0000000000956820
AUTHOR
Ari Jokinen
β-decay of 35Ca
Abstract The β-decay of the T z =− 5 2 nucleus 35 Ca was studied at the LISE3 spectrometer at GANIL. The 35 Ca decay scheme was deduced from its β-delayed proton emission into the ground and excited states of 34 Ar and from its β-delayed two-proton emission. The 35 Ca half-life was determined to be 25.7±0.2 ms. The measured transition strength function B(GT) is compared to results obtained from large-scale sd-shell model calculations.
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…
Total absorption γ -ray spectroscopy of niobium isomers
15 pags. 17 figs., 5 tabs.
Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP
Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \ensuremath1⋅10−8\ensuremath1⋅10−8 with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP. peerReviewed
Direct mass measurements of neutron-rich zirconium isotopes up toZr104
Atomic masses of radioactive zirconium isotopes from {sup 96}Zr to {sup 104}Zr have been measured with a relative accuracy of {<=}5x10{sup -7} using a Penning trap coupled to the ion guide isotope separator on-line system. The obtained two-neutron separation energies show strong local correlation in relation to the shape change and shape coexistence between N=58 and 60.
First on-line laser spectroscopy of radioisotopes of a refractory element
The first fully on-line isotope shift measurement of a radioactive refractory element is reported. Collinear laser-induced fluorescence measurements were made on the radioactive isotopes ${}^{170,172,173,174}\mathrm{Hf}$ produced with a flux of $2--3\ifmmode\times\else\texttimes\fi{}{10}^{3}$ ions per second from an ion-guide fed isotope separator. The method may be applied to all elements and isomers with lifetimes as short as 1 ms. The systematics of the new charge radii measurements are well reproduced by theory, with the maximum deformation in the chain occurring significantly below the midshell.
Proton dripline studies at ISOLDE: 31Ar and 9C
In this contribution examples of the application of new technologies to disentangle the mechanism of $\beta$-delayed multiparticle emission are given. In particular the mechanism of $\beta$2p-emission from $^{31}$Ar has been resolved and proved to be sequential, a preview of $^{9}$C-decay data is discussed.
Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculations
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…
Excited states in Br87 populated in β decay of Se87
First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…
First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb
Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…
Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy
The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…
Status report of the Jyvaskyla ion guide isotope separator on-line facility
The ion guide isotope separator facility IGISOL of the University of Jyvaskyla has been moved to the new K-130 heavy ion cyclotron laboratory. The totally reconstructed facility is described in detail. The primary beams and targets, helium pumping, separator beam line construction and separator beam diagnostics are discussed. The spectroscopy stations are introduced with illustrative examples from the research program, including beta-delayed proton and neutron spectroscopy, gamma-ray spectroscopy with and without arrays, conversion electron spectroscopy, collinear laser spectroscopy and nuclear level lifetime spectroscopy.
Production of refractory elements close to the Z=N line using the ion-guide technique
Production of neutron-deficient isotopes of refractory elements in the A = 80-88 region was studied using the IGISOL technique and the 165 MeV Si-32 + Ni-nat reaction. Radioactive isotopes of Y through Mo could be produced up to the M-T = + 1 line. New information on the decay of the A = 82 and 85 nuclei, including a more detailed decay scheme and more accurate half-life for Y-82, was obtained. (C) 1998 Elsevier Science B.V. All rights reserved.
Relative proton andγwidths of astrophysically important states in30S studied in theβ-delayed decay of31Ar
Resonances just above the proton threshold in S-30 affect the P-29(p, gamma)S-30 reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in S-30. The widths are determined from the beta 2p- and beta p gamma-decay of Ar-31, which is produced at the ISOLDE radioactive ion beam facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in S-30 have been found for the first time. A le…
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed
New accurate measurements of neutron emission probabilities for relevant fission products
We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations. peerReviewed
Mirror decay of 75Sr
The β-decay of 75Sr to its mirror nucleus 75Rb was studied at the ISOLDE PSB facility at CERN by means of β-delayed γ and proton spectroscopy. The decay Q-value and β-delayed γ intensity were measured for the first time. These results, 10.60±0.22 MeV and 4.5+1.9 -0.7%, together with accurate measurements of the β-decay half-life and β-delayed proton branching ratio yielded the Gamow-Teller strength 0.35±0.05 for the mirror transition. Implications of the results on studies of deformation effects and on the path of the rapid proton capture process are discussed.
Reevaluation of theP30(p,γ)S31astrophysical reaction rate from a study of theT=1/2mirror nuclei,S31andP31
The $^{30}\mathrm{P}$($p,\ensuremath{\gamma}$)$^{31}\mathrm{S}$ reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$n$) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$p$) reactions, respectively, at a beam energy of 32 MeV, and their resulting $\ensuremath{\gamma}$decay was detected with the Gammasphere array. Around half the relevant proton unbound states …
Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP : Reduced Neutron Pairing and Implications for r-Process Calculations
The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. Nd158, Pm160, Sm162, and Gd164-166 have been measured for the first time, and the precisions for Nd156, Pm158, Eu162,163, Gd163, and Tb164 have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2n and neutron pairing energy metrics Dn. The data do not support the existence of…
High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32
Mass Measurement on the rp-Process Waiting Point 72Kr
The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.
Study of the β decay of fission products with the DTAS detector
Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed
Production of neutron deficient rare isotope beams at IGISOL; on-line and off-line studies
This article reports on recent on-line yield measurements employing the light-ion and heavy-ion reaction-based ion guide systems and new results on a-recoil ion transport properties in ion guides with and without electric fields. In addition, the presently used ion guide designs for fusion evaporation reactions are introduced. The present study investigated different schemes for ion extraction from the gas cell. The addition of an extra ring electrode between the traditional skimmer electrode and the exit hole led to transmission independent of the primary beam intensity as opposed to strong intensity dependence observed earlier with the plain skimmer only. Furthermore, the mass resolving p…
Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96
The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…
Total absorption study of the \beta decay of 102,104,105Tc
The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed
Experimental studies at JYFLTRAP
JYFLTRAP is a Penning trap system at the accelerator laboratory in Jyvaskyla, Finland that enables high-precision experiments with stored, exotic species that are produced at the IGISOL facility. On one hand, these can be performed within the trap itself, like e.g. mass spectrometry. On the other hand, the trap can be used to provide the highly purified species for further experiments, e.g. for trap-assisted nuclear decay spectroscopy. This contribution focuses on these two possible applications with the presentation of some recent results on superallowed beta decays.
Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88
Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…
A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR
The GEM-TPC [1] described herein will be part of the standard beam-diagnostics equipment of the Super-FRS [2] . This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z=1 up to Z=92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs o…
Twin GEM-TPC prototype (HGB4) beam test at GSI and Jyväskylä : a development for the Super-FRS at FAIR
The FAIR[1] facility is an international accelerator centre for research with ion and antiproton beams. It is being built at Darmstadt, Germany as an extension to the current GSI research institute. One major part of the facility will be the Super-FRS[2] separator, which will be include in phase one of the project construction. The NUSTAR experiments will benefit from the Super-FRS, which will deliver an unprecedented range of radioactive ion beams (RIB). These experiments will use beams of different energies and characteristics in three different branches; the high-energy which utilizes the RIB at relativistic energies 300-1500 MeV/u as created in the production process, the low-energy bra…
Signatures of oblate deformation in the ^{111}Tc nucleus
Monoisotopic samples of exotic, neutron-rich ${}^{111}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL3 isotope separator, coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{111}$Tc. New excited levels in ${}^{111}$Tc populated in ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of ${}^{111}$Mo provide the first indication for an oblate deformation in the mass $A\ensuremath{\approx}110$ region. The wide spin range of levels populated in ${}^{111}$Tc following the decay of ${}^{111}$Mo indicates the existence of two $\ensuremath{\beta}$-decaying levels in ${…
Precision experiments on exotic nuclei at IGISOL
Abstract Cooling and trapping techniques of low-energy radioactive ion beams of refractory elements employed at the IGISOL facility are presented with emphasis on high-precision measurements of the ground state properties of exotic nuclei. The impact of the new generation Paul and Penning traps on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters and neutron-rich nuclei. As a new concept the trap-assisted spectroscopy of radioactive ions is presented with applications in collinear laser spectroscopy, decay spectroscopy of isobarically purified sources and in nuclear cross-section measurements by ion counting.
Beta decay of $^{56}$Cu
AbstractThe proton-rich isotope 56 Cu was produced at the GSI On-Line Mass Separator by means ofthe 28 Si( 32 S, p3n) fusion–evaporation reaction. Its β -decay properties were studied by detecting β -delayed γ rays and protons. A half-life of 93± 3 ms was determined for 56 Cu. Compared to theprevious work, six new γ rays and three new levels were assigned to the daughter nucleus 56 Ni. Themeasured Gamow–Teller strength values for five 56 Ni levels are compared toshell-model predictions. 2001 Elsevier Science B.V. All rights reserved. PACS: 21.10.-k; 23.40.-s; 21.60.Cs; 27.40.+zKeywords: R ADIOACTIVITY 56 Cu ( β + ) [from 28 Si( 32 S, p3n)]; Measured E γ , I ; Deduced β -intensity and β -st…
Characterization of a neutron–beta counting system with beta-delayed neutron emitters
A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a selftriggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accura…
Mass ofAl23for testing the isobaric multiplet mass equation
The mass excess of the proton-rich nucleus $^{23}\mathrm{Al}$ has been measured with the JYFLTRAP Penning trap setup. As a result of our experiment we obtain a mass excess of 6748.07(34) keV, and by combining the value to existing experimental data we have tested the validity of the isobaric multiplet mass equation $(\mathrm{IMME})$ for the $T=3/2$ quartet in the $A=23$ isobar. The fit to the IMME results in a vanishing cubic term equivalent to zero with high precision [$0.22(42)$ keV].
Smallest KnownQValue of Any Nuclear Decay: The Rareβ−Decay ofIn115(9/2+)→Sn115(3/2+)
The ground-state-to-ground-state Q_{beta;{-}} value of ;{115}In was determined to 497.68(17) keV using a high-precision Penning trap facility at the University of Jyvaskyla, Finland. From this, a Q_{beta;{-}} value of 0.35(17) keV was obtained for the rare beta;{-} decay to the first excited state of ;{115}Sn at 497.334(22) keV. The partial half-life was determined to 4.1(6) x 10;{20} yr using ultra low-background gamma-ray spectrometry in an underground laboratory. Theoretical modeling of this 2nd-forbidden unique beta;{-} transition was also undertaken and resulted in Q_{beta;{-}} = 57_{-12};{+19} eV using the measured half-life. The discrepancy between theory and experiment could be attr…
Discovery of an Exceptionally Strong β -Decay Transition of F20 and Implications for the Fate of Intermediate-Mass Stars
A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupte…
Towards commissioning the new IGISOL-4 facility
Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…
Electron capture on116In and implications for nuclear structure related to double-βdecay
The electron capture decay branch of ${}^{116}$In has been measured to be $[2.46\ifmmode\pm\else\textpm\fi{}0.44(\mathrm{stat}.)\ifmmode\pm\else\textpm\fi{}0.39(\mathrm{syst}.)]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the $(p,n)$ charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclear-structure calculations of the matrix element for the neutrinoless double-$\ensuremath{\beta}$ decay of ${}^{116}$Cd and other nuclides.
