need for transient behaviour analysis requires the development of dynamic models for the MED process. Only a few have been presented so far in the literature, in which, however, several simplifying assumptions and constrains are still limiting their potential use. The model here proposed addresses most of the aspects still limiting previous models formulations. The powerful equation-based process simulator gPROMS® was chosen for the implementation of the model, develope…
Direct numerical simulations of creeping to early turbulent flow in unbaffled and baffled stirred tanks
Abstract It has been known for a long time that the fluid flow and several global quantities, such as the power and pumping numbers, are about the same in baffled and unbaffled mechanically stirred vessels at low Reynolds numbers, but bifurcate at some intermediate Re and take drastically different values in fully turbulent flow. However, several details are not yet completely understood, notably concerning the relation of this bifurcation with the flow features and the transition to turbulence. In order to shed light on these issues, computational fluid dynamics was employed to predict the flow field in two vessels stirred by a six-bladed Rushton turbine at Reynolds numbers from 0.2 to 600…
Towards the implementation of circular economy in the water softening industry: A technical, economic and environmental analysis
Abstract To reduce the environmental impact of the industrial sectors, circular strategies should be implemented to purify the effluents and recover raw materials. In this context, a novel integrated methodological approach is proposed to identify the most suitable strategy to improve the sustainability of the water softening industry via the treatment and recycling of the produced wastewater. Different concentration technologies and energy supply systems are compared to find economically feasible and environmentally friendly treatment systems. The investigated chains present the same pre-treatment step (nanofiltration and crystallization) and different concentration technologies: Multi-Eff…
Fluid-structure interaction in electromembrane processes: modelling of membrane deformation, fluid dynamics and mass transfer
In recent years, water and energy supply issues have boosted a noticeable interest in the scientific community on electromembrane processes such as electrodialysis and reverse electrodialysis. In order to gain an important place in the industrial market, technological challenges on various aspects are involved for the optimization of these processes. In this context, profiled membranes exhibit interesting performances and offer countless geometric alternatives. However, the mechanical behavior of the membranes and its interaction with fluid dynamics has been poorly investigated so far. In membrane-based processes, a trans-membrane pressure (Ptm) between the different solutions flowing throu…
Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines
Abstract Reverse electrodialysis (RED) is a promising technology to extract energy from salinity gradients, especially in the areas where concentrated brine and saline waters are available as feed streams. A first pilot-scale plant was recently built in Trapani (Italy), and tested with real brackish water and brine from saltworks. The present work focuses on the scale-up of the pilot plant, reaching more than 400 m 2 of total membrane area installed and representing the largest operating RED plant so far reported in the literature. With a nominal power capacity of 1 kW, the pilot plant reached almost 700 W of power capacity using artificial brine and brackish water, while a 50% decrease in …
A multi-scale model for the reverse electrodialysis process with seawater and concentrated brines
An application of Reverse ElectroDialysis: energy production from produced water
Friction and Heat Transfer in Membrane Distillation Channels: An Experimental Study on Conventional and Novel Spacers
The results of an experimental investigation on pressure drop and heat transfer in spacer-filled plane channels, which are representative of Membrane Distillation units, are presented and discussed. Local and mean heat transfer coefficients were obtained by using Thermochromic Liquid Crystals and Digital Image Processing. The performances of a novel spacer geometry, consisting of spheres that are connected by cylindrical rods, and are hereafter named spheres spacers, were compared with those of more conventional woven and overlapped spacers at equal values of the Reynolds number Re (in the range ~150 to ~2500), the pitch-to-channel height ratio, the flow attack angle and the thermal boundar…
Analysis and simulation of scale-up potentials in reverse electrodialysis
The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previousl…
Energia da gradienti salini: dall’acqua l’energia del futuro
Today, continuous research efforts are aimed at finding alternative renewable energy sources to conventional ones and efficient technologies able to exploit them. Saline gradient energy is an unconventional renewable energy source widely available and currently under-exploited. In the present document the most technologies are illustrated avant-garde for the conversion of this energy into electric current: Pressure Retarded Osmosis, PRO (Osmosis Delayed by Pressure) and the Reverse Electrodialysis, RED (Inverse Electrodialysis).
Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for Reverse Osmosis
Abstract The need to reduce energy consumption in seawater Reverse Osmosis (RO) process has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis (ED) and Reverse Electrodialysis (RED) can act as a pre-desalting step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO systems. Each process model was validated. Then a sensitivity analysis was performed to assess the effect of the integration on the overall process cost saving. The analysis was performed by changing ED or RED voltage …
Particle Distribution in an Unbaffled Stirred Vessel by a Novel laser Sheet Image Analysis Technique
The availability of experimental information on solid distribution inside stirred tanks is a topic of great importance in several industrial applications. The measurement of solid particle distribution in turbulent multiphase flow is not simple and the development of suitable measurement techniques is still in progress. In this work a novel non-invasive technique for measuring particle concentration fields in solid-liquid systems is presented and employed. The technique makes use of a laser sheet, a high sensitivity digital camera for image acquisition and a Matlab procedure for post-processing the acquired images. Experimental data are here obtained for the case of an unbaffled stirred tan…
Techno-economic analysis of integrated processes for the treatment and valorisation of neutral coal mine effluents
Abstract The disposal of highly-concentrated neutral coal mine effluents into the environment constitutes a severe threat to the natural ecosystem. This work proposes and compares five novel treatment chains to purify the effluent and recover raw materials. The chains present different combinations of pre-treatment and concentration technologies. In all cases, the solution sent to the concentration step is concentrated up to saturation to recover water and sodium chloride. Concerning the technical performances, the treatment chains are compared in terms of total energy demand and salt recovery. Furthermore, the economic feasibility assessment is performed via a novel global parameter, i.e. …
Experiments and modelling for determining the Limiting Current Density in Electrodialysis units
In the present work, in order to explore such issues on the LCD identification, we performed in-situ measurements with ED units, assessing the influence of operating conditions and validating a purposely implemented process simulator, which was then used for further investigation
CFD analysis of concentration polarization phenomena in spacer-filled channels for Reverse Electro-Dialysis
In this work, carried out within the EU-FP7 funded REAPower project, CFD simulations were carried out in order to study the fluid flow behaviour and mass transport phenomena within spacer-filled channels.
A pilot-plant for the selective recovery of magnesium and calcium from waste brines
Abstract The problem of brines disposal has raised great interest towards new strategies for their valorisation through the recovery of minerals or energy. As an example, the spent brine from ion exchange resins regeneration is often discharged into rivers or lakes, thus impacting on the process sustainability. However, such brines can be effectively reconcentrated, after removal of bivalent cations, and reused for the resins regeneration. This work focuses on developing and testing a pilot plant for selective recovery of magnesium and calcium from spent brines exploiting a novel proprietary crystallization unit. This is part of a larger treatment chain for the complete regeneration of the …
Particle suspension in top-covered unbaffled tanks
Abstract Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled vessels. However, they may be expected to provide significant advantages in a wide range of applications (e.g. crystallization, food and pharmaceutical processes, etc.), where the presence of baffles is often undesirable. In the present work solid–liquid suspension in an unbaffled stirred tank is investigated. The tank was equipped with a top-cover in order to avoid vortex formation. A novel experimental method (the “steady cone radius method”, SCRM) is proposed to determine experimentally the minimum impeller speed at which solids are completely suspended. Experime…
Mechanical-fluid dynamics coupled model for profiled Ion Exchange Membranes design
In this work, we developed an advanced model useful for the design of profiled IEMs, based on the coupled simulation of local mechanical deformations and of fluid dynamics and associated mass transport phenomena within deformed channels
Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime
Notwithstanding the increasing industrial interest toward unbaffled tanks, available experimental information on their behavior is still scant, even for basic quantities such as the mechanical power drawn. In this work, the influence of the Reynolds and Froude numbers on the power consumption characteristics is presented for unbaffled stirred tanks operating both in nonaerated conditions (subcritical regime) and in aerated conditions (supercritical regime), i.e., when the free surface vortex has reached the impeller and the gas phase is ingested and dispersed inside the reactor. Experimental results obtained at various liquid viscosities show that power numbers obtained in subcritical condi…
Modelling of Electrodialysis units by a multi-scale process simulator
Drinking water production by desalination is an interesting alternative to face water scarcity issues. Electrodialysis (ED) is an electro-membrane process that is actually gaining attention as a competitive alternative for seawater and brackish water desalination due to recent developments in manufacturing of high performance ion exchange membranes (IEMs). In this context, a suitable process simulator can be a very effective tool in order to drive the design of optimized ED systems. In this work a novel mathematical model of ED units was developed by a hierarchical simulation strategy of separation of scales, in order to address the full simulation problem. The model was implemented in PSE …
Experimental and computational investigation of heat transfer in channels filled by woven spacers
Abstract Models of woven-type spacer-filled channels were investigated by Computational Fluid Dynamics (CFD) and parallel experiments in order to characterize the performance of Membrane Distillation (MD) modules. The case of overlapped spacers was analysed in a companion paper. Experiments were based on a non-intrusive technique using Thermochromic Liquid Crystals (TLC) and digital image processing, and provided the distribution of the local convective heat transfer coefficient on a thermally active wall. CFD simulations ranged from steady-state conditions to unsteady and early turbulent flow, covering a Reynolds number interval of great practical interest in real MD applications. A specif…
Turbulent heat transfer in spacer-filled channels: Experimental and computational study and selection of turbulence models
