0000000001062465
AUTHOR
Pierre Le Gendre
New heteronuclear gold(I)-platinum(II) complexes with cytotoxic properties: are two metals better than one?
A series of mono- and heterodinuclear gold(I) and platinum(II) complexes with a new bipyridylamine-phosphine ligand have been synthesized and characterized. The X-ray structures of the ligand precursor 4-iodo-N,N-di(pyridin-2-yl)benzamide, and of one gold derivative are reported. All the complexes display antiproliferative properties in vitro in human cancer cells in the range of cisplatin or higher, which appear to correlate with compounds' uptake. Interestingly, studies of the interactions of the compounds with models of DNA indicate different mechanisms of actions with respect to cisplatin. The biological activity study of these complexes provides useful information about the interest of…
Towards the elaboration of new gold-based optical theranostics.
Four new red BODIPY–gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.
Oxo and Hydroxo Tantalocene Complexes: Synthesis and Reactivity. X-ray Molecular Structures of [(η5-Cp*)TaCl(OH)(η5-C5H4SiMe3)]+Cl-, (η5-Cp*)TaCl(O)(η5-C5H4SiMe3), and [(η5-Cp*)TaCl2(η5-C5H4SiMe3)]+PF6-
Exposure of a THF solution of tantalocene dichloride complexes (η 5 -Cp*)TaCl 2 (η 5 -C 5 H 4 -SiMe 3 ) (1) and (η 5 -Cp*)TaCl 2 (η 5 -C 5 H 5 ) (2) to the ambient atmosphere for 12 h leads to the formation of new tantalum(V) cationic hydroxo complexes [(η 5 -Cp*)TaCl(OH)(η 5 -C 5 H 4 SiMe 3 )] + -Cl- (3) and [(η 5 -Cp*)TaCl(OH)(η 5 -C 5 H 5 )]+Cl - (4). This oxidation reaction is more rapid under oxygen atmosphere since the hydroxo complexes are obtained in better yields within only 15 min. The hydroxo complexes are easily deprotonated by base to generate oxo complexes 5 and 6, which, in turn, react with trimethylsilyl triflate, giving the corresponding cationic silylated complexes 7 and 8…
Gold(I)-Coumarin-Caffeine-Based Complexes as New Potential Anti-Inflammatory and Anticancer Trackable Agents.
Three new gold(I)-coumarin-based trackable therapeutic complexes and two non-trackable analogues have been synthesised and fully characterised. They all display anti-proliferative properties on several types of cancer cell lines, including those of colon, breast, and prostate. Two complexes displayed significant anti-inflammatory effects; one displayed pro-inflammatory behaviour; this highlights the impact of the position of the fluorophore on the caffeine scaffold. Additionally, the three coumarin derivatives could be visualised in vitro by two-photon microscopy.
Bimetallic complexes with ruthenium and tantalocene moieties: Synthesis and use in a catalytic cyclopropanation reaction
Abstract The reaction of the tantalocene dichloride monophosphines ( 1 – 2 ) with the binuclear complex [( p -cymene)RuCl 2 ] 2 gives the heterobimetallic compounds ( p -cymene)[(η 5 -C 5 H 5 )(μ-η 5 :η 1 -C 5 H 4 (CH 2 ) 2 PR 2 )TaCl 2 ]RuCl 2 ( 3 – 4 ). The air oxidation of these bimetallic species 3 – 4 , leads to the cationic hydroxo tantalum ruthenium derivatives 5 – 6 . The last ones are easily deprotonated by a base to afford the oxo analogues 7 – 8 . A preliminary assessment in catalytic cyclopropanation of styrene with tantalum ruthenium bimetallic complexes 3 – 8 as precatalysts revealed a cooperative effect with a subtle role of the early metal fragment.
A Straightforward Route to Homoallyl-Homocrotylamines Promoted by a Titanium Complex
I�-Allyltitanium complexes, generated in situ from 1,3-dienes and Cp2TiH, react with benzotriazole derivatives to give homoallylic amines in good yields. Under similar conditions, triple cascade reactions (allyltitanation followed by cationic 2-aza-Cope rearrangement followed by a second allyltitanation) occur from bis(benzotriazolyl) compounds affording a straightforward route to homoallyl-(E)-homocrotylamines. A theoretical study provides further insight into the factors that govern the selectivity of this sequence of reactions. The titanium-promoted reductive coupling of 1,3-dienes with bis(benzotriazolyl) compounds as substrates led selectively to homoallyl-homocrotylamines through a tr…
New Gold(I) Organometallic Compounds with Biological Activity in Cancer Cells (Eur. J. Inorg. Chem. 27/2014)
Insertion Reactions of Neutral Phosphidozirconocene Complexes as a Convenient Entry into Frustrated Lewis Pair Territory
International audience; Neutral phosphidozirconocene complexes [Cp2Zr(PR2)Me] (Cp=cyclopentadienyl; 1a: R=cyclohexyl (Cy); 1b: R=mesityl (Mes); 1c: R=tBu) undergo insertion into the Zr-P bond by non-enolisable carbonyl building blocks (O=CRR), such as benzophenone, aldehydes, paraformaldehyde or CO2, to give [Cp2Zr(OCRRPR2)Me] (3-7). Depending on the steric bulk around P, complexes 3-7 react with B(C6F5)(3) to give O-bridged cationic zirconocene dimers that display typical frustrated Lewis pair (FLP)/ambiphilic ligand behaviour. Thus, the reaction of {[Cp2Zr(-OCHPhPCy2)][MeB(C6F5)(3)]}(2) (10a) with chalcone results in 1,4 addition of the Zr+/P FLP, whereas the reaction of {[Cp2Zr(-OCHFcPCy…
Ti–Ru bimetallic complexes: catalysts for ring-closing metathesis
The reaction of the titanocene monophosphanes ( 1 – 4 ) with the dimer [( p -cymene)RuCl 2 ] 2 gives the heterobimetallic compounds ( p -cymene)[(η 5 -C 5 H 5 )(μ-η 5 :η 1 -C 5 H 4 (CR 2 ) n PR′ 2 )TiCl 2 ]RuCl 2 ( 5 – 8 ). The structure of 8 , determined by X-ray diffraction, is reported here. A preliminary assessment of the performance of these complexes in ring-closing metathesis (RCM) revealed an excellent Ti–Ru–allenylidene pre-catalyst 12 .