Collective structure of the neutron-rich nuclei, 110Ru and 112Ru
Abstract The collective structure of 110 Ru and 112 Ru has been studied at the IGISOL facility through the beta decay of 110 Tc and 112 Tc. Neutron-rich technetium isotopes were produced by the 238 U(p, f) reaction at 20 MeV bombarding energy. The new isotope 112 Tc was found to decay with a half-life of 280(30) ms. The observed energies of the 2 + and 4 + ground state band levels in 108,110,112 Ru are almost the same. However, a steady energy decrease of the proposed gamma band head is observed with increasing neutron number, suggesting importance of triaxiality in these nuclei. In fact, only in 192 Os the second 2 + state has been observed at lower excitation than in 112 Ru. The static de…
Precision mass measurements of neutron-rich Tc, Ru, Rh, and Pd isotopes
The masses of neutron-rich $^{106\ensuremath{-}112}\mathrm{Tc}$, $^{106\ensuremath{-}115}\mathrm{Ru}$, $^{108\ensuremath{-}118}\mathrm{Rh}$, and $^{112\ensuremath{-}120}\mathrm{Pd}$ produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. The measured isotopic chains include a number of previously unmeasured nuclei. Typical precisions on the order of 10 keV or better were achieved, representing a factor of 10 improvement over earlier data. In many cases, significant deviations from the earlier measurements were found. The obtained data set of 39 masses is compared with different mass predictions and analyzed for global trends in the nuclear…
High-Precision Proton-Capture Q Values for 25Al(p,γ)26Si and 30P(p,γ)31Si
The masses of astrophysically relevant nuclei, 25Al and 30P, have recently been measured with the JYFLTRAP double Penning trap at the new IGISOL-4 facility at the University of Jyväskylä. Unparalleled precisions of 63 and 64 eV were achieved for the 25Al and 30P masses, respectively. The proton-capture Q values for 25Al(p, γ)26Si and 30P(p, γ)31S were also determined, and their precisions improved by a factor of 4 and 2, respectively, in comparison with AME12. The impact of the more precise values on the resonant proton-capture rate has also been studied. peerReviewed
Developments for neutron-induced fission at IGISOL-4
At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at di↵erent angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with prelimi…
Development of a laser ion source at IGISOL
FURIOS, the Fast Universal laser IOn Source, is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaskyla, Finland. This new laser ion source will combine a state-of-the-art solid state laser system together with a dye laser system, for the selective and efficient production of exotic radioactive species without compromising the universality and fast release inherent in the IGISOL system. The motivation for, and development of, this ion source is discussed in relation to the programme of research ongoing at this mass separator facility.
Isotope shifts in natural cerium
High resolution crossed beam resonance fluorescence laser spectroscopy has been performed on an atomic beam of naturally occurring cerium, and isotope shifts have been measured in several transitions. Changes in mean square charge radius, δ〈r 2〉, have been extracted using the King plot technique and show the characteristic increase at the N = 82 neutron shell closure. The measurements form the basis for further investigations of radioactive isotopes and isomers on both sides of the shell closure.
Super-Allowed β Decay of23Mg Studied with a High-Precision Germanium Detector
Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …
On-line laser spectroscopy of refractory radioisotopes at the JYFL IGISOL facility
A major objective of the laser-IGISOL program has been realized with the first ever on-line observation of collinear laser induced fluorescence from an ion of a refractory element. The measurements demonstrate that the IGISOL can be operated in a mode that produces ion beams of good emittance with reasonable extraction efficiency. The technique has been used to study the neutron-deficient Hf isotopes.
Ion beam coolers in nuclear physics
Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a …
First mass measurement at JYFLTRAP
The first mass measurements at JYFLTRAP facility are reviewed. Those are also first ever direct mass measurements of the heaviest Zr-isotopes. Results are compared to atomic mass evaluation data and the recent calculations. The first TOF-resonances from high-precision trap and an implication to high-precision mass measurements are discussed.
High-precision mass measurement of $^{168}$Yb for verification of nonlinear isotope shift
The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract possible signatures of beyond standard model physics from high-precision isotope shift measurements of Yb atomic transition frequencies. The measured mass-excess value, ME($^{168}$Yb) = $-$61579.846(94) keV, is 12 times more precise and deviates from the Atomic Mass Evaluation 2016 value by 1.7$\sigma$. The impact on precision isotope shift studies of the stable Yb isotopes is discussed.
A new isomer in 125La
Levels in 125La have been studied via β+/EC decay of on-line mass-separated 125Ce using the HIGISOL technique. A new (390 ± 40) ms isomer is definitely attributed to 125La by conversion electron measurements of the 107 keV E3 isomeric transition.
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95
The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…
High-precision measurement of the mass difference between 102Pd and 102Ru
The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyväskylä. Th…
Multiparticle emission in the decay ofAr31
A multihit capacity setup was used to study the decay of the dripline nucleus Ar-31, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the beta-delayed three-proton decay of Ar-31 is presented for the first time together with a quantitative analysis of the beta-delayed 2p gamma decay. A new method for determination of the spin of low-lying levels in the beta p daughter 30S using proton-proton angular correlations is presented and used to determine that the spin of the 5.2-MeV level is most likely 3(+) with 4(+) also possible. The half-life of Ar-31 is found to be 15.1(3) ms. An improved analysis of the Fermi beta strength including the beta 3p-decay mode gives a total mea…
Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb
The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…
Beam cooler for low-energy radioactive ions
Abstract An ion beam cooler for mass-separated radioactive ion beams has been developed and tested at the IGISOL-type mass separator facility. Technical description and characteristic properties are presented. An energy spread below 1 eV and transmission efficiency of 60% were measured.
On the resonant neutrinoless double-electron-capture decay of ^{136}Ce
Abstract The double-electron-capture Q value for the 136Ce decay to 136Ba has been determined at JYFLTRAP. The measured value 2378.53(27) keV excludes the energy degeneracy with the 0 + excited state of the decay daughter 136Ba at 2315.32(7) keV in a resonant 0 ν ECEC decay by 11.67 keV. The new Q value differs from the old adopted value 2419(13) keV (Atomic Mass Evaluation 2003) by 40 keV and is 50 times more precise. Our calculations show that the precise Q value renders the resonant 0 ν ECEC decay of 136Ce undetectable by the future underground detectors. We measured also the double-β decay Q value of 136Xe to be 2457.86(48) keV which agrees well with the value 2457.83(37) keV measured a…
Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons
In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…
Determination of β -decay ground state feeding of nuclei of importance for reactor applications
12 pags., 6 figs., 3 tabs.
β-delayed neutron decay of 104Y, 112Tc, 113Tc and 114Tc: test of half-life predictions for neutron-rich isotopes of refractory elements
Abstract Beta-decay gross properties of neutron-rich isotopes 104Y and 112,113,114Tc produced in 25 MeV proton-induced fission of 238U have been measured. Decays of 104Y with a half-life of 180±60 ms and of 114Tc with a half-life of 150±30 ms are reported for the first time. Beta-delayed neutron emission probabilities of 112,113,114Tc are determined as (1.5±0.2)%, (2.1±0.3)% and (1.3±0.4)%, respectively. Comparison of the observed Pn values with a recent theoretical calculation based on deformed quasiparticle random phase approximation (QRPA) shows good overall agreement for Tc isotopes. However, comparison of beta-decay half-lives of neutron-rich isotopes of Y to Rh with the QRPA model and…
Intruder features in the island of inversion: The case of33Mg
The Na-33 beta decay was studied online using mass separation techniques and a first description of the level structure of the neutron-rich isotope Mg-33, with N=21, has been obtained. The experiment involved the measurement of beta-gamma, beta-gamma-gamma, and beta -n-gamma coincidences as well as neutron spectra by time-of-flight technique. The first low energy level scheme for the daughter nucleus Mg-33 is given with five bound states. Spin and parity assignments are proposed according to beta feedings and gamma -ray multipolarities, beta -strength distribution is evaluated, taking into account 1n- and 2n-emission channels and it is compared with the calculated GT strength distribution. …
Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of 238U and 232Th
Abstract Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of 238U and 232Th have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of 238U and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of 238U have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the …
Mass measurements in the vicinity of the doubly magic waiting pointNi56
Masses of $^{56,57}\mathrm{Fe}$, $^{53}\mathrm{Co}$${}^{m}$, $^{53,56}\mathrm{Co}$, $^{55,56,57}\mathrm{Ni}$, $^{57,58}\mathrm{Cu}$, and $^{59,60}\mathrm{Zn}$ have been determined with the JYFLTRAP Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility with a precision of $\ensuremath{\delta}m/m\ensuremath{\leqslant}3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$. The ${Q}_{\mathrm{EC}}$ values for $^{53}\mathrm{Co}$, $^{55}\mathrm{Ni}$, $^{56}\mathrm{Ni}$, $^{57}\mathrm{Cu}$, $^{58}\mathrm{Cu}$, and $^{59}\mathrm{Zn}$ have been measured directly with a typical precision of better than $0.7 \mathrm{keV}$ and Coulomb displacement energies have been dete…
Neutron and fragment yields in proton-induced fission of 238U at intermediate energies
The primary fission fragment mass and kinetic energy distributions, and neutron multiplicities as function of fragment mass have been measured in the proton-induced fission of 238 U at energies Ep ¼ 20, 35, 50 and 60 MeV using time-of-flight technique. Pre-scission and post-scission neutron multiplicities have been extracted from double differential distributions. The fragment mass dependence of the post-scission neutron multiplicities reveals the gross nuclear shell structure effect even at the higher proton energies we measured. The yields ofneutron-rich fission products in the fission of 238 U by 25 MeV protons were measured using an ion guide-based isotope separator technique. The resul…
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
High-precision mass measurements for the isobaric multiplet mass equation atA= 52
Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…
Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates
J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
High-precision measurement of the mass difference between 102Pd and 102Ru
Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…
Laser spectroscopy with an electrostatic ConeTrap
A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10−6 …
The $\beta$-delayed one- and two-proton emission of $^{27}$S
In an experiment performed at the GANIL LISE3 facility, radioactive 27S isotopes have been produced by projectile fragmentation of a 95 AMeV 36Ar primary beam. After selection by means of the LISE3 separator, the isotope of interest was implanted in a silicon-detector telescope where its half-life ( T 1/2 = 15.5(15) ms) and its main decay branches were measured.
The 1+→0+ Gamow–Teller strength of the 58Cug.s.→58Nig.s. transition
The ground-state branch in the beta decay of Cu-58 has been remeasured by using gamma-ray detection combined with ion-guide-based on-line mass separation. The measured value 80.8(7)% is three times more precise and in agreement with the earlier reported value. The deduced Gamow-Teller strength of this transition, to be used for the calibration of the charge-exchange reactions, is 0.0821(7). (C) 2001 Elsevier Science B.V. All rights reserved.
Beta decay of $^{61}$Ga
The β decay of 61Ga to its mirror nucleus 61Zn has been measured for the first time by using on-line mass separation and β-delayed gamma-ray spectroscopy. The observed decay strength to the ground state implies superallowed character in accordance with the systematics of the mirror decays in the sd and fp shell. The β feedings observed to four excited states in 61Zn are consistent with earlier spin-parity assignments based on in-beam experiments. The ground-state spin and parity for 61Ga were determined to be 3/2−.