Abstract Heat transfer in spacer-filled channels of the kind used in Membrane Distillation was studied in the Reynolds number range 100–2000, encompassing both steady laminar and early-turbulent flow conditions. Experimental data, including distributions of the local heat transfer coefficient h, were obtained by Liquid Crystal Thermography and Digital Image Processing. Alternative turbulence models, both of first order (k-e, RNG k-e, k-ω, BSL k-ω, SST k-ω) and of second order (LRR RS, SSG RS, ω RS, BSL RS), were tested for their ability to predict measured distributions and mean values of h. The best agreement with the experimental results was provided by first-order ω-based models able to …
CFD parametrical study of the spacer geometry for Membrane Distillation
Membrane Distillation (MD) is a thermal process that separates water from aqueous solutions containing non-volatile components such as salt. Water vapor from the hot feed channel permeates through a hydrophobic membrane thanks to a partial pressure gradient, and condenses in the cool channel. One of the main advantages of MD is the easy coupling with renewable resources, as the solar thermal energy. In the various MD configurations developed, net spacers are used in order to support the membrane, thus creating the channels; moreover, they can counteract the side effects of temperature polarization by promoting mixing. However, the presence of the spacer involves an increase of pressure drop…
Salinity gradient heat engines: An innovative concept for waste heat valorization
Abstract The world population has grown rapidly in the last century and a similar increase is expected in the next years. A corresponding increase in energy production and consumption has been recorded so far and most of it comes from nonrenewable sources. The shift from conventional energy production processes to renewable-based ones is proceeding slowly; meanwhile, the need for reducing the energy losses in current power technologies is a matter of crucial importance. Thus, the interest toward low-grade waste heat and strategies for its valorization has rapidly grown recently. Salinity gradient heat engines are a novel promising technology to produce power from waste heat at very low temp…
CFD simulations of spacer-filled channels for pressure retarded osmosis applications
Different spacer features and operating conditions were investigated in order to identify a good compromise between concentration polarization and pumping power reductions.
Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by a validated process model
Abstract The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m−3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-…
Investigation of Reverse ElectroDialysis Units by Multi-Physical Modelling
Reverse electrodialysis (RED) is an electrochemical membrane process that converts the salinity gradient energy between two solutions into electric current, by using ion exchange membranes. A novel multi-physical approach for RED modelling is proposed. 2-D simulations of one cell pair with tertiary current distribution (Nernst–Plank equation and local electroneutrality) were performed. Moreover, the Donnan exclusion theory was implemented for simulating double layer phenomena. Transport phenomena and electrochemical behavior were well described. The influence of membrane/channel configuration, dilute concentration and feeds velocity on the process performance was assessed. For a dilute conc…
Pressure drop in woven-spacer-filled channels for reverse electrodialysis: CFD prediction and experimental validation
Reverse electrodialysis (RED) is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ionexchange membranes (salinity gradient energy). Mechanical energy is required for pumping the feed solutions, which can reduce dramatically the net power output. In this work Computational Fluid Dynamics (CFD) simulations of spacer-filled channels for RED were carried out in parallel with an experimental campaign focused on the collection of data for model validation.
Temperature distribution analysis in spacer filled channels for membrane distillation
Influence of drag and turbulence modelling on CFD predictions of solid liquid suspensions in stirred vessels
Abstract Suspensions of solid particles into liquids within industrial stirred tanks are frequently carried out at an impeller speed lower than the minimum required for complete suspension conditions. This choice allows power savings which usually overcome the drawback of a smaller particle-liquid interfacial area. Despite this attractive economical perspective, only limited attention has been paid so far to the modelling of the partial suspension regime. In the present work two different baffled tanks stirred by Rushton turbines were simulated by employing the Eulerian-Eulerian Multi Fluid Model (MFM) along with either the Sliding Grid algorithm (transient simulations) or the Multiple Refe…
Comparison of Agitators Performance for Particle Suspension in Top-Covered Unbaffled Vessels
Power savings is a problem of crucial importance nowadays. In process industry, suspension of solid particles into liquids is usually obtained by employing stirred tanks, which often are very power demanding. Notwithstanding tanks provided with baffles are traditionally adopted for this task, recent studies have shown that power reductions can be obtained in top-covered unbaffled vessels. In the present work experiments were carried out in a top-covered unbaffled vessel with a diameter T=0.19m and filled with distilled water and silica particles. Two different turbines were tested: a standard six-bladed Rushton Turbine (RT) and a 45° four bladed Pitched Blade Turbine (PBT). For the case of …
Potential applications of Salinity Gradient Power-Heat Engines for recovering low-temperature waste heat in cogeneration plants
Abstract Salinity Gradient Power-Heat Engine is an innovative technology able to convert very low-temperature heat into electricity. Energy and economic benefits could be achieved by integrating this technology into cogeneration plants, where the exploitation of waste heat available during the operation could increase the revenues arising from “High-Efficiency” labels. For the first time, this paper proposes two potential applications in this field, and three illustrative case studies are purposely investigated. In the first case study, a salinity gradient-heat engine converts the waste heat available from a cogeneration plant serving an industrial process. In the second case study, a salin…
Geometrical characterization of reverse electrodialysis stack via CFD simulations
In the presente work, CFD simulations were carried out in order to assess the effects of different parameters on the global process efficiency, such as the choice of spacer material and morphology, and the optimisation of feed and blowdown distribution systems
Modelling the transient behaviour of a MED-TVC plant for coupling with CSP
In this paper a dynamic model for the MED-TVC process has been developed and valided by a comparison with data from a real plant situated in Trapani, Italy, composed by 12 effects with parallel-feed configuration and equipped with a medium-pressure steam vapour ejector.
CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine
Abstract Laboratory scale unbaffled tanks provided with a top cover and a baffled tank both stirred by a Rushton turbine were simulated by carrying out RANS simulations. Three different turbulence models were adopted (k- ω SST, k- e and the SSG Reynolds stress model) to predict the flow field and the relevant performance parameters (power and pumping numbers) of the tank operated from early to fully turbulent conditions. CFD results were compared with literature experimental data and DNS simulation results to validate and properly compare the models. In the range of Reynolds numbers investigated, results showed that, for the unbaffled tank, the SSG model based on Reynolds stresses is a bett…
A comprehensive multi-scale model for bipolar membrane electrodialysis (BMED)
Bipolar membrane electrodialysis (BMED) is a technology combining solute and solvent dissociation to produce chemicals. In the recent decades, it has been typically studied for the production of valuable acid and base solutions from salt streams. Although many works have been devoted to the experimental investigation of BMED, only a few efforts have focused on its mathematical modelling. In the present work, a comprehensive process model based on a multi-scale approach with distributed parameters is presented for the first time. Five models related to four different dimensional scales were fully integrated to form a comprehensive tool. The integrated model was developed by using the process…
Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study
Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…
A Thermochromic Liquid Crystals Image Analysis technique to investigate temperature polarization in spacer-filled channels for Membrane Distillation
The analysis of flow fields and temperature distributions is of paramount importance in the development and optimization of new spacer-filled channel geometries for Membrane Distillation modules. The literature reports only few studies on the experimental characterization of such channels and, to the authors’ knowledge, none of them presents local information concerning the temperature distribution on the membrane surface. In the present work, a non-intrusive experimental technique named TLC-IA-TP is presented: it is based on the use of Thermochromic Liquid Crystals (TLCs) and digital Image Analysis (IA) and it is applied here for the first time to the analysis of Temperature Polarization (…
Measurements of temperature polarization phenomena in membrane distillation channels by a thermographic technique
In the present work, a recently presented experimental technique, based on the use of thermochromic liquid crystals (TLCs) and digital image processing, has been employed in order to measure the temperature and local heat transfer coefficient distribution on the membrane surface in a MD spacer-filler channel
Evaluation of the Purity of Magnesium Hydroxide Recovered from Saltwork Bitterns
Magnesium has been listed among the 30 critical raw materials by the European Union. In recent years, many green and sustainable alternative Mg2+ sources have been sought to satisfy the EU’s demand and to avoid mineral ore consumption. In this context, saltwork bitterns, the by-products of solar sea salt production, have attracted much attention thanks to their high Mg2+ concentrations (up to 80 g/L) and low Ca2+ and bicarbonate contents (<0.5 g/L). Although investigations on Mg2+ extraction from bitterns in the form of Mg(OH)2(s) have already been performed, product purity has never been properly addressed. Mg(OH)2(s) is a chemical compound of great interest and extensive utility in num…
Reverse electrodialysis
Abstract Reverse electrodialysis (RED) technology has grown significantly in the last decade, gaining a fast increase in its technology readiness level and presenting some interesting examples of RED pilot systems operating under very different real environments. In this chapter, an overview of technological developments and piloting examples are reported. In particular, a short introduction is given on the historical trend of RED technology growth, followed by a careful analysis of which feed solutions can be adopted and how these can affect the process performance, potentials, and applications. Most prominent fluid dynamics aspects for the RED process are presented, highlighting how these…
Oxygen Transfer Performances of Unbaffled Bio_Reactors with Various Aspect Ratios
Cultivation of microorganisms, plants or animal cells requires liquid agitation in order to ensure oxygen and nutrient transfer and to maintain cell suspension. Many studies on animal cell damage due to mechanical agitation and sparging aeration have shown that mechanical damage of freely suspended animal cells is in most cases associated with bursting bubbles at the air–liquid interface (Barrett et al., 2010). Gas bubbles are usually generated by direct air sparging aimed at supplying oxygen to the culture medium. Mechanical agitation may also introduce gas bubbles in the culture medium via vortexing entrainment from the free surface. In this work oxygen transfer performance of an unbaffle…
CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes
Abstract Flow and heat or mass transfer in channels provided with woven spacers made up of mutually orthogonal filaments were studied by Computational Fluid Dynamics. The problem addressed was the combined effect of the parameters that characterize the process: pitch to height ratio P/H (2, 3 and 4), flow attack angle θ (0, 7, 15, 20, 30, 40 and 45°) and Reynolds number Re (from ~1 to ~4000). The Prandtl number was 4.33, representative of water at ~40°C, while the Schmidt number was 600, representative of NaCl solutions. Simulations were performed by the finite volume code Ansys CFX™ 18.1 using very fine grids of ~6 to ~14 million volumes. For Re > ~400, the SST turbulence model was used to…
Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment
Dense solid–liquid off-bottom suspension inside a baffled mechanically stirred tank equipped with a standard Rushton turbine is investigated. Dynamic evolution of the suspension from start-up to steady-state conditions has been determined by both visual experiments and computational fluid dynamics (CFDs). A classical Eulerian–Eulerian multifluid model (MFM) along with the “homogeneous” k–ε turbulence model is adopted to simulate suspension dynamics. In these systems the drag inter-phase force affects both solids suspension and distribution. Therefore, different computational approaches are tested in order to compute this term. Simulation results are compared with images obtained from the re…
Feasibility of Producing Electricity, Hydrogen, and Chlorine via Reverse Electrodialysis
Reverse electrodialysis (RED) is a technology to generate electricity from two streams with different salinities. While RED systems have been conventionally used for electricity generation, recent works explored combining RED for production of valuable gases. This work investigates the feasibility of producing hydrogen and chlorine in addition to electricity in an RED stack and identifies potential levers for improvement. A simplified one-dimensional model is adopted to assess the technical and economic feasibility of the process. We notice a strong disparity in typical current densities of RED fed with seawater and river water and that in typical water (or chlor-alkali) electrolysis. This …
Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign
Concentrated bitterns discharged from saltworks have extremely high salinity, often up to 300 g/L, thus their direct disposal not only has a harmful effect on the environment, but also generates a depletion of a potential resource of renewable energy. Here, reverse electrodialysis (RED), an emerging electrochemical membrane process, is proposed to capture and convert the salinity gradient power (SGP) intrinsically conveyed by these bitterns also aiming at the reduction of concentrated salty water disposal. A laboratory-scale RED unit has been adopted to study the SGP potential of such brines, testing ion exchange membranes from different suppliers and under different operating conditions. M…
Ionic shortcut currents via manifolds in reverse electrodialysis stacks
Abstract Reverse electrodialysis (RED) is a blue energy technology for clean and sustainable electricity harvesting from the mixing entropy of salinity gradients. Recently, many efforts have been devoted to improving the performance of RED units by developing new ion-exchange membranes and by reducing the detrimental phenomena affecting the process. Among these sources of “irreversibility”, the shortcut currents (or parasitic currents) flowing through alternative pathways may affect the process efficiency. Although such phenomena occur in several electrochemical processes (e.g. fuel cells, bipolar plate cells and vanadium redox flow batteries), they have received a poor attention in RED uni…
Electrodialysis with asymmetrically profiled membranes: Influence of profiles geometry on desalination performance and limiting current phenomena
Abstract Electrodialysis (ED) has recently gained much attention in the wide field of desalination and water treatment. However, energy consumption and capital costs may impair the process competitiveness. In this regard, limiting current density (LCD) and current efficiency (η) are key performance parameters for optimized ED systems. In this work, an experimental campaign was carried out characterizing the performance of ED stacks when adopting asymmetrically profiled membranes. Current–voltage curves were recorded under different operating conditions mimicking the operation of brackish water or seawater desalination units. Results showed that there was a preferable direction of the electr…
REAPOWER – USE OF DESALINATION BRINE FOR POWER PRODUCTION THROUGH REVERSE ELECTRODIALYSIS
Salinity gradient power (SGP) represents a viable renewable energy source associated with the mixing of two solutions of different salinities. Reverse electrodialysis (SGP-RE or RED) is a promising technology to exploit this energy source and directly generate electricity. However, although the principle of this technology is well known since several years, further R&D efforts are still necessary in order to explore the real potential of the SGP-RE process. With this regard, the aim of the REAPower project ( [GRAPHICS] ) is the development of an innovative system for power production by SGP-RE process, using sea (or brackish) water as a diluted solution and brine as a concentrate. The use o…
Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications
Abstract Reverse Electrodialysis (RED) in a closed-loop arrangement is a viable way to convert low-grade heat into electric power. The present work experimentally investigates the use of pure salt- and equimolar two salts-water solutions as feeds in a lab-scale RED unit. RED performances were analysed in terms of Open Circuit Voltage (OCV), stack resistance and corrected power density. The pure salts and the mixtures employed were chosen via a computational analysis. Effect of feed solution velocity and concentration was investigated. Results concerning the pure salt-water experiments show that NH4Cl is the most performing salt in the concentration range probed, while higher power density v…
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically compl…
Thermodynamic, Exergy, and Thermoeconomic analysis of Multiple Effect Distillation Processes
Abstract Multiple effect distillation (MED) is nowadays the preferred technology for the construction of new plants based on thermal processes in the growing desalination market. MED technology, in fact, presents a number of advantages with respect to the more traditional multistage flash technology, among all the lower energy consumption achievable in MED plants. However, a large potential for improvement in terms of lowering production costs still exists, which stimulates further efforts on process optimization from companies and researchers involved in the field. Thermodynamic and exergy analysis provides useful insights regarding the identification of main inefficiencies and the margins…