Synthesis of enol esters catalysed by 'early–late' Ti–Ru complexes
Abstract The titane–ruthenium heterobimetallic compounds ( p -cymene)[(η 5 -C 5 H 5 )(μ-η 5 :η 1 -C 5 H 4 (CH 2 ) m PR 2 )TiCl 2 ]RuCl 2 4 – 6 have been revealed to be quite good catalysts for the addition of formic acid to 1-hexyne and phenylacetylene. These preliminary results led us to synthesize new tetrametallic complexes 10 – 12 via the reaction of the titanocene phosphanes 1 – 3 with the polymer [Ru(CO) 2 (μ-O 2 CH)] n . Their catalytic ability for the enol esters formation has been studied.
Phosphido- and Amidozirconocene Cation-Based Frustrated Lewis Pair Chemistry
Methyl abstraction from neutral [Cp2ZrMe(ERR')] complexes 1 (E = N, P; R, R' = alkyl, aryl) with either B(C6F5)3 or [Ph3C][B(C6F5)4] results in the formation of [Cp2Zr(ERR')][X] complexes 2 (X(-) = MeB(C6F5)3(-), B(C6F5)4(-)). The X-ray structure of amido complexes [Cp2Zr(NPh2)][MeB(C6F5)3] (2d) and [Cp2Zr(N(t)BuAr)][B(C6F5)4] (2e', Ar = 3,5-C6H3(CH3)2) is reported, showing a sterically dependent Zr/N-π interaction. Complexes 2 catalyze the hydrogenation of electron-rich olefins and alkynes under mild conditions (room temperature, 1.5 bar H2). Complex 2e binds CO2, giving [Cp2Zr(CO2)(N(t)BuAr)]2[MeB(C6F5)3]2 (3e). Amido complex 2d reacts with benzaldehyde yielding [Cp2Zr(OCH2Ph)((OC)PhNPh2)…
Novel heterobimetallic radiotheranostic: preparation, activity, and biodistribution.
A novel Ru(II) (arene) theranostic complex is presented. It is based on a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid macrocycle bearing a triarylphosphine and can be tracked in vivo by using the γ emission of (153) Sm atoms. Notably, the heteroditopic ligand can be selectively metalated with ruthenium at the phosphorus atom despite the presence of other functionalities that are prone to metal coordination. Subsequent labeling with radionuclides such as (153) Sm can then be performed easily. The resulting heterobimetallic complex exhibits favorable solubility and stability properties in biologically relevant media. It also shows in vitro cytotoxicity in line with that expected …
ChemInform Abstract: First Titanium-Catalyzed 1,4-Hydrophosphination of 1,3-Dienes.
Titanium imido complexes stabilised by bis(iminophosphoranyl)methanide ligands: the influence of N-substituents on solution dynamics and reactivity
Terminal titanium imido complexes of the general formula [Ti(N(t)Bu)Cl{CH(Ph2PNR)2}] 4 (R = Ph, (i)Pr, (t)Bu) are reported. These compounds were synthesized from the corresponding Li adducts 3 of BIPMH (bis(iminophosphoranyl)methanide) and Mountford's complex [Ti(N(t)Bu)Cl2(Py)3]. The crystal structures of two of the Ti complexes (R = Ph, (t)Bu) and two of the Li compounds (R = (i)Pr, (t)Bu) are reported. Dynamic solution NMR spectroscopy reveals a dynamic isomerisation process in the case of the Ti complex 4c (R = (t)Bu). DFT studies showed that this dynamic process comes from steric repulsion between the imido ligand and the (t)Bu N-substituents on the BIPMH ligand. Complexes 4 were teste…
Reinvestigation of the Pd-catalysed bis(silylation) of alkynes with 1,1,2,2-tetramethyl-1,2-bis(phenylthiomethyl)disilane: Unexpected formation of the eight-membered siloxane-chelate complex cis-[PdCl2{(PhSCH2SiMe2)2O}].
International audience; The bis(silylated) alkenes Z-(PhSCH2)Me2SiC(H)=C(Fc)SiMe2(CH2SPh) (2) and Z-(PhSCH2)Me2SiC(H)=C(bipheny)SiMe2(CH2SPh) (3) have been prepared by Pd-catalysed double silylation of ethynylferrocene and 4-ethynyl-1,1'-biphenyl in the presence of 1,1,2,2-tetramethyl-1,2-bis(phenylthiomethyl)disilane (1). A reinvestigation on the interaction of 1 with [PdCl2(PhCN)2] in technical-grade CH2Cl2 as solvent revealed competition between reduction to elemental palladium (due to oxidative addition of the Si-Si bond across Pd(II) and subsequent reductive elimination) and formation of an unusual eight-membered chelate complex cis-[PdCl2{(PhSCH2SiMe2)2O}] (4), which is fluxional in s…
[TiPHOS(Rh)]+: A Fortuitous Coordination Mode and an Effective Hydrosilylation Bimetallic Catalyst
The reaction of the titanocene diphosphine {(η5-C5H5)[η5-C5Me3-1,2-(PPh2)2]TiCl2} (TiPHOS; 1) with [Rh(COD)2](OTf) led to the new early−late heterobimetallic complex [(TiPHOS)Rh(COD)](OTf) (2), who...