New lifetime measurements inPd109and the onset of deformation atN=60
Several new subnanosecond lifetimes were measured in Pd-109 using the fast-timing beta gamma gamma (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in Pd-109 populated following beta decay of Rh-109. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2(+) states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a s…
Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates
Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…
Accurate Q value for the 74Se double-electron-capture decay
Abstract The Q value of the neutrinoless double-electron-capture ( 0 ν ECEC ) decay of 74Se was measured by using the JYFLTRAP Penning trap. The determined value is 1209.169(49) keV, which practically excludes the possibility of a complete energy degeneracy with the second 2 + state (1204.205(7) keV) of 74Ge in a resonant 0 ν ECEC decay. We have also computed the associated nuclear matrix element by using a microscopic nuclear model with realistic two-nucleon interactions. The computed matrix element is found to be quite small. The failure of the resonant condition, combined with the small nuclear matrix element and needed p-wave capture, suppresses the decay rate strongly and thus excludes…
Precision Ga71–Ge71 mass-difference measurement
Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…
Neutron configurations in 113Pd
Excited states in 113Pd, populated in β− decay of 113Rh and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy at the IGISOL facility of Jyvaskylä University and using large arrays of Ge detectors (Eurogam2 and Gammasphere, respectively). The position of the 11/2− yrast excitation in 113Pd, proposed recently at 166.1 keV by other authors, has been corrected to 98.9 keV. The decay of this level has been discussed to explain the observed transition intensities. The 7/2− member of the yrast, unique-parity configuration has been identified at 84.9 keV and a band on top of this level proposed. On top of the 1/2+, first excited state a band has been built and …
Spectroscopy of34,35Sibyβdecay:sd−fpshell gap and single-particle states
Excited states in 31S studied via beta decay of 31Cl
The beta decay of 31Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to 31Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in 31S can have an effect on the reaction rate of 30P(p,γ) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in 31S have been measured. No beta-delayed protons from the IAS have been observed. peerReviewed
The JYFLTRAP control and measurement system
The JYFLTRAP setup has been used for precision mass spectrometry since 2003. An essential part of this setup is the computer-controlled system consisting of software and hardware that is required to operate the instruments. The software has been developed solely at JYFL using LabVIEW and C++ development tools. The hardware consists of devices controlled using Control Area Network (CAN) field bus and Ethernet for communication purposes. LAN/GPIB-gateways, modular multichannel ISEG DC power supplies and WAGO I/O systems are also used.
Gamma/neutron competition above the neutron separation energy in delayed neutron emitters
To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.
Precision Mass Measurements beyond $^{132}$Sn: Anomalous behaviour of odd-even staggering of binding energies
Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z>50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.
$Q$-value of the superallowed $\beta$ decay of 62Ga
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.
Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc
Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…
Production of pure samples of 131mXe and 135Xe
Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.
Simulations of the stopping efficiencies of fission ion guides
With the Ion Guide Isotope Separator On-Line (IGISOL) facility, located at the University of Jyväskylä, products of nuclear reactions are separated by mass. The high resolving power of the JYFLTRAP Penning trap, with full separation of individual nuclides, capacitates the study of nuclides far from the line of stability. For the production of neutron-rich medium-heavy nuclides, fissioning of actinides is a feasible reaction. This can be achieved with protons from an in-house accelerator or, alternatively, with neutrons through the addition of a newly developed Be(p,xn)-converter. The hereby-obtained fission products are used in nuclear data measurements, for example fission yields, nuclear …
Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra
International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…
Low-spin excitations in the 109Tc nucleus
Monoisotopic samples of ${}^{109}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{109}$Tc. Spin and parity 5/2${}^{+}$ for the ground state of ${}^{109}$Mo, proposed earlier, are supported in the present work. Three new low-energy levels observed in ${}^{109}$Tc are interpreted as bandheads of the $\ensuremath{\pi}3/{2}^{\ensuremath{-}}$[301], $\ensuremath{\pi}5/{2}^{\ensuremath{-}}$[303], and $\ensuremath{\pi}1/{2}^{+}$[431] configurations, respectively. A further three levels observed around 0.4 Me…
Upgrade and yields of the IGISOL facility
The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…
High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination
The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…
Beta-delayed neutron decay of 33Na
Abstract Beta-delayed neutron decay of 33 Na has been studied using the on-line mass separator ISOLDE. The delayed neutron spectra were measured by time-of-flight technique using fast scintillators. Two main neutron groups at 800(60) and 1020(80) keV were assigned to the 33 Na decay, showing evidence for strong feeding of states at about 4 MeV in 33 Mg. By simultaneous β–γ–n counting the delayed neutron emission probabilities P 1n =47(6)% and P 2n =13(3)% were determined. The half-life value for 33 Na, T 1/2 =8.0(3) ms , was measured by three different techniques, one employing identifying gamma transitions and two employing beta and neutron counting.
A new 400 ms isomer in125Ce→125La
By using the IGISOL technique, adapted for the study of products of heavy ion induced fusion-evaporation reactions, it has been possible to identify a new isomer in the mass chainA=125.
Laser spectroscopy of neutron deficient zirconium isotopes
The first optical measurements of the neutron deficient isotopes, 87-89Zr, and also the two long-lived isomers, 87m,89mZr, have been performed using the new technique of collinear laser spectroscopy of cooled, bunched ion beams. Nuclear mean-square charge radii, spins, magnetic moments and quadrupole moments spanning the N = 50 shell closure are reported. The \"kink\" in the charge radii trends at the neutron shell closure is the most pronounced obsd. for any element in the region. [on SciFinder (R)]
Characterization of a neutron-beta counting system with beta-delayed neutron emitters
Abstract A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β–neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on …
Isomer and decay studies for the rp process at IGISOL
This article reviews the decay studies of neutron-deficient nuclei within the mass region \ensuremathA=56--100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp -process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and is…
Status report of the SARA IGISOL used in the study of the 238U(α 40 MeV, ƒ) reaction
Abstract A new ion guide isotope separator on-line (IGISOL), operating with the SARA facility, has been constructed. Using the 238U(α 40 MeV, ƒ) reaction to produce very neutron-rich radioisotopes, all mass chains from A = 96 to 122 have been scanned by conventional methods of nuclear spectroscopy. Provided the stopping volume is separated from the primary beam, it has been proved that the yield is nearly proportional to the He pressure. In addition to the usual advantages (quasi-independence from physical and chemical properties of elements), this makes IGISOL a powerful technique for high energy recoil products. During the experiments the boundary of known neutron-rich nuclei was reached …
Total absorption γ-ray spectroscopy of beta delayed neutron emitters
Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.
Total absorption spectroscopy of 58Cu decay
The β decay of 58Cu has been studied by means of total absorption γ-ray spectroscopy. The β feeding to the 58Ni states has been measured, and the strength of the 58Cu(1+) →58Ni(0+) Gamow-Teller transition has been determined with improved accuracy.
Isomeric states close to doubly magic $^{132}$Sn studied with JYFLTRAP
The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for $11/2^-$ isomers in $^{121}$Cd, $^{123}$Cd, $^{125}$Cd and $^{133}$Te, for $1/2^-$ isomers in $^{129}$In and $^{131}$In, and for $7^-$ isomers in $^{130}$Sn and $^{134}$Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to $^{132}$Sn. A new excitation energy of 144(4) keV has been determined for $^{123}$Cd$^m$. A good agreement with the precisely known excitation energies of $^{121}$Cd$^m$, $^{130}$Sn$^m$, an…
Structure of 115Ag studied by β− decays of 115Pd and 115mPd
The excited levels of 115Ag have been studied via the beta decay of 115Pd and 115Pdm. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of 115Pdm which was practically unknown before this work. Transition intensities and log10 f t values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of 115Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich silver isotopes, and new spin assignments as well as identificatio…
Nuclear moments, charge radii and spins of the ground and isomeric states in175Yb and177Yb
This paper reports static moments and changes in mean-square charge radii of 175, 177, 177mYb measured using collinear laser spectroscopy at the IGISOL facility. The moments are compared to predictions made using the Nilsson model to determine the purity of the multi-quasiparticle T1/2 = 11.4 s, Iπ = 8− state of 176Yb and the ground state of 177Yb. The ground-state spins of 175, 177Yb and the T1/2 = 6.41 s, E = 331.5 keV isomeric state in 177Yb, have been measured from the hyperfine structure to be 7/2, 9/2 and 1/2 respectively.
High-precision mass measurements of 25Al and 30P at JYFLTRAP
The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…
News on 12C from beta-decay studies
We discuss the importance of the spectroscopic properties of the resonances of 12C just above the 3α-threshold, and review the existing experimental information of this region with emphasis on O+ and 2+ states. A new experimental approach for studying the β-decays of 12B and 12N is presented based on techniques developed in the context of Radioactive beam (rare isotope) physics. Finally preliminary results from an ongoing analysis of two recent experiments are given. © 2004 Published by Elsevier B.V.
Intruder features in the island of inversion : The 33Mg case
The 33 Na β decay was studied online using mass separation techniques and a first description of the level structure of the neutron-rich isotope 33 Mg , with N = 21 , has been obtained. The experiment involved the measurement of β-γ, β-γ-γ, and β − n − γ coincidences as well as neutron spectra by time-of-flight technique. The first low energy level scheme for the daughter nucleus 33 Mg is given with five bound states. Spin and parity assignments are proposed according to β feedings and γ-ray multipolarities. β-strength distribution is evaluated, taking into account 1 n - and 2 n -emission channels and it is compared with the calculated GT strength distribution. In particular, the 1 p − 1 h …
The shape transition in the neutron-rich yttrium isotopes and isomers
Abstract Laser spectroscopy has been used to study 86–90,92–102Y and isomeric states of 87–90,93,96,97,98Y. Nuclear charge radii differences, magnetic dipole and electric quadrupole moments have been obtained. Information on the nature of the Z ≈ 40 , N ≈ 60 sudden onset of deformation has been derived from all three parameters. It is seen that with increasing neutron number from the N = 50 shell closure that the nuclear deformation becomes increasingly oblate and increasingly soft. At N = 60 a transition to a strongly deformed rigid prolate shape occurs but prior to this, although the nuclear deformation is increasing with N, a proportionate increase in softness is also observed.
Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42
The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…
A step further in the A = 33−35, N ≃ 21, island of inversion: the structure of 33Mg
Experimental indications have been found in the seventies for the deformation of neutron-rich A ≃ 32 nuclei [1]. This could be explained by Hartree-Fock calculations, predicting deformed configurations in the ground state of nuclei in the A = 33−35, N ≃ 21 mass region. This exotic region, called the island of inversion [2], knows a renewed interest since it can be now experimentally accessible for detailed studies.
Measurement of fission products β decay properties using a total absorption spectrometer
In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…
R-matrix analysis of theβdecays ofN12andB12
The β decays of 12N and 12B have been studied at KVI and JYFL to resolve the composition of the broad and interfering 0+ and 2+ strengths in the triple-α continuum. For the first time a complete treatment of 3α decay is presented including all major breakup channels. A multilevel, many-channel R-matrix formalism has been developed for the complete description of the breakup in combination with the recently published separate analysis of angular correlations. We find that, in addition to the Hoyle state at 7.65 MeV, more than one 0+ and 2+ state is needed to reproduce the spectra. Broad 03+ and 22+ states are found between 10.5 and 12 MeV in this work. The presence of β strength up to the 12…
Sizeable beta-strength in $^{31}$Ar (β3p) decay
5 pags. ; 7 figs. ; Open Access funded by SCOAP3 - Sponsoring Consortium for Open Access Publishing in Particle Physics
Ground state properties of manganese isotopes across the N=28 shell closure
Abstract The first optical study of the N = 28 shell closure in manganese is reported. Mean-square charge radii and quadrupole moments, obtained for ground and isomeric states in 50–56 Mn, are extracted using new calculations of atomic factors. The charge radii show a well defined shell closure at the magic number. The behaviour of the charge radii is strikingly different to that of the neutron separation energies where no shell effect can be observed. The nuclear parameters can be successfully described by large scale shell model calculations using the GXPF1A interaction.
High-precision mass measurements for the rp-process at JYFLTRAP
The double Penning trap JYFLTRAP at the University of Jyvaskyla has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31 Cl is essential to estimate the waiting point condition of 30 S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31 C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy S p determined from the new mass-excess value confirmed that 30 S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52 Co effects both 51 Fe( p,γ ) 52 C…
Beta-decay half-lives of $^{70}$Kr and $^{74}$Rb
Abstract Beta-decay half-lives of two nuclei close to N = Z line, 70 Kr and 74 Rb, have been measured at the ISOLDE mass-separator facility at CERN. Importance of these half-lives on two ingredients explaining existence and development of the Universe, the astrophysical nucleosynthesis and the Standard Model, are discussed.