Operational analysis of a novel reactive crystallizer for the production of Magnesium Hydroxide from waste brines
Techno-economic assessment of multi-effect distillation process for the treatment and recycling of ion exchange resin spent brines
Abstract A treatment chain including nanofiltration, crystallization and multi-effect distillation (MED) is for the first time proposed for the treatment of an effluent produced during the regeneration of Ion Exchange resins employed for water softening. The goal is to recover the minerals and to restore the regenerant solution to be reused in the next regeneration cycle. MED is the most crucial unit of the treatment chain from an economic point of view. A techno-economic analysis on the MED unit was performed and a novel performance indicator, named Levelized Brine Cost, was introduced as a measure of the economic feasibility of the process. Different scenarios were analysed, assuming diff…
Reverse Electrodialysis Process: Analysis of Optimal Conditions for Process Scale-up
Reverse Electrodialysis (SGP-RE or RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (i.e salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the SGP-RE unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), the process simu…
Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at a…
On the modelling of an Acid/Base Flow battery: an innovative electrical energy storage device based on pH and salinity gradients
The Acid/Base Flow Battery (AB-FB) is an innovative and sustainable way to store electric energy. It can theoretically guarantee an energy density of about 11 kWh/m3, which is higher than that provided by pumped hydropower, osmotic energy storage and compressed air. The AB-FB stores energy as pH and salinity gradients by employing a stack provided with (i) channels, hosting the solutions at difference pH and concentrations, separated by (ii) monopolar and bipolar ion exchange membranes. Two different membrane processes are involved: the Bipolar Membrane Electrodialysis (ED-BM) as charging step and its opposite, Bipolar Membrane Reverse Electrodialysis (RED-BM) as discharging step. The prese…
A novel fluid-structure 2D modelling tool for the assessment of membrane deformation effects on electrodialysis units performances
Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance
Particle suspension in liquids is a unit operation commonly encountered in the process industry. Although it is usually carried out in baffled stirred tanks, there are some specific applications where the presence of baffles may be undesirable. In the present work solid-liquid suspensions are investigated in a radially stirred unbaffled tank provided with a top cover. The minimum impeller speed at which all solid particles get suspended (Njs) and the relevant power requirements (Pjs) are assessed. The dependence of these two parameters on physical properties (liquid viscosity, particle concentration, and size) and system geometrical configurations (impeller diameter and clearance) is invest…
Optimisation analysis of Reverse Electrodialysis systems for power production from concentrated brines
Reverse Electrodialysis (RED) is rapidly growing as technology to produce electric energy by mixing saline solutions with different salinity. Recent developments have shown promising results on real site installations, demonstrating the feasibility of the RED process on the pilot scale. Therefore, further modelling efforts are now needed to optimise the technology, in order to enhance the performance. In this work, an optimisation study for the RED process is presented, taking into account saline waters and concentrated brine as feed streams. The model, which is developed within GAMS environment, predicts the optimal set of process variables that maximise the process yield, as well as the g…
Valorization of surface-water RO brines via Assisted-Reverse Electrodialysis for minerals recovery: performance analysis and scale-up perspectives
Reverse Osmosis (RO) plays a key role in seawater and brackish water desalination to fulfill the growing demand for fresh water. In recent years, RO has also been more and more adopted for the treatment and potabilization of surface waters, leading to two main problems: (i) the depletion in minerals of the product water, making it aggressive and unsuitable for drinking purposes and (ii) the production of a concentrated brine requiring proper disposal. Permeate remineralization post-treatments include pH adjustment and addition of minerals, such as bicarbonates, calcium and magnesium, which are essential for human health and required to meet drinking water guidelines. However, such solutions…
Simulation-based design of a bipolar membranes electrodialysis unit for chemicals production from brines
Nowadays environmental concerns are modifying the production and consumption patterns used so far. An important objective to improve our society is the use of sustainable processes that can reduce industrial waste streams. Bipolar membranes electrodialysis (EDBM) is an emerging environmentally friendly process that could be easily integrated into a circular economy approach to valorize waste brines. It is an electro-membrane process that allows the production of chemicals using only water, electrical energy and a salty solution. When electric current is applied to the electrodes of the EDBM stack, water dissociation takes place in the bipolar membranes. Therefore, the ions from water are co…
Pressure Retarded Osmosis: a Membrane Process for Environmental Sustainability
Salinity Gradient Power (SGP) based on the controlled mixing between two solutions at different salinities is a viable alternative to produce power from renewable sources. Pressure Retarded Osmosis (PRO) is one of the most promising technologies proposed so far for the exploitation of such energy source. Apart from the typical source of salinity gradients, namely river water and seawater, more and more interest has been raised recently towards the use of non-conventional saline solutions. In this work, water originating from a sewage treatment plant is used as the dilute solution (feed solution), while brine exiting from a desalination plant is used as the concentrate (draw solution), thus …