Evidence of intramolecular electron transfer between two metallic atoms in a bimetallic complex by electrochemical methods
The electrochemical properties of the monomeric complex [(η5-C5H5)(μ-η5:η1-C5H4(CH2)2P(C6H5)2TiCl2] 1 and the heterobimetallic complex [(η5-C5H5)(μ-η5:η1-C5H4(CH2)2P(C6H5)2TiCl2][RuCl2(C6H4(CH3)(C3H7))] 2 have been studied by cyclic voltammetry, controlled potential electrolysis and rotating disk electrode voltammetry. An unexpected electron transfer between the two heterobimetallic atoms has been observed. This transfer takes place via an intramolecular interaction, hence via a chloride bridge. Electrochemical simulation has been carried out to verify experimental results and to obtain the kinetic constant of the proposed square scheme.
Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.
International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…
Atom Transfer Radical Addition Catalyzed by Ruthenium–Arene Complexes Bearing a Hybrid Phosphine–Diene Ligand
International audience; The synthesis and characterization of a series of arene ruthenium complexes bearing either (3,5-cycloheptadienyl)diphenylphosphine or (cycloheptyl)-diphenylphosphine are reported. Upon irradiation or heating, all these complexes lose their arene ligand but then exhibit a different behavior depending on the nature of the phosphine ligand. (Cycloheptadienyl)phosphine complexes 1 and 3 give a cationic dinuclear Ru complex 5 for which the two Ru atoms are bridged by three chlorido ligands and flanked by two tridendate (cycloheptadienyl)phosphines. (Cycloheptyl)-diphenylphosphine complexes 2 and 4 undergo arene exchange when toluene is used as solvent or degrade in dithlo…
Synthesis and Complexation of the Metalloligand {(η5-C5H5)[η5-C5Me3-1,2-(PPh2)2]TiCl2} (TiPHOS): The First Example of a 1,2-Bis(diphenylphosphanyl)titanocene Derivative
The reaction of lithium 1,2-bis(diphenylphosphanyl)trimethylcyclopentadienide (1) with CpTiCl3 leads to the formation of the titanocene diphosphane {(η5-C5H5)[η5-C5Me3-1,2-(PPh2)2]TiCl2} (TiPHOS, 2). This metalloligand reacts readily with (NBD)Cr(CO)4 and W(CO)5(THF) to give, in both cases, the bimetallic chelate complexes (TiPHOS)Cr(CO)4 (3) and (TiPHOS)W(CO)4 (4). The structure of 4 has been determined by X-ray diffraction. The synthesis of a new early-late heterobimetallic complex (TiPHOS)Rh(CO)Cl (5) is reported.
Phenoxyamidine Zn and Al Complexes: Synthesis, Characterization, and Use in the Ring-Opening Polymerization of Lactide
International audience; Herein we report the synthesis of new ditopic ligands, which consist of a phenoxy group and N,N,N'trisubstituted amidines linked by a methylene spacer (L1-L4). Their coordination chemistry has been studied/investigated with Zn(II) and Al(III). Alkane elimination route between the phenol-amidine proligands (L1H-L4H) and Et2Zn led to dinuclear complexes [(L1-L4)ZnEt]2 (1a-4a) in which the Zn centers are chelated by phenoxyamidine ligands and bridged through the oxygen atom of the phenoxy groups. Salt metathesis reaction between two equivalents of the sodium amidine phenate L1Na and ZnCl2 led to a bis-chelate chiral spiro-complex (L12Zn) 1a'. Analogous alkane eliminatio…
Synthesis and structural studies of TiRu polymetallic systems
Abstract The reaction of the titanocene monophosphines 1 and 2 with the dimer [( p -cymene)RuCl 2 ] 2 give the heterobimetallic compounds ( p -cymene)[(η 5 -C 5 H 4 )(μ-η 5 :η 1 -C 5 H 4 PPh 2 )TiCl 2 ]RuCl 2 and ( p -cymene)[(η 5 -C 5 H 4 )(μ-η 5 :η 1 -C 5 H 4 CH 2 CH 2 PPh 2 )TiCl 2 ]RuCl 2 , respectively. Both structures have been confirmed by X-ray diffraction. By using same procedure, the synthesis of a trimetallic complex RuTiRu has been achieved.
Assessment of Catalysis by Arene‐Ruthenium Complexes Containing Phosphane or NHC Groups bearing Pendant Conjugated Diene Systems
Two p-cymene-ruthenium complexes 1 and 2 were isolated in high yields by treating the [RuCl2(p-cymene)]2 dimer with new hybrid phosphane- or NHC-linked diene ligands. Both complexes were fully characterized by NMR spectroscopy, and the molecular structure of the ruthenium–p-cymene complex 1, containing the phosphane–diene ligand system, was determined by X-ray diffraction analysis. The catalytic activities of both compounds were probed in atom-transfer radical addition (ATRA) and polymerization (ATRP), in the cyclopropanation of olefins, in the ring-opening metathesis polymerization (ROMP) of norbornene, and in the synthesis of enol esters from hex-1-yne and 4-acetoxybenzoic acid.