Measurement of fission yields and isomeric yield ratios at IGISOL
Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range fr…
Mirror energy differences in theA=31mirror nuclei,S31andP31, and their significance in electromagnetic spin-orbit splitting
Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,n) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,p) reactions, respectively, at a beam energy of 32 MeV. High spin states of positive and negative parity have been observed in $^{31}\mathrm{S}$ for the first time, and the yrast scheme of $^{31}\mathrm{P}$ has been extended. Large mirror energy differences between the first $9/{2}^{\ensuremath{-}}$ and $13/{2}^{\ensuremath{-}}$ states were observed, but only small differences for the first $7/{2}^{\ensuremath{-}}$ and $11/{2}^{\ensuremath{-}}$ levels. The significance of these observations is discussed in relation to the electromag…
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation calculations
The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…
Q values of the 76Ge and 100Mo double-beta decays
Abstract Penning trap measurements using mixed beams of 76Ge–76Se and 100Mo–100Ru have been utilized to determine the double-beta decay Q-values of 76Ge and 100Mo with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value, 2039.006(50) keV. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.
Medium-spin structure of neutron-rich Pd and Cd isotopes
Cadmium isotopes are traditionally considered as good examples of nearly spherical, vibrational nuclei, which can be described by quadrupole vibrators in the collective model, as well as the U(5) dynamical symmetry in the interacting boson model (IBM). However, the shape coexistence of more deformed intruder states originating from proton 2p–4h excitation across the Z = 50 major shell is another interesting structural aspect, whose presence in Pd-isotopes has also been demonstrated [1,2].
Beta decay of neutron-rich 118Rh and the lowest excited states in 118Pd
Beta decay of a refractory isotope 118Rh produced in symmetric fission and mass separated by the ion guide technique has been applied for the study of low-lying excited states of 118Pd. The yrast band in 118Pd has been observed up to a 6+ state and the lowest states of the asymmetric γ-band have been identified. The measured half-life of 118Rh is (300±60)ms. The systematics of the excited states in neutron-rich Pd-isotopes implies the saturation towards an O(6) symmetry at N = 70.
Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU
Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed
Nuclear spin determination of100mY by collinear laser spectroscopy of optically pumped ions
The nuclear spin of the τ1/2 = 0.94 s isomer in 100Y has been determined by collinear laser spectroscopy of optically pumped yttrium fission fragments at the IGISOL facility, JYFL. The isotopes 96, 98, 99, 100Y were produced by the proton-induced fission of natural uranium, and studied on the 4d5s 3D2 (1045 cm−1) → 4d5p 3P1 (32 124 cm−1) transition at 321.67 nm. Enhancement of the population of the metastable 3D2 level was achieved by optically pumping the ground state population via the 5s2 1S0 → 4d5p 1P1 transition at 363.31 nm while the ions were stored in a linear Paul trap. These data, when combined with previous spectroscopic results, give sufficient information for the nuclear spin o…
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complemen…
Structure of115Ag studied byβ−decays of115Pd and115Pdm
The excited levels of ${}^{115}$Ag have been studied via the beta decay of ${}^{115}$Pd and ${}^{115}$Pd${}^{m}$. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of ${}^{115}$Pd${}^{m}$ which was practically unknown before this work. Transition intensities and ${\mathrm{log}}_{10}ft$ values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of ${}^{115}$Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich sil…
Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher.
A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for $^{90,90\text{ }\mathrm{m},91,91\text{ }\mathrm{m},92,93,99,101,103}\mathrm{Nb}$ to cover the region of the $N=50$ shell closure and $N\ensuremath{\approx}60$ sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of $\ensuremath{\beta}$ softness observed …
New insights into triaxiality and shape coexistence from odd-mass Rh109
Rapid shape evolutions near A = 100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z <= 40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutro…
Measurement of the IAS resonance strength in 23Mg
Abstract Beta decay of 23 Al to excited states in 23 Mg has been studied using low-energy proton and high-energy gamma-ray detection combined with ion-guide-based on-line mass separation. For the first time, a T =3/2 isobaric analogue state, at 7801(2) keV, was observed to decay by both proton and gamma emission, with a proton branching of 0.17(8)%. The deduced resonance strength ωγ =2.2(10) meV is in agreement with upper limits reported from 22 Na(p, γ ) reaction studies. Shell-model calculations are incorporated.
Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes
Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm $5s\phantom{\rule{0.16em}{0ex}}^{2}S_{1/2}\ensuremath{\rightarrow}5p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyv\"askyl\"a, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-p…
Candidate superdeformed band in 28Si
Recent antisymmetrized molecular dynamics (AMD) calculations for 28Si suggest the presence of a superdeformed (SD) band with a dominant 24Mg + α clustering for its configuration, with firm predictions for its location and associated moment of inertia. This motivates a review of the experimental results reported in the literature with a particular focus on 24Mg(α,γ ) studies, as well as on α-like heavy-ion transfer reactions such as 12C(20Ne,α) 28Si. Combining this information for the first time leads to a set of candidate SD states whose properties point to their α-cluster structure and strong associated deformation. Analysis of data from Gammasphere allows the electromagnetic decay of thes…
Development of a New Clusterization Method for the GEM-TPC Detector
The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. Th…
Transport of ions in ion guides under flow and diffusion
Abstract A model for ion transport simulations in the ion guide stopping chamber is introduced. Computed transport time distributions are compared to the experimental data obtained in on- and off-line conditions. It is shown that millisecond transport times are feasible and that diffusion of ions is an important mechanism in transport.
Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh
Monoisotopic samples of exotic, neutron-rich 117Rh nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform β and γ coincidence spectroscopy of 117Pd. The spin parity of the ground state of 117Pd was determined to be 1/2+ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity 7/2−. The 117Rh β−-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prolate, oblate, and triaxial nuclear shapes. Some of the β− decays were considered as the allowed Gamow-Teller transitions. The experimental distribution of Gamow-Teller streng…
Precision mass measurements of neutron-rich yttrium and niobium isotopes
Abstract The atomic masses of neutron-rich 95–101 Y and 101–107 Nb produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. Accuracies of better than 10 keV could be reached for most nuclides. The masses of 106,107 Nb were measured for the first time. The energies of the isomeric states in 96 Y and 100 Y were measured as 1541(10) keV and 145(15) keV. The niobium isotopes appear to be systematically less bound than the values given in the latest Atomic Mass Evaluation. The new data lie in a region of the nuclear chart characterised by the transition from spherical to strongly deformed shapes. These structural changes are explored by studying…
Candidate superdeformed band in 28Si
On-Line Ion Cooling and Bunching for Collinear Laser Spectroscopy
A new method has been developed for increasing the sensitivity of collinear laser spectroscopy. The method utilizes an ion-trapping technique in which a continuous low-energy ion beam is cooled and accumulated in a linear Paul trap and subsequently released as a short ( $10--20\ensuremath{\mu}\mathrm{s}$) bunch. In collinear laser measurements the signal-to-noise ratio has been improved by a factor of $2\ifmmode\times\else\texttimes\fi{}{10}^{4}$, allowing spectroscopic measurements to be made with ion-beam fluxes of $\ensuremath{\sim}50\mathrm{ions}{\mathrm{s}}^{\ensuremath{-}1}$. The bunching method has been demonstrated in an on-line isotope shift and hyperfine structure measurement on r…
Trap-assisted studies of odd, neutron-rich isotopes from Tc to Pd
We review the present and future of trap-assisted structure studies of odd, neutron-rich Tc, Ru, Rh and Pd isotopes at the limits of present experimental techniques. These nuclei of refractory elements are produced in light-particle induced fission and filtered by their mass number with the IGISOL mass separator. Further mass separation with the JYFLTRAP Penning trap system provides a clean, monoisotopic beam perfectly suited for precise nuclear spectroscopy. Connecting the IGISOL and the JYFLTRAP facilities to the recently installed MCC30/15 cyclotron opens new prospects for post-trap spectroscopy of very exotic, neutron-rich nuclei. peerReviewed
Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting
Independent isomeric yield ratios (IYR) of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate …
Penning-trap-assisted study of 115Ru beta decay
The beta decay of 115Ru has been studied by means of Penning-trap-assisted beta and gamma spectroscopy at the IGISOL facility. The level scheme of 115Rh has been substantially extended and compared with the level systematics of lighter rhodium isotopes. Tentative candidates for three states of the deformed K = 1/2 band have been suggested. The beta-strength distribution of the beta decay of 115Ru differs from the beta decays of 111, 113, 113mRu isotopes due to non-observation of the 3-quasiparticle states in 115Rh. The decay properties of 115Ru indicate a spin-parity of (3/2+ for its beta-decaying ground state. In addition, possible Nilsson states as well as the shape and spin transitions i…
Beta-decay of light nuclei close to the proton drip-line: 40Ti and 35Ca
The s-decay of40Ti and35Ca have been studied at the LISE3 spectrometer at GANIL. The decay schemes were deduced from the observed s-delayed proton and γ emission of40Ti and35Ca into the ground and first excited states of39Ca and34Ar, respectively. The Gamow-Teller strength functionB(GT) of the40Ti s-decay extracted from the s-decay branching ratios and the precisely measured40Ti half-life, provides for the first time an experimental calibration of the neutrino detection efficiency for the ICARUS solar neutrino detector.
Mass Measurements for the rp Process
One of the key parameters for the reaction network calculations for the rapid proton capture (rp) process, occurring e.g., in type I X-ray bursts, are the masses of the involved nuclei. Nowadays, masses of even rather exotic nuclei can be measured very precisely employing Penning-trap mass spectrometry. With the JYFLTRAP Penning trap at the IGISOL facility, masses of around 100 neutron-deficient nuclei have been determined with a typical precision of a few keV. Most recently, 25Al, 30P, 31Cl, and 52Co have been measured. Of these, the precision of the mass-excess value of 31Cl was improved from 50 to 3.4 keV, and the mass of 52Co was experimentally determined for the first time. The mass of…
Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of 87,88 Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
Electron capture on 116In and implications for nuclear structure related to double-\beta decay
The electron capture decay branch of 116In has been measured to be [2.46 ± 0.44(stat.) ± 0.39(syst.)] × 10−4 using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the (p, n) charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclearstructure calculations of the matrix element for the neutrinoless double-β decay of 116Cd and other nuclides. peerReviewed
Laser spectroscopy of cooled zirconium fission fragments
The first on-line laser spectroscopy of cooled fission fragments is reported. The $^{\mathrm{96}\mathrm{--}\mathrm{102}}\mathrm{Z}\mathrm{r}$ ions, produced in uranium fission, were extracted and separated using an ion guide isotope separator. The ions were cooled and bunched for collinear laser spectroscopy by a gas-filled linear Paul trap. New results for nuclear mean-square charge radii, dipole, and quadrupole moments are reported across the $N=60$ shape change. The mean-square charge radii are found to be almost identical to those of the Sr isotones and previously offered modeling of the radial changes is critically reviewed.