Modelling the Reverse ElectroDialysis process with seawater and concentrated brines
Technologies for the exploitation of renewable energies have been dramatically increasing in number, complexity and type of source adopted. Among the others, the use of saline gradient power is one of the latest emerging possibilities, related to the use of the osmotic/chemical potential energy of concentrated saline solutions. Nowadays, the fate of this renewable energy source is intrinsically linked to the development of the pressure retarded osmosis and reverse electrodialysis technologies. In the latter, the different concentrations of two saline solutions is used as a driving force for the direct production of electricity within a stack very similar to the conventional electrodialysis …
A simulation tool for ion exchange membrane crystallization of magnesium hydroxide from waste brine
Abstract Increasing attention is nowadays paid to the management and valorisation of industrial waste brines aiming also at the recovery of raw materials. Magnesium has been listed as a Critical Raw Material by EU, prompting researchers to investigate novel routes for its recovery. Within this framework, a novel Crystallizer with Ion Exchange Membrane (CrIEM), is proposed as an innovative way to recover magnesium from industrial waste brines exploiting low-cost alkaline reactants. In the present work, a novel mathematical model of the CrIEM process is proposed to provide a useful tool for its design in different working conditions. Batch and feed & bleed continuous configurations have been …
Desalination of oilfield produced waters via reverse electrodialysis: A techno-economical assessment
Produced waters (PWs) are oilfield waste streams rich in minerals and hydrocarbons whose production rate is largely increased in last decades following the corresponding increase of energy demand. The high salinity level of PWs inhibits the adoption of cheap biological treatments. Also, desalination techniques based on osmotic membranes would require severe pre-treatments. As an alternative, Reverse ElectroDialysis (RED) and Assisted Reverse ElectroDialysis (ARED) are here proposed for the first time to reduce the salinity level of PWs. RED may also guarantee an operation cost reduction thanks to its energy generation. An ad-hoc model for RED and ARED is here developed in order to deal suit…
Reverse electrodialysis heat engine (REDHE)
Abstract Reverse electrodialysis (RED) is a membrane technology for the production of electricity via the “controlled mixing” of solutions at different salt concentrations, i.e., a diluted solution and a concentrated solution. The presence of ion-exchange membranes (IEMs) allows the production of renewable energy by converting the salinity gradient, which would be dissipated during a spontaneous (i.e., uncontrolled) mixing process, into an ionic current and, in a second step, into electricity at the electrodes. RED is the inverse process of the well-known electrodialysis process for salty water desalination, in which an electric field is applied at the electrodes and ionic currents are gene…
A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines
A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without …
Performance comparison between overlapped and woven spacers for membrane distillation
The sustainable production of freshwater from seawater desalination is receiving increasing attention. Recently, some desalination technologies are taking advantage from the coupling with renewable resources; among them, membrane distillation (MD) is one of the most promising since it can be easily powered by low-grade thermal energy. MD being an emerging technology, efforts are required to optimize geometry and operating conditions of real units in order to reduce the unitary freshwater production cost. In particular, temperature polarization is a well-known detrimental effect for the process driving force; spacers are traditionally used to enhance mixing and make temperature boundary laye…
Power Production from Produced Waters via Reverse Electrodialysis: A Preliminary Assessment
Wastewaters generated by crude oil extraction processes, called “produced waters” (PWs), are complex solutions that contain organic compounds, mainly hydrocarbons, and often exhibit high salinity. The large amounts of PWs represent a global issue because of their environmental impact. An approach widely used in the oil industry is the reinjection of this wastewater into the extraction wells after a suitable treatment. The high salt concentration of such solutions may be used in salinity gradient technologies to produce green electricity. Among these technologies, reverse electrodialysis (RED) is one of the most promising. In this work, the application of RED for energy generatio…
Reverse electrodialysis: Applications
Reverse electrodialysis (RED) technology has grown significantly in the last decade, gaining a fast increase in its technology readiness level and presenting some interesting examples of RED pilot systems operating under very different real environments. In this chapter, an overview of technological developments and piloting examples are reported. In particular, a short introduction is given on the historical trend of RED technology growth, followed by a careful analysis of which feed solutions can be adopted and how these can affect the process performance, potentials, and applications. Most prominent fluid dynamics aspects for the RED process are presented, highlighting how these can infl…
Acid and alkaline production from multi-ionic brines via Electrodialysis with Bipolar Membranes