Coordinatively Unsaturated Amidotitanocene Cations with Inverted σ and π Bond Strengths: Controlled Release of Aminyl Radicals and Hydrogenation/Dehydrogenation Catalysis
Cationic amidotitanocene complexes [Cp2 Ti(NPhAr)][B(C6 F5 )4 ] (Cp=η5 -C5 H5 ; Ar=phenyl (1 a), p-tolyl (1 b), p-anisyl (1 c)) were isolated. The bonding situation was studied by DFT (Density Functional Theory) using EDA-NOCV (Energy Decomposition Analysis with Natural Orbitals for Chemical Valence). The polar Ti-N bond in 1 a-c features an unusual inversion of σ and π bond strengths responsible for the balance between stability and reactivity in these coordinatively unsaturated species. In solution, 1 a-c undergo photolytic Ti-N cleavage to release Ti(III) species and aminyl radicals ⋅NPhAr. Reaction of 1 b with H3 BNHMe2 results in fast homolytic Ti-N cleavage to give [Cp2 Ti(H3 BNHMe2 )…
ChemInform Abstract: nBuLi-Mediated Hydrophosphination: A Simple Route to Valuable Organophosphorus Compounds.
A straightforward synthesis of homoallyl- and allylphosphanes has been developed using nBuLi-mediated hydrophosphination of conjugated dienes. In all the cases the phosphorus atom of the reacting phosphane attacked the sterically less demanding side of the diene exclusively. In addition, high regioselectivities towards 1,2- or 1,4-addition products were observed depending on the nature of the dienes. This hydrophosphination reaction was extended to a variety of substrates such as styrene derivatives, alkynes and 1,3,5-cycloheptatriene. The structures of three hydrophosphination products were confirmed by X-ray diffraction studies.
Multinuclear Cytotoxic Metallodrugs: Physicochemical Characterization and Biological Properties of Novel Heteronuclear Gold-Titanium Complexes
An unprecedented series of titanocene-gold bi- and trimetallic complexes of the general formula [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)](m)AuCl(x)](q+) (n = 0, 2, or 4; m = 1, x = 1, q = 0 or m = 2, x = 0, q = 1) have been prepared and characterized spectroscopically. The luminescence spectroscopy and photophysics of one of the compounds, [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)PPh(2))TiCl(2)](2)Au]PF(6), have been investigated in 2MeTHF solution and in the solid state at 77 and 298 K. Evidence for interfragment interactions based on the comparison of electronic band positions and emission lifetimes, namely, triplet energy transfer (ET) from the Au- to the Ti-containing…
Ruthenium titanocene and ruthenium titanium half-sandwich bimetallic complexes in catalytic cyclopropanation
Abstract The reaction of the phosphine functionalised titanium half-sandwich complexes 7, 9 and 10 with the binuclear complex [(p-cymene)RuCl2]2 allowed the access to three new early-late bimetallic complexes (p-cymene)[(μ-η5:η1-C5H4(CH2)nPR2)TiX3]RuCl2 (11–13). The structure of 11 (n = 0, X = Cl) has been confirmed by X-ray diffraction. The ruthenium titanium half-sandwich bimetallic complexes so formed and the ruthenium titanocene analogues 4–6 catalyse the addition of ethyl diazoacetate to styrene with high selectivity toward cyclopropanation versus metathesis contrary to the monometallic complexes (p-cymene)RuCl2PR3.
A Route toward (Aminomethyl)cyclopentadienide Ligands and Their Group 4 Metal Complexes
International audience
Hydrogen: a good partner for rhodium-catalyzed hydrosilylation
The influence of hydrogen pressure on the hydrosilylation of ketones catalyzed by [((S)-SYNPHOS)Rh(nbd)]OTf has been studied. We have notably demonstrated that hydrogen significantly affected the outcome of the reaction while not being consumed as stoichiometric reducing agent. In THF, diethyl ether or toluene, the hydrogen pressure exceedingly accelerated the hydrosilylation reaction and preserved or even improved the enantioselectivity of the process. In CH2Cl2, the rhodium catalyst also showed generally higher catalytic activity under hydrogen pressure. Most serendipitously, several ketones were found to give products of absolute opposite configuration upon performing the hydrosilylation…
First titanium-catalyzed 1,4-hydrophosphination of 1,3-dienes
International audience
Development of Trackable Anticancer Agents Based on Metal Complexes
Abstract The design of trackable anticancer agents is of major interest for the future development of therapeutics based on nonplatinum metal complexes such as Ru(II), Os(II), or Au(I) derivatives, and more particularly for the understanding of the mechanism of action of these metal-based drugs. This review reports the synthesis and the first biological studies of original trackable complexes, in which the metal complex was coupled to an imaging probe, such as a fluorophore (coumarin, borodipyrromethene derivative (BODIPY), porphyrin), or a chelating agent (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)) for radioisotopic imaging PET (positron emission tomography) or SPECT …
ChemInform Abstract: A Straightforward Route to Homoallyl-Homocrotylamines Promoted by a Titanium Complex.
This publication also contains theoretical studies and calculations concerning the reaction.
ChemInform Abstract: Phosphido- and Amidozirconocene Cation-Based Frustrated Lewis Pair Chemistry.