Proton dripline studies at ISOLDE: 31Ar and 9C
In this contribution examples of the application of new technologies to disentangle the mechanism of beta-delayed multiparticle emission are given. In particular the mechanism of β-delayed two-proton emission from 31Ar has be resolved and proved to be sequential, a preview of 9C-decay data is discussed. peerReviewed
βdecay of neutron-rich118Agand120Agisotopes
$\ensuremath{\beta}$ decays of on-line mass-separated neutron-rich ${}^{118}\mathrm{Ag}$ and ${}^{120}\mathrm{Ag}$ isotopes have been studied by using $\ensuremath{\beta}\ensuremath{-}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{-}\ensuremath{\gamma}$ coincidence spectroscopy. Extended decay schemes to the ${}^{118,120}\mathrm{Cd}$ daughter nuclei have been constructed. The three-phonon quintuplet in ${}^{118}\mathrm{Cd}$ is completed by including a new level at 2023.0 keV, which is tentatively assigned the spin and parity of ${2}_{4}^{+}.$ The intruder band in ${}^{118}\mathrm{Cd}$ is proposed up to the ${4}^{+}$ level at 2322.4 keV. The measured $\ensuremath{\beta}$-decay half…
Laser spectroscopy of radioactive Ti, Zr and Hf isotopes and isomers at the JYFL laser-IGISOL facility
Abstract The recent progress at the laser-ion guide isotope separator on-line facility, JYFL, is presented. At the facility new techniques for studying short-lived radioisotopes by laser spectroscopy have been developed and applied to the study of isotopes in refractory metal elements. In particular, recent results on the spectroscopy of cooled ion beams of radioactive Ti, Zr and Hf isotopes are discussed.
Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94
Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.
Isomers of astrophysical interest in neutron-deficient nuclei at masses A = 81, 85 and 86
Decay properties of neutron-deficient exotic nuclei close to A=80 have been investigated at the IGISOL facility. The studied nuclei, 81Y, 81Sr, 81mKr, 85Nb, 85Zr, 86Mo and 86Nb, were produced by a 32S beam from the Jyväskylä isochronous cyclotron on 54Fe and natNi targets. The internal conversion coefficient for a 190.5 keV isomeric transition in 81mKr has been measured and the internal transition rate has been determined. The internal transition rate has been used to estimate a neutrino capture rate on 81Br, which yields a log ft of 5.13±0.09 for the reaction 81Br( ν, e-)81mKr. A new isomer with a half-life of 3.3±0.9 s has been observed in 85Nb. The existence of an earlier reported isomer…
Excited states inPd115populated in theβ−decay ofRh115
Excited states in $^{115}\mathrm{Pd}$, populated following the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{115}\mathrm{Rh}$ have been studied by means of $\ensuremath{\gamma}$ spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyv\"askyl\"a. The $1$$/$$2$${}^{+}$ spin and parity assignment of the ground state of $^{115}\mathrm{Pd}$, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.
Alpha decay of the new isotopes207, 208Ac
Two new neutron-deficient isotopes207,208Ac have been produced in fusion reactions with 5.2–5.6 MeV/nucleon40Ar ions on175Lu and identified on the basis of genetic correlations. The fusion evaporation products were separated on-line using a gas-filled magnetic recoil separator. The alpha energy and half-life of208Ac were determined to be (7572±15) keV and (95 −16 +24 ) ms, respectively. A new alpha line with a half-life of (25 −5 +9 ) ms and an energy of (7758±20) keV is assigned to the decay of an isomeric state in208Ac. Another new activity with a half-life of (22 −9 +40 ) ms and an alpha energy of (7712±25) keV is assigned to207Ac.
The β2p decay mechanism of Ar
We have measured the beta-decay of Ar-31 with a high granularity setup sensitive to multiparticle decay branches. Two-proton emission is observed from the isobaric analog state in Cl-31 to the four lowest states in P-29 and furthermore from a large number of states fed in Gamow-Teller transitions. The mechanism of two-proton emission is studied via energy and angular correlations between the two protons. In all cases the mechanism is found to be sequential yielding information about states in S-30 up to 8 MeV excitation energy. Improved data on the beta-delayed one-proton branches together with the two-proton data provide precise information about the beta-strength distribution up to 15 MeV…
The β-decay approach for studying 12C
6 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UK
Spectroscopy of 34,35Si by beta decay : sd-fp shell gap and single-particle states
The 34,35Al b decays have been studied at the CERN online mass separator ISOLDE by b-g, b-g-g, and b-n-g measurements in order to corroborate the low-level description of 34Si and to obtain the first information on the level structure of the N521 isotope 35Si. Earlier observed g lines in 34Al decay were confirmed and new g transitions following both b decay and b-delayed neutron emission have been established. The first level scheme of 35Si includes three excited states at 910, 974, and 2168 keV. Indication is found for Jp 5(3/2)2 and (3/2)1 for the first two excited states, respectively. Beta-decay half-life of T1/2538.6(4) ms and b-delayed neutron branching value Pn541(13)% were measured …
High-precision atomic mass measurements for a CKM unitarity test
Abstract The Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing matrix describes the transformation of quarks from weak-force eigenstates to mass eigenstates. The most contributing element in this matrix is the up-down matrix element V ud , derived in most precise way from the nuclear beta decays and in particular, from decays having superallowed 0 + → 0 + decay branch. What high-precision mass spectrometry community can offer are decay energies of such decays derived from parent–daughter mass differences, which are ideally, and in almost all cases, determined with Penning trap mass spectrometry directly from parent–daughter cyclotron frequency ratio. Typically frequency (and thus mass) ratios a…
Shape coexistence in the odd-odd nucleus 98Y : the role of the g9/2 neutron extruder
Excited states in 98Y, populated in neutron-induced fission of 235U and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in 98Y: a deformed one with T1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T1/2 = 0.45(15)μs, analogous to the 8+ isomer in 96Y, corresponding to the (νg7/2,πg9/2)8+ spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in 98Y. This result and the studies of excited le…
A new off-line ion source facility at IGISOL
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.
Reactor Decay Heat inPu239: Solving theγDiscrepancy in the 4–3000-s Cooling Period
The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.
High-accuracy mass spectrometry of fission products with Penning traps
Mass measurements of fission products based on Penning-trap technique are reviewed in this article. More than 300 fission products have been measured with JYFLTRAP, ISOLTRAP, CPT, LEBIT and TITAN Penning traps with a typical precision of δm/m ≈ 10−7 − 10−8. In general, the results agree well with each other. The new data provide a valuable source of information and a challenge for the future development of theoretical mass models as well as for obtaining a deeper insight into microscopic properties of atomic nuclei as measured, for example, via key mass differentials. Shape transitions around N = 60, subshell closure at N = 40 and shell closures at N = 50 and N = 82 have been investigated i…
New Beta-delayed Neutron Measurements in the Light-mass Fission Group
A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.
Decay study ofTc114with a Penning trap
The level structure of $^{114}\mathrm{Ru}$ has been investigated via the $\ensuremath{\beta}$ decay of very neutron-rich $^{114}\mathrm{Tc}$ by means of Penning-trap-assisted $\ensuremath{\gamma}$ spectroscopy. The deduced $\ensuremath{\beta}$-decay scheme suggests the existence of two $\ensuremath{\beta}$-decaying states in $^{114}\mathrm{Tc}$ with ${I}^{\ensuremath{\pi}}={1}^{+}$ and $I\ensuremath{\geqslant}$ 4, with half-lives of ${t}_{1/2}({1}^{+})=90(20)$ ms and ${t}_{1/2}(I\ensuremath{\geqslant}4)=100(20)$ ms, respectively. The ${Q}_{\ensuremath{\beta}}$ value, which covers a possible mixture of two states, has been determined to be ${Q}_{\ensuremath{\beta}}=11 785(12)$ keV. The level…
Determination of the spin of 31Ar
Abstract The beta-delayed proton emission from the lightest Ar-isotopes has been recorded with a high-granularity, large solid-angle Si-detector set-up. Proton energy shifts due to beta-recoil have been measured. We demonstrate how this allows the spin of 31 Ar to be determined as 5/2. The method can be applied at decay rates as low as 1 s −1 .
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…
QValues of the SuperallowedβEmittersAlm26,Sc42, andV46and Their Impact onVudand the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix
The $\ensuremath{\beta}$-decay ${Q}_{\mathrm{EC}}$ values of the superallowed beta emitters $^{26}\mathrm{Al}^{m}$, $^{42}\mathrm{Sc}$, and $^{46}\mathrm{V}$ have been measured with a Penning trap to a relative precision of better than $8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}9}$. Our result for $^{46}\mathrm{V}$, 7052.72(31) keV, confirms a recent measurement that differed from the previously accepted reaction-based ${Q}_{\mathrm{EC}}$ value. However, our results for $^{26}\mathrm{Al}^{m}$ and $^{42}\mathrm{Sc}$, 4232.83(13) keV and 6426.13(21) keV, are consistent with previous reaction-based values. By eliminating the possibility of a systematic difference between the two t…
New transitions in the $\beta$-decay of $^{36}$Ca
The β-decay of the Tz = - 2 nucleus 36Ca was studied at the LISE3 magnetic spectrometer at GANIL. Two new proton-emitting states have been detected and the other nine known βp and βγ transitions have been remeasured with improved resolution. A simulation with the GEANT code has been applied to this experimental setup. A comparison with shell model calculations is given.
Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data
For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…
Quenching of the SnSbTe Cycle in the rp-Process
Status of the ion trap project at IGISOL
The IGISOL fa ility at the Department of Physi s of the University of Jyväskylä (JYFL) is delivering radioa tive beams of short-lived exoti nu lei, in parti ular the neutron-ri h isotopes from the ssion rea tion. These nu lei are studied with the nu lear spe tros opy methods. In order to substantially in rease the quality and sensitivity of su h studies the beam should undergo beam handling: ooling, bun hing and isobari puri ation. The rst two pro esses are performed with the use of an RFQ ooler/bun her. The isobari puri ation will be made by a Penning trap pla ed after the RF- ooler element. This ontribution des ribes the urrent status of the ion trap pro je t and its future prospe ts. The…
First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107
Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.
First evidence of multiple β-delayed neutron emission for isotopes with a > 100
The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …
On the decrease in charge radii of multi-quasi particle isomers
Abstract We report changes in mean-square charge radii, δ 〈 r 2 〉 , magnetic moments and quadrupole moments for three multi-quasi particle isomers; 97m2Y, 176mYb and 178m1Hf. All the isomers are observed to display a decrease in 〈 r 2 〉 compared to the lower-lying nuclear state on which the isomer is built. The decreases in 〈 r 2 〉 occur despite the isomers showing increases in quadrupole moment. Possible mechanisms for the effect, which is now seen for six multi-quasi particle isomers, are discussed.
Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae
We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.
Electron-transporter spectrometer for on-line isotope separator
Abstract ELLJ — a conversion-electron and beta-ray spectrometer for an on-line isotope separator - is described. The instrument is a broad-range, high-transmission device consisting of a two-coil magnetic transporter plus a cooled Si(Li) detector. The spectrometer was designed to perform several kinds of coincidence measurements. A number of representative spectra of fission-product activities separated on-line at the IGISOL facility demonstrate the performance of the spectrometer.
First observation of the beta decay of117Pd and the discovery of a new isotope119Pd
In this paper we wish to report the first direct observations of the beta decays of117Pd and of a new isotope119Pd. The measuredβ-half-life is 4.3±0.3 s for117Pd. For119Pd, the existence of two beta-decaying states with the same half-life but of opposite parity cannot be excluded. The measured half-life for119Pd is 0.92±0.13 s. The observed beta half-lifes are in good agreement with the QRPA predictions. The observed level structure of117Ag and119Ag are discussed in the frame of the level systematics of the known odd Ag isotopes closer to stability.
Character of an 8− isomer of 130Ba
Abstract The static moments and isomer shift of the J π = K π =8 − isomeric state in 130 56 Ba have been measured using the technique of collinear laser spectroscopy. The isomer has been found to have a magnetic dipole moment of −0.043(28) μ N and a static quadrupole moment of +2.77(30) b. These values have been used to assign the state as a two neutron 7 2 + [404]⊗ 9 2 − [514] configuration corresponding to a prolate shape. The half-life of the isomer has been confirmed as 9.54(14) ms. The change in the mean square charge radius was found to be 〈 r 2 〉 130m −〈 r 2 〉 130g–s =−0.0473(30) fm 2 .
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination
8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.