In recent years, a great attention has grown towards the brine valorization through chemicals production and mineral recovery as an alternative to conventional disposal. Electrodialysis with Bipolar Membranes (EDBM) is an emerging process that can be used for the production of alkaline and acidic solutions from salt solutions. Within the SEArcularMINE project framework, the exploitation of saltworks bitterns (highly concentrated solutions generated during the sea-salt production process) is proposed for minerals recovery and NaOH and HCl solutions production. In this work, an EDBM unit, equipped with commercial ion exchange membranes, was tested for the first time in closed-loop mode with: …
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall syste…
Analisi numerica degli effetti della deformazione di membrane a scambio ionico sulla distribuzione dei fluidi in canali di Elettrodialisi
L’elettrodialisi (ED) è una promettente tecnologia a membrana utilizzata in diversi campi, ad esempio nella dissalazione delle acque e nell’industria alimentare. L’ED usa un potenziale elettrico per indurre una migrazione selettiva di cationi ed anioni da una soluzione elettrolitica ad un’altra, sfruttando membrane a scambio ionico. Membrane anioniche e cationiche sono alternativamente collocate all’interno di una unità ED. A queste sono solitamente interposti spaziatori che prevengono il contatto tra le membrane e delineano i canali in cui scorrono le soluzioni. L’utilizzo di membrane profilate consente di costruire unità prive di tradizionali spaziatori a rete non conduttivi. In genere, l…
CFD modelling of thin channels for direct and reverse electrodialysis
Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions
Magnesium is a raw material of great importance, which attracted increasing interest in the last years. A promising route is to recover magnesium in the form of Magnesium Hydroxide via precipitation from highly concentrated Mg2+ resources, e.g. industrial or natural brines and bitterns. Several production methods and characterization procedures have been presented in the literature reporting a broad variety of Mg(OH)2 particle sizes. In the present work, a detailed experimental investigation is aiming to shed light on the characteristics of produced Mg(OH)2 particles and their dependence upon the reacting conditions. To this purpose, two T-shaped mixers were employed to tune and control the…
Modelling Turbulent Inter-Phase Drag in Mechanically Stirred Solid-Liquid Suspensions
REATTORE E PROCEDIMENTO PER EFFETTUARE REAZIONI SELETTIVE
La presente invenzione riguarda un reattore e un procedimento per eseguire processi di cristallizzazione reattiva con elevata selettività, consentendo di evitare la miscelazione diretta tra le due soluzioni contenenti i reagenti della reazione e di minimizzare l’effetto di reazioni secondarie indesiderate. Per brevità, nel testo seguente tale reattore e procedimento verrà indicato con l’acronimo CrIEM (Crystalliser with Ion Exchange Membrane).
Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications
Abstract The need for unconventional sources of fresh water is pushing a fast development of desalination technologies, which proved to be able to face and solve the problem of water scarcity in many dry areas of the planet. Membrane desalination technologies are nowadays leading the market and, among these, electrodialysis (ED) plays an important role, especially for brackish water desalination, thanks to its robustness, extreme flexibility and broad range of applications. In fact, many ED-related processes have been presented, based on the use of Ion Exchange Membranes (IEMs), which are significantly boosting the development of ED-related technologies. This paper presents the fundamentals…
CFD simulations of dense sloid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves
Mixing of solid particles into liquids within contactors mechanically agitated by stirrers is a topic of primary importance for several industrial applications. A great research effort has been devoted to the assessment of the minimum impeller speed (Njs) able to guarantee the suspension of all particles. Conversely, only little attention has been paid so far to the evaluation of the amount of solid particles that are suspended at impeller speeds lower than Njs. In some cases the loss in available interfacial area between particles and liquid could be reasonably counterbalanced by a decreased mechanical power, making it of interest to evaluate the percentage of suspended solids at different…
Production of acidic and alkaline solutions via Electrodialysis with bipolar membranes from synthetic and real brines from saltworks
1. Introduction In recent decades, there has been a great deal of interest at both the industrial and academic levels in identifying unconventional sources for chemical production and raw material recovery. In this context, brine disposal, which was previously addressed as a priority to reduce environmental problems, is now seen as an opportunity to apply new or existing technologies in circular processes that allow for the valorization of previously considered waste solutions [1]. In this regard, Electrodialysis with bipolar membranes (EDBM) can be used to produce acidic and alkaline solutions from salty solutions. EDBM is an electro-membrane process distinguished by the alternated positio…
Electromembrane Processes: Experiments and Modelling
The increasing demand for water and energy poses technological challenges to the implementation of efficient concepts for a sustainable development. In this perspective, electromembrane processes (EMPs) can play a crucial role in green chemistry schemes oriented towards circular economy approaches and renewable energy systems. EMPs are based on the use of ion-exchange membranes under the action of an electric field. Versatility, selectivity, high recovery, and chemical-free operations are their main strengths. Experimental campaigns and modelling tools are prompting the improvement of consolidated processes and the development of novel concepts. Several application fields have been proposed…