Methyl abstraction from neutral [Cp2ZrMe(ERR′)] complexes 1 (E = N, P; R, R′ = alkyl, aryl) with either B(C6F5)3 or [Ph3C][B(C6F5)4] results in the formation of [Cp2Zr(ERR′)][X] complexes 2 (X– = MeB(C6F5)3–, B(C6F5)4–). The X-ray structure of amido complexes [Cp2Zr(NPh2)][MeB(C6F5)3] (2d) and [Cp2Zr(NtBuAr)][B(C6F5)4] (2e′, Ar = 3,5-C6H3(CH3)2) is reported, showing a sterically dependent Zr/N−π interaction. Complexes 2 catalyze the hydrogenation of electron-rich olefins and alkynes under mild conditions (room temperature, 1.5 bar H2). Complex 2e binds CO2, giving [Cp2Zr(CO2)(NtBuAr)]2[MeB(C6F5)3]2 (3e). Amido complex 2d reacts with benzaldehyde yielding [Cp2Zr(OCH2Ph)((OC)PhNPh2)][MeB(C6F5…
Coumarin-Phosphine-Based Smart Probes for Tracking Biologically Relevant Metal Complexes: From Theoretical to Biological Investigations
International audience; Ten metal-based complexes and associated ligands have been synthesized and characterized. One of the metal ligands is a coumarin-phosphine derivative, which displays tunable fluorescence properties. The fluorescence is quenched in the case of the free ligand and ruthenium and osmium complexes, whereas it is strong for the gold complexes and phosphonium derivatives. These trends were rationalized by theoretical calculations, which revealed non-radiative channels involving a dark state for the free ligands that is lower in energy than the emissive state and is responsible for the quenching of fluorescence. For the Ru-II and Os-II complexes, other non-radiative channels…
First Titanium-Catalyzed anti-1,4-Hydrosilylation of Dienes
1,4-Hydrosilylation of dienes catalyzed by late transition metals constitutes a straightforward access to allylsilanes. However, when unsymmetric dienes are used, it generally leads to a mixture of regioisomers (tail or head products) via Z-specific 1,4-addition. Here we describe the first catalytic anti-1,4-hydrosilylation of dienes using the cheap and stable Cp2TiF2 complex as catalyst. It affords E-allylsilanes in good to excellent yields with an unprecedented regio- and diastereoselectivity. Dehydrogenative double silylation of dienes can be selectively obtained by simply changing the activation protocol of the precatalyst.
Direct P-functionalization of azobenzene by a cationic phosphidozirconocene complex.
International audience; We report that the cationic phosphidozirconocene complex [(eta(5)-C5H5)(2)Zr(PCy2)][CH3B(C6F5)(3)] (II) reacts with azobenzene, resulting in the expedient formation of Zr complex (2) bound to a tridentate PNN ligand. This reaction proceeds by a mechanism of cooperative nucleophilic substitution of hydrogen. The intermediate sigma(H) adduct (1) has been characterized by NMR spectroscopy.
Towards a Library of “Early‐Late” Ti–Ru Bimetallic Complexes
A series of new titanocene phosphanes 3–6 have been prepared by replacing both chloride atoms at the titanium atom of the complexes [TiCl2(η5-C5H5){η5-C5H4(CH2)2PR2}] (1: R = Ph; 2: R = Cy) by sodium fluoride or sodium benzoate in two-phase systems. Treatment of these new metalloligands with the binuclear complex [(p-cymene)RuCl2]2 affords the targeted titanocene difluoride and titanocene dibenzoate bimetallic ruthenium complexes 8–11. The first chiral Ti–Ru bimetallic complex 12 bearing a binaphthyloxy ligand at the titanium centre has been synthesised in this way. In each series, an X-ray crystal structure has been determined. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, …
Synthetic Endeavors toward Titanium Based Frustrated Lewis Pairs with Controlled Electronic and Steric Properties
A new family of cationic Ti complexes 4′ with a pendant phosphine of general formula [CpCpPTiOAr][BPh4] (Cp = η5-C5H5; CpP = η5-C5H4(CMe2)PR2) has been prepared in four steps from 6,6-dimethylfulvene. These complexes were designed to behave as Ti based frustrated Lewis pairs (FLPs). The key synthetic step is a reduction–oxidation sequence from [CpCpPTiClOAr] complexes 3 using lithium phosphide salts as the reductants and ferricinium tetraphenylborate as the oxidant. Four complexes have been structurally characterized by X-ray diffraction and show elongated Ti–P bonds, above 2.60 A. One complex (4b′: OAr = 2,6-Me2C6H3; PR2 = PCy2) reacted with benzaldehyde to form a typical FLP activation pr…
The Taming of Redox‐Labile Phosphidotitanocene Cations
International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…
ATRP of methyl methacrylate catalysed by novel homo- and heterobimetallic ruthenium complexes
Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures
The targeting of higher-order DNA structures has been thoroughly developed with G-quadruplex DNA but not with other structures like branched DNA (also known as DNA junctions). Because these alternative higher-order DNA architectures might be of high biological relevance, we implemented a high-throughput version of the FRET melting assay that enabled us to map the interactions of a candidate with four different DNA structures (duplex- and quadruplex DNA, three- and four-way junctions) in a rapid and reliable manner. We also introduce a novel index, the BONDS (branched and other noncanonical DNA selectivity) index, to conveniently quantify this differential affinity.
nBuLi-Mediated hydrophosphination: a simple route to valuable organophosphorus compounds
A straightforward synthesis of homoallyl- and allylphosphanes has been developed using nBuLi-mediated hydrophosphination of conjugated dienes. In all the cases the phosphorus atom of the reacting phosphane attacked the sterically less demanding side of the diene exclusively. In addition, high regioselectivities towards 1,2- or 1,4-addition products were observed depending on the nature of the dienes. This hydrophosphination reaction was extended to a variety of substrates such as styrene derivatives, alkynes and 1,3,5-cycloheptatriene. The structures of three hydrophosphination products were confirmed by X-ray diffraction studies.