Precision Mass Measurements beyondSn132: Anomalous Behavior of Odd-Even Staggering of Binding Energies
Atomic masses of the neutron-rich isotopes $^{121--128}\mathrm{Cd}$, $^{129,131}\mathrm{In}$, $^{130--135}\mathrm{Sn}$, $^{131--136}\mathrm{Sb}$, and $^{132--140}\mathrm{Te}$ have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four $r$-process nuclei $^{135}\mathrm{Sn}$, $^{136}\mathrm{Sb}$, and $^{139,140}\mathrm{Te}$ were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N=82$ for Sn, with a $Z$ dependence that is unexplainable by the current theoretical models.
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br87 , Br88 , and Rb94
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
$\beta$ - decay of the M$_{T}$=-1 nucleus $^{58}$Zn studied by selective laser ionization
$\beta$ - decay of $^{58}$Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for $\beta$ and $\gamma$ - spectroscopy. The half-life of $^{58}$Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1$^{+}$ state at 1051 keV excitation in $^{58}$Cu agrees well with the value extracted from a recent ($^{3}$He, t) study. Extensive shell-model calculations are presented.
The decay of 133mXe.
The decay of (133m)Xe has been re-measured using an electron-transporter spectrometer and a planar HPGe detector. The sample of (133m)Xe was produced by means of proton-induced fission using an ion-guide based on-line mass separator. The deduced K and L+M+... shell conversion coefficients, alpha(Kappa)=6.5(9) and alpha(L+M+...)=2.9(4), agree within the uncertainty limits with the theoretical values and remove the inconsistencies between the previous experimental studies of (133m)Xe.
Beta-delayed neutron spectroscopy by the TOF technique at IGISOL: 95Rb as a test case
Nuclides with a large neutron excess have high Q β values, making it possible to extract the β-strength function (SF) over a large energy range using β-decay spectroscopy. However, because of the low neutron binding energies, neutron emission from excited states will occur and β-delayed neutron spectroscopy is required to determine the SF over the full Q β window.
High-resolution studies of beta-delayed proton emitters at IGISOL facility
Beta-decays of23Al and41Ti have been studied by applying ion guide techniques, gamma detection and a gas-Si telescope for charged-particle detection. The experimental beta-decay strength of41Ti was found to be quenched by a factor ofq2 = 0.64 compared to our shell model calculations below 8 MeV excitation energy in41Sc. This result is in line with the generally accepted value ofq = 0.77. The isobaric analogue state of the41Ti ground state was measured to contain 10(8)% isospin impurity. This relatively high value could be well reproduced by the shell model calculation in thesdfp space. Gamma-decay of theT = 3/2 isobaric analogue state in23Mg was observed together with its decay by proton em…
New lifetime measurements in 109 Pd and the onset of deformation at N = 60
Several new subnanosecond lifetimes were measured in 109Pd using the fast-timing βγγ (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyl ¨ a Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states ¨ in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a sudden increase i…
Systematic studies of the accuracy of the Penning trap mass spectrometer JYFLTRAP
Abstract Measurements to quantify the mass-dependent systematic effect and the residual uncertainty of the JYFLTRAP setup have been performed with carbon-cluster ions. The primary quantities reported in this work are a mass-dependent uncertainty of σ m ( r ) / r = ( 7.8 ± 0.3 × 10 - 10 / u ) × Δ m and a residual uncertainty of σ res ( r ) / r = 1.2 × 10 - 8 for the JYFLTRAP mass spectrometer. By restricting the mass difference between the reference ion and ion of interest to | m meas - m ref | ≤ 24 , the values for the mass-dependent effect and the corresponding residual uncertainty are σ m , lim ( r ) / r = ( 7.5 ± 0.4 × 10 - 10 / u ) × Δ m and σ res , lim ( r ) / r = 7.9 × 10 - 9 , respec…
Precise branching ratios to unbound 12C states from 12N and 12B β-decays
6 pages, 2 tables, 4 figures.--PACS nrs.: 21.45.-v; 23.40.-s; 27.20.+n; 21.60.De.--Printed version published Aug 3, 2009
r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay
Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed
Fission product yields at intermediate energy
The results of experimental and theoretical studies of fission product yields in proton-induced fission of 238U are presented. The yields of neutron-rich Ni, Cu, Zn, Ga and Ge—isotopes were measured by 25 MeV protons and the ion guide-based isotope separator technique. The pre-neutron emission fragment mass distributions were measured by protons at energies Ep=20, 35, 50 and 60 MeV using time-of-flight method. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus. A model calculation of fission products yields for fission of 238U by protons and neutrons is presented which predicts the formation cross sections for neutr…
Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation
The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…
Design of a second generation RFQ Ion Cooler and Buncher (RFQCB) for ISOLDE
As a part of the ISOLDE Consolidation project, a new beam-cooling device will be incorporated into the High Resolution Separator (HRS) to improve the ion beam delivered to the experiments. The whole beam line at this point needs to be redesigned to accommodate the ion cooler and provide beam-matching. In this paper the status of the mechanical design, the optical design and the vacuum system of the device are presented.
Recent mass measurements for the r process at JYFLTRAP
Spectroscopy with β2p and β-ν recoil shifts
9 pages, 4 figures.-- Printed version published Apr 22, 2002.
Beta-decay strength and isospin mixing studies in the sd and fp-shells
We have studied beta decays of MT<0 nuclei in sd and fp shells. The decay of 41Ti shows a large, 10(8) %, isospin mixing of IAS and the Gamow-Teller strength is observed to be quenched by a factor of q2=0.64. These results can be reproduced qualitatively in our shell model calculations. We have observed for the first time proton and gamma decay of the isobaric analogue state in 23Mg. Our results on the isospin mixing of the isobaric analogue state agrees well with the shell model calculations. The obtained proton branch of the IAS is used to extract the transition strength for the reaction 22Na(p,γ)23Mg.
Mass Measurements for the rp Process
Status of HIGISOL a new version equipped with SPIG and electric field guidance
A new HIGISOL chamber devoted to the study of short-lived products from heavy-ion-induced fusion-evaporation reactions is proposed. It enables, via the extraction of ions by means of a SPIG (SextuPole rf Ion Guide), to improve the mass resolving power by a factor 2.5 compared to the previous system using a skimmer-ring assembly. The gas cell was also equiped with an electric field for faster transportation of recoiling ions to the nozzle where they are ejected with the gas jet. The first results obtained both with a radioactive α-source and cyclotron beam will be reported.
Isotopic product distributions in the near symmetric mass region in proton induced fission ofU238
We have studied fission product yields using 19.8 MeV proton induced fission of a thin $^{238}\mathrm{U}$ target and the on-line mass separator IGISOL. The nonselectivity of the separation method used with respect to Z has allowed accurate determination of the yields of symmetric fission for the first time. The cumulative yields for the elements from Z=40 (Zr) up to Z=47 (Ag) have been determined from the beta- and gamma-radioactivity measurements. The independent fission product yield distributions for elements Tc, Ru, and Rh are obtained from the experimental data. An improved theoretical model for calculating mass and independent yields is described and applied. It is found that the char…
Time Characteristics of the Ion Beam Cooler-Buncher at JYFL
A beam cooler for low-energy ion beams was constructed to improve the ion optical properties of radioactive ion beams produced at the IGISOL facility in Jyvaskyla. The beam cooler is a buffer gas filled RF-quadrupole. The delay properties and the possibility to accumulate a continuous IGISOL beam and release it in short bunches is discussed.
Excited levels in the multishaped Pd117 nucleus studied via β decay of Rh117
Monoisotopic samples of exotic, neutron-rich $^{117}\mathrm{Rh}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$ and $\ensuremath{\gamma}$ coincidence spectroscopy of $^{117}\mathrm{Pd}$. The spin parity of the ground state of $^{117}\mathrm{Pd}$ was determined to be $1/{2}^{+}$ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity $7/{2}^{\ensuremath{-}}$. The $^{117}\mathrm{Rh}$ ${\ensuremath{\beta}}^{\ensuremath{-}}$-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prol…
The Jyväskylä Accelerator Laboratory
The Jyvaskyla Accelerator Laboratory is a national center for nuclear and accelerator-based research and education. It is an integral part of the Department of Physics, University of Jyvaskyla. The Accelerator Laboratory and the Department Physics were moved to the current site in the early 1990s, as described in the previous Laboratory Portrait published in 1991 [1]. Since then the research program of the laboratory has been structured around the main instruments and research fields, which share the available beam time. The present laboratory layout is shown in Figure 1. In addition to basic research in nuclear and accelerator based materials physics, beam time is reserved for commercial s…
Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases
9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Collinear laser spectroscopy of radioisotopes of zirconium
Isotope shifts and hyperfine structures have been measured for radioisotopes of ionic zirconium using on-line laser spectroscopy at the IGISOL facility in Jyvaskyla, where the installation of an ion beam cooler/buncher has significantly improved the experimental sensitivity. Measurements have been made on all the neutron-deficient isotopes from 87Zr to 90Zr, including the isomers 87m,89mZr, and the neutron-rich isotopes from 96Zr to 102Zr. The change in mean square charge radii between the isotopes and the nuclear moments of the odd isotopes have been extracted. The data show a sudden increase in the mean square charge radius at mass A = 100, consistent with an onset of nuclear deformation …
Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements
The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat sum…
Gamow-Teller decay of 118Pd and of the new isotope 120Pd
Abstract With the use of the proton-induced fission of 238 U and the ion guide-fed on-line mass separation, even- A isotopes of palladium with high neutron excess were studied by means of γ-ray and conversion-electron spectroscopy. The decay of 118 Pd was reinvestigated in detail, and evidence for the new isotope 120 Pd, with a half-life T 1 2 = 0.5 ± 0.1 s , was found. As established for 118 Pd and tentatively shown for 120 Pd, the β-decay of these two isotopes proceeds mainly through 0 + → 1 + Gamow-Teller transitions with log ft values between 4.2 and 4.7. The strength of individual transitions has been compared with the predictions of the shell-correction model with a deformed Woods-Sax…
β-decay ofO13
The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible. Protons with energy up to more than 12 MeV are measured and the corresponding log(ft) values extracted. A revised decay scheme is constructed. The connection to molecular states and the shell model is discussed.
MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy
β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.
New levels in 118Pd observed in the beta-decay of very neutron-rich 118Rh isotope
We investigate the β decay of very neutron-rich 118Rh isotope using on-line mass-separated sources which are produced by applying 25 MeV proton induced symmetric fission of natural uranium at the IGISOL facility. The β–γ and γ–γ coincidence spectroscopy is employed to establish the level scheme of daughter nucleus 118Pd. Five low-lying new levels are identified for the first time with tentative spin and parity assignments based on the even-mass Pd systematics.
Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28 , N = 40
The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron-rich 70-73Ni and 73, 75Cu isotopes with a typical accuracy less than 5keV. The mass of 73Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at 68 28Ni40 . A well established proton shell gap is observed at Z = 28 .
Coulomb displacement energies as a probe for nucleon pairing in the $f_{7/2}$ shell
Coulomb displacement energies of $T=1/2$ mirror nuclei have been studied via a series of high-precision $Q_\mathrm{EC}$-value measurements with the double Penning trap mass spectrometer JYFLTRAP. Most recently, the $Q_\mathrm{EC}$ values of the $f_{7/2}$-shell mirror nuclei $^{45}$V ($Q_\mathrm{EC}=7123.82(22)$ keV) and $^{49}$Mn ($Q_\mathrm{EC}=7712.42(24)$ keV) have been measured with an unprecedented precision. The data reveal a 16-keV ($1.6\sigma$) offset in the adopted Atomic Mass Evaluation 2012 value of $^{49}$Mn suggesting the need for further measurements to verify the breakdown of the quadratic form of the isobaric multiplet mass equation. Precisely measured $Q_\mathrm{EC}$ values…
Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP
A new procedure to prepare isomerically clean samples of ions with a mass resolving power of more than 100,000 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.
Spectroscopic studies of neutron-deficient light nuclei: decay properties of 21Mg, 25Si and 26P
Neutron‐deficient nuclei with Tz equals to −3/2 and −2 have been produced at the GANIL/LISE3 facility in fragmentation reactions of a 95 MeV/u 36Ar primary beam in a 12C target. For the first time, β‐delayed proton and β‐γ emission has been simultaneously observed in the decay of 21Mg, 25Si and 26P. The decay scheme of the latter is proposed and the Gamow‐Teller strength distribution in its β decay is compared to shell‐model calculations based on the USD interaction. The B(GT) values derived from the absolute measurement of the β‐branching ratios are in agreement with the quenching factor of about 60% obtained for allowed Gamow‐Teller transitions in this mass region. A precise half‐life of …
Neutron configurations inPd113
Excited states in $^{113}\mathrm{Pd}$, populated in ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{113}\mathrm{Rh}$ and in spontaneous fission of $^{248}\mathrm{Cm}$ and $^{252}\mathrm{Cf}$, have been studied by means of $\ensuremath{\gamma}$ spectroscopy at the IGISOL facility of Jyv\"askyl\"a University and using large arrays of Ge detectors (Eurogam2 and Gammasphere, respectively). The position of the ${11/2}^{\ensuremath{-}}$ yrast excitation in $^{113}\mathrm{Pd}$, proposed recently at 166.1 keV by other authors, has been corrected to 98.9 keV. The decay of this level has been discussed to explain the observed transition intensities. The ${7/2}^{\ensuremath{-}}$ member of the yras…
Nuclear moments and charge radii of the171Hf ground state and isomer
The magnetic moment, quadrupole moment and mean-square charge radial changes, relative to 172Hf, have been measured for the 171Hf ground state and the ½-[521] isomeric state, using on-line laser spectroscopy. The magnetic moments of the isomer and ground states are found to be + 0.526(16)µn and -0.674(12)µn, respectively. The spectroscopic quadrupole moment of the ground state is found to be +3.463(27) b. No change in mean-square charge radius is observed between the ground state and isomeric state. The observation of an inversion in the odd-even staggering at 171Hf is consistent with the suggested deformation trends.
Advanced model for the prediction of the neutron-rich fission product yields
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculate…
Improved ion guide for heavy-ion fusion-evaporation reactions
The ion guide for heavy-ion-induced reactions developed originally for the SARA facility in Grenoble has been implemented at the Jyvaskyla IGISOL facility. For the Cd-116(Ar-40, 6n)Dy-150 reaction an efficiency of 0.5% relative to the number of reaction products entering the stopping chamber was obtained. This is 3.5 times higher than previously obtained at SARA and corresponds to a yield of about 100 ions/(p mu C mb). Mass-separated yields for the Ar-36 + Mo-92 and Ar-36 + Mo-94 reactions were measured. (C) 1998 Elsevier Science B.V. All rights reserved.
Characterization and performance of the DTAS detector
11 pags., 16 figs., 3 tabs.
The MORA project
The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.
Accurate mass measurements on neutron-deficient krypton isotopes
soumis à Nuclear Physics A; The masses of $^{72-78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72-75}$Kr outweighed previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for t…
The FURIOS laser ion source at IGISOL-4
Abstract The FURIOS laser ion source at the Accelerator Laboratory of the University of Jyvaskyla has been moved to a new location as a part of the IGISOL-4 facility. The laser ion source project had a high priority which allowed the transport of laser light to be optimized during the design phase. The laser resonators have been upgraded with a dual etalon configuration leading to greatly reduced laser linewidth. The transport efficiency of the dual-chamber gas cell has been determined using an alpha recoil source, with efficiencies ranging from a few percent in the beam interaction chamber to nearly 20% in the ionization chamber. In addition, we present recent results from the re-commissio…
High-sensitivity study of levels in 30Al following β decay of 30Mg
γ -ray and fast-timing spectroscopy were used to study levels in 30Al populated following the β− decay of 30Mg. Five new transitions and three new levels were located in 30Al. A search was made to identify the third 1+ state expected at an excitation energy of ∼2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) βγγ (t) method we have measured the lifetime of the 243.8-keV state to be T1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2+ → 3+) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-k…
New Neutron-Rich Nuclei and Isomers Produced in Symmetric Fisson
The novel method for rapid on-line mass separation, the IGISOL, is described. The method has been shown applicable to mass separation of short-lived proton-induced fission products without any chemical dependence on radionuclide. Recent results on isomeric states with half-lives of the order of milliseconds produced directly in proton-induced fission of 238U and separated with the IGISOL are presented. The future plans for connection of the new K-130 cyclotron of the University of Jyvaskyla with the IGISOL are reviewed.
Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements
International audience; A complete characterisation of the β-decay of neutron-rich nuclei can be obtained from the measurement of β-delayed gamma rays and, whenever the process is energetically possible, β-delayed neutrons. The accurate determination of the β-intensity distribution and the β-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.
Precision 71Ga – 71Ge mass-difference measurement
The 71Ga(νe, e−) 71Ge reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyv¨askyl¨a to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in 71Ga. peerReviewed
Isomeric state of 80Y and its role in the rp-process
The HIGISOL facility has been used to investigate carefully the isomeric transition 228.5 keV in 80Y. We have measured the electron internal conversion coefficient for this transition αK = 0.50 ± 0.07 which gives the value for half-life of “bare” isomeric state T 1/2 = 6.8 ± 0.5 s. The isomeric state should play an important role in the rp-process calculations.
β-decay of 113Rh and the observation of 113mPd : Isomer systematics in odd-A palladium isotopes
Abstract Decay of 113Rh to the levels of 113Pd was studied at the IGISOL-facility by means of β-, γ- and conversion-electron spectroscopy. The level scheme of 113Pd was constructed using 33 gamma transitions on the basis of observed γγ-coincidence relations and half-life analysis. A β-decay half-life of (2.80±0.12) s was measured for 113Rh. A new 9 − 2 isomeric state with (0.3 ± 0.1) s half-life and excitation energy 81.3 keV was discovered in 113Pd. This state and the other recently observed low-lying 9 − 2 or 11 − 2 isomeric states in 115,117Pd isotopes are directly populated in proton-induced fission. The decay of these isomers is unusually strongly hindered compared with Weisskopf estim…
Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Two-proton decay of the isobaric analogue state of Ar-31
8 pages, 1 table, 4 figures.-- Journal issue title: "Nucleus-Nucleus Collisions".
Cooling and bunching of ion beams for collinear laser spectroscopy
A greatly increased sensitivity in collinear laser spectroscopy experiments has been achieved by the application of new on-line ion cooling and bunching techniques. Cooling of a low-energy ion beam to low emittance and low velocity spread is shown to increase the peak efficiency while bunching the beam results in highly efficient background suppression.
Enhancedγ-Ray Emission from Neutron Unbound States Populated inβDecay
Total absorption spectroscopy is used to investigate the β-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daug…
First Precision Mass Measurements of Refractory Fission Fragments
Atomic masses of 95-100Sr, 98-105Zr, and [corrected] 102-110Mo and have been measured with a precision of 10 keV employing a Penning trap setup at the IGISOL facility. Masses of 104,105Zr and 109,110Mo are measured for the first time. Our improved results indicate significant deviations from the previously published values deduced from beta end point measurements. The most neutron-rich studied isotopes are found to be significantly less bound (1 MeV) compared to the 2003 atomic mass evaluation. A strong correlation between nuclear deformation and the binding energy is observed in the two-neutron separation energy in all studied isotope chains.
Double-beta decay Q values of 116Cd and 130Te
Abstract The Q values of the 116Cd and 130Te double-beta decaying nuclei were determined by using a Penning trap mass spectrometer. The new atomic mass difference between 116Cd and 116Sn of 2813.50(13) keV differs by 4.5 keV and is 30 times more precise than the previous value of 2809(4) keV. The new value for 130Te, 2526.97(23) keV is close to the Canadian Penning trap value of 2527.01 ± 0.32 keV (Scielzo et al., 2009) [1] , but differs from the Florida State University trap value of 2527.518 ± 0.013 keV (Redshaw et al., 2009) [2] by 0.55 keV (2σ). These values are sufficiently precise for ongoing neutrinoless double-beta decay searches in 116Cd and 130Te. Hence, our Q values were used to …
Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer
The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …
QECvalues of the superallowedβemittersC10,Ar34,Ca38, andV46
The ${Q}_{\mathrm{EC}}$ values of the superallowed ${\ensuremath{\beta}}^{+}$ emitters $^{10}\mathrm{C}$, $^{34}\mathrm{Ar}$, $^{38}\mathrm{Ca}$, and $^{46}\mathrm{V}$ have been measured with the JYFLTRAP Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7), and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results. Of the well-known superallowed emitters, only $^{14}\mathrm{O}$ has yet to have had its ${Q}_{\mathrm{EC}}$ value measured with a Penning trap.
Spin-flip? ? decay of even-even deformed nuclei110Ru and112Ru
Neutron-rich nuclides110Ru and112Ru produced in symmetric fission of238U by 20 MeV protons have been studied at the IGISOL facility by means ofβ-ray,γ-ray and conversion electron spectroscopy. A total of 12 and 6γ-transitions were observed in the decays of110Ru and112Ru, respectively. Multipolarities were determined for a few transitions. The beta decay half-life was determined to be 11.6±0.6 s for110Ru and 1.75±0.07 s for112Ru. As a side product, a new value of 2.1±0.3 s for theβ half-life of the112Rh 1+ state was obtained. The decay energy measured with the plastic scintillator was 2.81 ±0.05 MeV for110Ru and 4.52 ±0.08 MeV for112Ru. The beta decay schemes of110Ru and112Ru isotopes indica…
First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility
V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.
ANDES Measurements for Advanced Reactor Systems
Abstract A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23 Na, Mo, Zr, and 238 U, neutron capture cross sections of 238 U, 241 Am, neutron induced fission cross sections of 240 Pu, 242 Pu, 241 Am, 243 Am and 245 Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238 Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am…
Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap
The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed
JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification
In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…
Study of the neutron-rich nuclei with $N$ = 21, $^{35}$Si and $^{33}$Mg, by beta decay of $^{35}$Al and $^{33}$Na
Abstract The first information on the level structure of the N =21 nuclei, 35 Si and 33 Mg, has been obtained by the beta decay study of 35 Al and 33 Na, produced by fragmentation of an UC target with 1.4 GeV protons at CERN/ISOLDE. The experimental technique involved β – γ , β – γ – γ , and β –n– γ coincidences, neutron spectra being obtained by time of flight measurements. Gamma detection was made either using large Ge counters or small BaF 2 scintillators (for lifetime measurements). In the case of the 35 Al decay, ( T 1/2 =41.6(2.2) ms), a simple structure has been found for the level scheme of 35 Si ( Z =14, N =21) which has been interpreted with the level sequence : 7/2 − , 3/2 − and …
Beta-decay of 56Cu
Beta-decay studies of proton-rich isotopes near the doubly closed-shell nucleus 56Ni are of interest as (i) nuclei with a few nucleons outside a doubly-magic core are expected to represent comparatively simple configurations and thus be useful for testing nuclear shell-model predictions, and (ii) the large decay-energy window guarantees that a sizeable fraction of the strength of the allowed β-decay can be reached by the experiment. Moreover, nuclear structure properties of proton-rich N ~ Z isotopes are of astrophysical interest, e.g., concerning the EC cooling of supernovae and the astrophysical rp-process.