ATRP of Methacrylates Catalysed by Homo- and Heterobimetallic Ruthenium Complexes
The catalytic activity of a series of ruthenium-based homo-and heterobimetallic complexes was determined by investigating the atom transfer radical polymerisation of methyl methacrylate. The complexes under investigation were [(arene)Ru(μ-Cl) 3 RuCl(C 2 H 4 )-(L)] (L = PCy 3 or a N-heterocyclic carbene ligand), [(p-cymene )-Ru(/l-Cl) 3 RuCl(=C=CHR)(PCy 3 )] (R = Ph or t-Bu), and [RuCl 2 -(p-cymene) {PCy 2 (CH2) 2 (n 5 -C 5 H 4 )TiX 2 (n 5 -C 5 H 5 )}] (X = Cl, F, and OBz). The catalytic activity of a variety of related [(p-cymene)-ClRu(μ-Cl) 2 Ru(O/\N)(=CHPh)] complexes (O^N is a Schiff base ligand) is also reported. The results clearly demonstrate that the ligands strongly affect the abili…
Ruthenium and Osmium Complexes of Phosphine-Porphyrin Derivatives as Potential Bimetallic Theranostics: Photophysical Studies
A series of (η6-p-cymene)ruthenium(II)- and osmium(II) complexes of porphyrin-phosphane derivatives have been synthesized as potential bimetallic theranostic candidates. The photophysical and electrochemical properties were investigated, and these species desirably exhibit no or almost no photoinduced intramolecular atom, energy, and electron transfer between the dye and the metallic fragment. These favorable features are mostly associated with the presence of their long chain (i.e., ∼ 1 nm) separating the two functional units. Interestingly, a decrease in emission intensity and lifetimes (up to 35-fold) has been observed, which was ascribed to a small heavy atom effect. This effect is poss…
(Cycloheptadienyl)diphenylphosphine: A Versatile Hybrid Ligand
(3,5-Cycloheptadienyl)diphenylphosphine is easily synthesized from the reaction of diphenylphosphine with 1,3,5-cycloheptatriene. This new phosphine-diene has been coordinated as a monodentate P ligand with Pt, Pd, Au, Ni, and Ru; as a bidentate (P, olefin) ligand with Pt and Pd; and as a tridentate (P, diene) ligand with Rh. Fluxional properties of several complexes have been studied via NMR experiments and theoretical consideration.
“Early–Late” Heterobimetallic Catalysis and Beyond
By combining an ever-increasing number of catalysts or catalytic functions, cooperative catalysis is a research area that grows fast. In the field, “early–late” heterobimetallic complexes are rather old objects but they still continue to fascinate chemists because of their latent reactivity. After a brief and concise overview of cooperative catalysis, this review focuses on “early–late” heterobimetallic complexes that were used in catalysis over the last decades. Examples of dual catalysis using early and late metal partners are also described. This chapter ends with an opening towards therapeutic applications of “early–late” heterobimetallic complexes.
BODIPY-phosphane as a versatile tool for easy access to new metal-based theranostics
A new BODIPY-phosphane was synthesized and proved to be a versatile tool for imaging organometallic complexes. It also led to easy access to a new family of theranostics, featuring gold, ruthenium and osmium complexes. The compounds' cytotoxicity was tested on cancer cells, and their cell uptake was followed by fluorescence microscopy in vitro.
New Gold(I) Organometallic Compounds with Biological Activity in Cancer Cells
N-Heterocyclic carbene gold(I) complexes bearing a fluorescent coumarin ligand were synthesized and characterized by various techniques. The compounds were examined for their antiproliferative effects in normal and tumor cells in vitro; they demonstrated moderate activity and a certain degree of selectivity. The compounds were also shown to efficiently inhibit the selenoenzyme thioredoxin reductase (TrxR), whereas they were poorly effective towards the glutathione reductase (GR) and glutathione peroxidase enzymes. Notably, {3-[(7-methoxy-2-oxo-2H-chromen-4-yl) methyl]-1-methylimidazol-2-ylidene}(tetra-O-acetyl-1-thio-beta-D-glucopyranosido) gold(I) (3) showed a pronounced inhibition of TrxR…
Cover Feature: A Route toward (Aminomethyl)cyclopentadienide Ligands and Their Group 4 Metal Complexes (Eur. J. Inorg. Chem. 34/2018)
Development of Bimetallic Titanocene−Ruthenium−Arene Complexes As Anticancer Agents: Relationships between Structural and Biological Properties
A series of bimetallic titanium-ruthenium complexes of general formula [(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CR(2))(n)PR'R'')TiCl(2)](η(6)-p-cymene)RuCl(2) (n = 0, 1, 2 or 4; R = H or Me; R' = H, Ph, or Cy; R'' = Ph or Cy) have been synthesized, including two novel compounds as well as two cationic derivatives of formula [(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)] [(η(6)-p-cymene)RuCl](BF(4)) (n = 0 or 2). The solid state structure of two of these compounds was also established by X-ray crystallography. The complexes showed a cytotoxic effect on human ovarian cancer cells and were markedly more active than their Ti or Ru monometallic analogues titanocene dichloride and RA…
Highly antiproliferative neutral Ru(ii)-arene phosphine complexes
Six ruthenium(II)- and four gold(I)-phosphine based complexes were synthesized and fully characterized. Some of them displayed strong antiproliferative properties for several types of cancer including colon, breast, and lung. Notably, two of the Ru(II) complexes displayed an IC50 of around 2 μM, which is exceptional for these types of complexes. The dramatic impact of the nature of the arene coordinated on the ruthenium center was clearly evidenced.
Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a “Smart” Probe Answer!
Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. …
Gold( i )–BODIPY–imidazole bimetallic complexes as new potential anti-inflammatory and anticancer trackable agents
International audience; Two new gold(I)–BODIPY–imidazole based trackable therapeutic bimetallic complexes have been synthesized and fully characterized. They display strong antiproliferative properties on several types of cancers including colon, breast, and prostate and one of them presents a significant anti-inflammatory effect. Additionally, the two compounds could be visualised in vitro by confocal microscopy in the submicromolar range.
A Simple Phosphine–Diolefin‐Promoted Copper‐Catalysed N‐Arylation of Pyrazoles with (Hetero)aromatic Bromides: The Case of Chloroarenes Revisited
A molecularly defined new phosphine–diolefin cubane copper pre-catalyst used at 1.25 mol % under mild conditions promotes the coupling of pyrazoles to functionalised aryl and heteroaryl bromides, which hold a variety of functional groups. This versatile phosphorus-based system was thus successfully used, under identical conditions, for the coupling of a large scope of heteroaromatics to selectively produce pyridinyl- and pyrimidinyl-pyrazoles, as well as several novel furyl-, thienyl- and thiazolyl-substituted pyrazoles. The careful investigation of coupling with the analogous aryl and heteroaryl chlorides clearly indicated that for specifically activated chloroarenes a direct nucleophilic …
Reappraising Schmidpeter's bis(iminophosphoranyl)phosphides: coordination to transition metals and bonding analysis
The synthesis and characterization of a range of bis(iminophosphoranyl)phosphide (BIPP) group 4 and coinage metals complexes is reported. BIPP ligands bind group 4 metals in a pseudo fac-fashion, and the central phosphorus atom enables the formation of d0–d10 heterobimetallic complexes. Various DFT computational tools (including AIM, ELF and NCI) show that the phosphorus–metal interaction is either electrostatic (Ti) or dative (Au, Cu). A bridged homobimetallic Cu–Cu complex was also prepared and its spectroscopic properties were investigated. The theoretical analysis of the P–P bond in BIPP complexes reveals that (i) BIPP are closely related to ambiphilic triphosphenium (TP) cations; (ii) …
CCDC 1421130: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1868748: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1424182: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1871410: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1578513: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 987356: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Alexandre Massard, Philippe Richard, Coline Canovas, Cédric Balan, Michel Picquet, Audrey Auffrant, Pierre Le Gendre|2014|Dalton Trans.|43|15098|doi:10.1039/C4DT00746H
CCDC 1978292: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1871415: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1871416: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1978293: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1578514: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 1828666: Experimental Crystal Structure Determination
Related Article: Audrey Trommenschlager, Florian Chotard, Benoît Bertrand, Souheila Amor, Philippe Richard, Ali Bettaïeb, Catherine Paul, Jean-Louis Connat, Pierre Le Gendre, Ewen Bodio|2018|ChemMedChem|13|2408|doi:10.1002/cmdc.201800474
CCDC 1871408: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 881688: Experimental Crystal Structure Determination
Related Article: Vincent Rampazzi, Alexandre Massard, Philippe Richard, Michel Picquet, Pierre Le Gendre, Jean-Cyrille Hierso|2012|ChemCatChem|4|1828|doi:10.1002/cctc.201200368
CCDC 1825467: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1053357: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1825466: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1868745: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1978288: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1978291: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1978295: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1424183: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1985146: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1985142: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1424177: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1825460: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1868749: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1985138: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1978290: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1978289: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1052598: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1985136: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1421134: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1825463: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1052596: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 987359: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Alexandre Massard, Philippe Richard, Coline Canovas, Cédric Balan, Michel Picquet, Audrey Auffrant, Pierre Le Gendre|2014|Dalton Trans.|43|15098|doi:10.1039/C4DT00746H
CCDC 1871418: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1871412: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1828665: Experimental Crystal Structure Determination
Related Article: Audrey Trommenschlager, Florian Chotard, Benoît Bertrand, Souheila Amor, Philippe Richard, Ali Bettaïeb, Catherine Paul, Jean-Louis Connat, Pierre Le Gendre, Ewen Bodio|2018|ChemMedChem|13|2408|doi:10.1002/cmdc.201800474
CCDC 1421135: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1825459: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1052597: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1871414: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1052593: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1578510: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 1868747: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1421138: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1985140: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1978287: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1053358: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1825465: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 987357: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Alexandre Massard, Philippe Richard, Coline Canovas, Cédric Balan, Michel Picquet, Audrey Auffrant, Pierre Le Gendre|2014|Dalton Trans.|43|15098|doi:10.1039/C4DT00746H