Accurate Fission Data for Nuclear Safety
The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexi…
Beta decay of 108Mo and of neighbouring even Mo-isotopes
Abstract A combination of the proton-induced fission of 238 U and the on-line mass separation based on the ion-guide technique has been applied in the study of neutron-rich Mo-isotopes. The decays of 106,108 Mo have been studied by using gamma-, beta-, X-ray and conversion-electron spectroscopy. The decay scheme of 106 Mo has been revised and a beta-decay half-life of 8.73(12) s has been measured for this nucleus. A beta-decay half-life of 1.09(2) s and a decay energy of 5120(40) keV have been measured for 108 Mo. The decay scheme of 108 Mo has been constructed and altogether 29 new transitions have been placed in the decay scheme. The beta-decay strengths of 102,104,106,108 Mo have been de…
Beta decay of very neutron-rich110Mo studied at the new IGISOL facility
The decay of the new activity110Mo (t1/2=0.30(4).s) has been observed at the new IGISOL separator. Multiscaled singles,β-γ-t and γ-y-t coincidences were recorded. The decay scheme suggests Iπ=2+ for the ground state of the daughter nucleus110Tc. Three 1+ levels are fed with logft values below 5, indicating no drastic change among Mo and Ru decays at the middle of the neutron shell. This experiment confirms the expectation that the new IGISOL facility will allow the identification of one or two new more neutron-rich isotopes per element in this region.
The science case of the FRS Ion Catcher for FAIR Phase-0
The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…
Development of a carbon-cluster ion source for JYFLTRAP
Abstract A carbon-cluster ion source based on laser ablation and ionization of a carbon sample has been built and tested for the JYFLTRAP setup. In the present configuration the ion source is situated in the electrostatic switchyard in front of the radiofrequency (RFQ) cooler and buncher. In this position the beam quality of the carbon clusters injected into the Penning trap system is considerably improved by the RFQ. Moreover, the mass-dependence of the RFQ’s transmission can be used to some extent to suppress unwanted cluster sizes.
Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation
The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and h…
Studies of astrophysically interesting nucleus23Al
We have studied the β-delayed proton decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton branching of the IAS in 23Mg and to determine the absolute proton branchings by combining our results to the latest βγ-decay data. We have made also a high precision mass measurement of the ground state of 23Al to establish more accurate proton separation energy of 23Al. Here the description of the used techniques along with preliminary results of the experiments are given.
Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons
V. Guadilla et al. -- 5 pags., 8 figs., tab.
Ground-state spin of 59Mn
Beta decay of $^{59}$Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured $\beta$-decay rates the ground-state spin and parity are proposed to be $J^{\pi}$ = 5/2$^{-}$. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line.
Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass
We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…
Fission yield measurements at IGISOL
The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure rela…
Superasymmetric fission at intermediate energy and production of neutron-rich nuclei with A < 80
Abstract The yields of neutron-rich Ni, Cu, Zn, Ga and Ge-isotopes were measured in 25 MeV proton induced fission of 238 U using the ion guide-based isotope separator technique. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus and show the potential of this reaction for the production of neutron-rich exotic nuclei around Z = 28.
Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb
Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…
JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL
Abstract A Penning trap has been installed for isobaric beam purification at the IGISOL-facility at the University of Jyvaskyla. In this paper, the technical details of this new device together with results of the first tests are presented. The mass resolving power, depending on the excitation parameters and the ion species, can be as high as 145 000 and the total transmission has been determined to be 17%. In addition, it is shown that with this experimental setup it is possible to measure atomic masses up to A=120 with accuracies of approximately 50 keV .
Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique
Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…
Ultra-high resolution mass separator—Application to detection of nuclear weapons tests
Abstract A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, 133mXe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors.
Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…
Penning trap at IGISOL
The IGISOL facility [1] at the Department of Physics of the University of Jyvaskyla (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from fission reaction. These nuclei are studied with the nuclear and collinear laser spectroscopy methods. In order to obtain a meaningful increase, in comparison to a standard level, of precision and sensitivity of such studies an improvement of the radioactive beam quality is necessary. This improvement will be achieved due to a radioactive beam handling which consists of three steps: beam cooling, bunching and (isobaric) purification. The latter means a possibility of obtaining a pure monoisotopic …
Measurement of the 2+→0+ ground-state transition in the β decay of F20
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…
A new pulsed release method for element selective production of neutron rich isotopes near 208Pb
Abstract A new method to reduce the isobaric contamination problem for the production of neutron rich Bi, Pb and Tl nuclei at on-line mass separators, based on the pulsed release of these radioactive species, is presented. The results of a feasibility study are reported.
Total absorption study of theβdecay of102,104,105Tc
The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.
The first cooled beams from JYFL ion cooler and trap project
Abstract A ion manipulation scheme employing a linear radiofrequency quadrupole and a Penning trap is described. It provides means to improve emittance, cool, bunch and mass-purify the existing ion beams from an Ion Guide Isotope Separator while preserving its fast operation. The ion beam cooler is operational and capable to cool ion beam down to eV regime in few ms with at least 60 percent transmission.
Isomeric state of $^{80}$Y and its role in the astrophysical rp-process
5 pages, 7 figures.-- PACS nrs: 21.10.Tg; 23.20.Nx; 27.50.+e.
TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector
V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
QEC value of the superallowed β emitter 42Sc
The QEC value of the superallowed β+ emitter Sc42 has been measured with the JYFLTRAP Penning-trap mass spectrometer at the University of Jyväskylä to be 6426.350(53) keV. This result is at least a factor of four more precise than all previous measurements, which were also inconsistent with one another. As a byproduct we determine the excitation energy of the 7+ isomeric state in Sc42 to be 616.762(46) keV, which deviates by 8σ from the previous measurement. peerReviewed
New isomer and decay half-life ofRu115
Exotic, neutron-rich nuclei of mass $A=115$ produced in proton-induced fission of $^{238}\mathrm{U}$ were extracted using the IGISOL mass separator. The beam of isobars was transferred to the JYFLTRAP Penning trap system for further separation to the isotopic level. Monoisotopic samples of $^{115}\mathrm{Ru}$ nuclei were used for $\ensuremath{\gamma}$and $\ensuremath{\beta}$ coincidence spectroscopy. In $^{115}\mathrm{Ru}$ we have observed excited levels, including an isomer with a half-life of 76(6) ms and ($7/{2}^{\ensuremath{-}}$) spin and parity. The first excited 61.7-keV level in $^{115}\mathrm{Ru}$ with spins and parity ($3/{2}^{+}$) may correspond to an $\mathit{oblate}$ $3/{2}^{+}$…
Mass Measurement on therp-Process Waiting PointKr72
With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct high-precision mass measurement on the waiting point in the astrophysical rp-process 72Kr. We used the ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a relative mass uncertainty of δm/m = 1.2×10-7. In addition, the masses of 73Kr and 74Kr were measured directly with relative mass uncertainties of 1.0×10-7 and 3×10-8, respectively. We analyzed the role of 72Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of 72-74Kr.
QEC value of the superallowed β emitter Sc42
Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.
Beta decay of neutron-rich 118Ag and 120Ag isotopes
b decays of on-line mass-separated neutron-rich 118Ag and 120Ag isotopes have been studied by using b-g and g-g coincidence spectroscopy. Extended decay schemes to the 118,120Cd daughter nuclei have been constructed. The three-phonon quintuplet in 118Cd is completed by including a new level at 2023.0 keV, which is tentatively assigned the spin and parity of 24 1 . The intruder band in 118Cd is proposed up to the 41 level at 2322.4 keV. The measured b-decay half-life for the high-spin isomer of 120Ag is 0.4060.03 s. Candidates for the three-phonon states, as well as the lowest members of the intruder band in 120Cd, are also presented. These data support the coexistence of quadrupole anharmon…
Total absorption spectroscopy study of the β decay of Br86 and Rb91
The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the IGISOL facility in Jyvaskyla and further purified using the JYFLTRAP. 86Br and 91Rb are considered high priority contributors to the decay heat in reactors. In addition 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results shows that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized.
AccurateQValue for theSn112Double-βDecay and its Implication for the Search of the Neutrino Mass
The $Q$ value of the $^{112}\mathrm{Sn}$ double-beta decay was determined by using a Penning trap mass spectrometer. The new atomic-mass difference between $^{112}\mathrm{Sn}$ and $^{112}\mathrm{Cd}$ of 1919.82(16) keV is 25 times more precise than the previous value of 1919(4) keV. This result removes the possibility of enhanced resonance capture of the neutrinoless double-EC decay to the excited ${0}^{+}$ state at 1871.00(19) keV in $^{112}\mathrm{Cd}$.
Quenching of the SnSbTe Cycle in therpProcess
The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.
Collinear laser spectroscopy of ZrII
A new technique involving collinear laser spectroscopy of ion bunches has been used to study the radio-isotopes 87,87m,88,89,89m Zr.
Disentangling decaying isomers and searching for signatures of collective excitations in β decay
6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK
Particularizing Nonhuman Nature in Stakeholder Theory : The Recognition Approach
AbstractStakeholder theory has grown into one of the most frequent approaches to organizational sustainability. Stakeholder research has provided considerable insight on organization–nature relations, and advanced approaches that consider the intrinsic value of nonhuman nature. However, nonhuman nature is typically approached as an ambiguous, unified entity. Taking nonhumans adequately into account requires greater detail for both grounding the status of nonhumans and particularizing nonhuman entities as a set of potential organizational stakeholders with different characteristics, vulnerabilities, and needs. We utilize the philosophical concept of ‘recognition’ to provide a normative under…
High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl
Gas-filled recoil separator for studies of heavy elements
Abstract A gas-filled recoil separator for the study of heavy elements has been constructed. The separator is of type QDQQ with the first, vertically focusing, quadrupole providing improved matching to the acceptance of the dipole magnet. The separator has been designed also for use in vacuum mode in which case a mass resolving power of ≈ 100 is estimated. The deflection angle is 25° and the radius of curvature is 1850 mm. Maximum beam rigidity is 2.2 T m. In the first experiments, new isotopes in the region Z = 85–90 have been synthesized.
b-decay of 116Agm and the vibrational structure of 116Cd
The structure of near neutron midshell 116 Cd has been investigated via β decay of 116 Ag m by β-γ and γ-γ coincidence spectroscopy. The 116 Ag m activity was produced by symmetric fission of natural uranium induced by 25 MeV protons. The ion guide technique has been employed to produce online mass separated sources. The decay scheme of 116 Ag m has been considerably extended by adding 19 new excited states of 116 Cd . The newly identified 116 Cd state at 1869.7 keV, along with other four levels near 2 MeV, are interpreted as forming the complete three-phonon quintuplet. The vibrational structure of 116 Cd is discussed in the context of an anharmonic vibrator. peerReviewed
Production of neutron-rich isotopes in fission of uranium induced by neutrons of 20 MeV average energy
In the context of a parameter study conducted by several laboratories for future European radioactive beam facilities based on fast-neutron induced fission, in particular for the SPIRAL-II project at GANIL, we have measured the yields of neutron-rich isotopes in the mass range of 88 to 144. These nuclei were obtained as fission products of natural uranium bombarded by neutrons of 20 MeV average energy emitted by a thick carbon target irradiated by 50 MeV deuterons. Yields have been measured using on-line mass separation with the ion-guide method. Compared with proton-induced fission at 25 MeV the magnitude of cross-sections, except for the symmetric region, is similar. Z-distributions of is…
Institutional fit in the maintenance of dynamic habitat networks for metapopulations
Species living in metapopulations depend on connected habitat networks for survival. If habitat networks experience fast temporal dynamics, species conservation requires preventing habitat discontinuities that could lead to metapopulation extinctions. Few institutional solutions exist for the maintenance of dynamic habitat networks. Institutional fit is a conceptual framework to study how well institutions are aligned with the realities they manage or govern. We studied the institutional fit of false heath fritillary (Melitaea diamina) conservation in Finland from the perspective of conservation institutions' ability to manage early successional habitat availability for this endangered spec…