CCDC 1937786: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1985143: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1871411: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1420553: Experimental Crystal Structure Determination
Related Article: Lucile Dondaine, Daniel Escudero, Moussa Ali, Philippe Richard, Franck Denat, Ali Bettaieb, Pierre Le Gendre, Catherine Paul, Denis Jacquemin, Christine Goze and Ewen Bodio|2016|Eur.J.Inorg.Chem.||545|doi:10.1002/ejic.201501304
CCDC 1421133: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1014822: Experimental Crystal Structure Determination
Related Article: Moussa Ali , Lucile Dondaine , Anais Adolle , Carla Sampaio , Florian Chotard , Philippe Richard , Franck Denat , Ali Bettaieb , Pierre Le Gendre , Véronique Laurens , Christine Goze , Catherine Paul , and Ewen Bodio|2015|J.Med.Chem.|58|4521|doi:10.1021/acs.jmedchem.5b00480
CCDC 1578511: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 1424181: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1538131: Experimental Crystal Structure Determination
Related Article: Audrey Trommenschlager, Florian Chotard, Benoît Bertrand, Souheila Amor, Lucile Dondaine, Michel Picquet, Philippe Richard, Ali Bettaïeb, Pierre Le Gendre, Catherine Paul, Christine Goze, Ewen Bodio|2017|Dalton Trans.|46|8051|doi:10.1039/C7DT01377A
CCDC 1052592: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 987358: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Alexandre Massard, Philippe Richard, Coline Canovas, Cédric Balan, Michel Picquet, Audrey Auffrant, Pierre Le Gendre|2014|Dalton Trans.|43|15098|doi:10.1039/C4DT00746H
CCDC 1871409: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1578512: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 1421131: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1052595: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1014823: Experimental Crystal Structure Determination
Related Article: Moussa Ali , Lucile Dondaine , Anais Adolle , Carla Sampaio , Florian Chotard , Philippe Richard , Franck Denat , Ali Bettaieb , Pierre Le Gendre , Véronique Laurens , Christine Goze , Catherine Paul , and Ewen Bodio|2015|J.Med.Chem.|58|4521|doi:10.1021/acs.jmedchem.5b00480
CCDC 1052594: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Philippe Richard, Cédric Balan, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker, Pierre Le Gendre|2015|Organometallics|34|2000|doi:10.1021/acs.organomet.5b00250
CCDC 1825462: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1421128: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1421129: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1871417: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1978294: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Raluca Malacea-Kabbara, Rosita Lapenta, Aymeric Dajnak, Philippe Richard, Hélène Cattey, Anaëlle Bolley, Alfonso Grassi, Stefano Milione, Audrey Auffrant, Samuel Dagorne, Pierre Le Gendre|2020|Dalton Trans.|49|6989|doi:10.1039/D0DT00972E
CCDC 1825461: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1421132: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1825458: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1985135: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1420552: Experimental Crystal Structure Determination
Related Article: Lucile Dondaine, Daniel Escudero, Moussa Ali, Philippe Richard, Franck Denat, Ali Bettaieb, Pierre Le Gendre, Catherine Paul, Denis Jacquemin, Christine Goze and Ewen Bodio|2016|Eur.J.Inorg.Chem.||545|doi:10.1002/ejic.201501304
CCDC 1868750: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1985137: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1985139: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1035220: Experimental Crystal Structure Determination
Related Article: Pierre D. Harvey, Semra Tasan, Claude P. Gros, Charles H. Devillers, Philippe Richard, Pierre Le Gendre, and Ewen Bodio|2015|Organometallics|34|1218|doi:10.1021/om5011808
CCDC 1424178: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1440373: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Dalton Trans.|45|3711|doi:10.1039/C6DT00416D
CCDC 1825464: Experimental Crystal Structure Determination
Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636
CCDC 1985134: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1868746: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1424179: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1868743: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Rosita Lapenta, Anaëlle Bolley, Audrey Trommenschlager, Cédric Balan, Jérôme Bayardon, Raluca Malacea-Kabbara, Quentin Bonnin, Ewen Bodio, Hélène Cattey, Philippe Richard, Stefano Milione, Alfonso Grassi, Samuel Dagorne, Pierre Le Gendre|2019|Organometallics|38|4147|doi:10.1021/acs.organomet.9b00501
CCDC 1440372: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Dalton Trans.|45|3711|doi:10.1039/C6DT00416D
CCDC 1056295: Experimental Crystal Structure Determination
Related Article: Johann Baraut, Alexandre Massard, Florian Chotard, Ewen Bodio, Michel Picquet, Philippe Richard, Yannick Borguet, François Nicks, Albert Demonceau, Pierre Le Gendre|2015|Eur.J.Inorg.Chem.||2671|doi:10.1002/ejic.201500054
CCDC 1985141: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1421136: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551
CCDC 1578509: Experimental Crystal Structure Determination
Related Article: Florian Chotard, Raluca Malacea-Kabbara, Cédric Balan, Ewen Bodio, Michel Picquet, Philippe Richard, Miguel Ponce-Vargas, Paul Fleurat-Lessard, Pierre Le Gendre|2018|Organometallics|37|812|doi:10.1021/acs.organomet.7b00851
CCDC 1985144: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1871413: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Quentin Bonnin, Stéphane Brandès, Philippe Richard, Paul Fleurat-Lessard, Charles H. Devillers, Cédric Balan, Pierre Le Gendre, Gerald Kehr, Gerhard Erker|2019|Chem.-Eur.J.|25|2803|doi:10.1002/chem.201805430
CCDC 1424180: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1424184: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, Gerhard Erker|2016|Chem.-Eur.J.|22|4285|doi:10.1002/chem.201504792
CCDC 1985145: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, E. Daiann Sosa Carrizo, Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre, Paul Fleurat-Lessard|2021|Chemical Science|12|253|doi:10.1039/D0SC04736H
CCDC 1023384: Experimental Crystal Structure Determination
Related Article: Johann Baraut, Alexandre Massard, Florian Chotard, Ewen Bodio, Michel Picquet, Philippe Richard, Yannick Borguet, François Nicks, Albert Demonceau, Pierre Le Gendre|2015|Eur.J.Inorg.Chem.||2671|doi:10.1002/ejic.201500054
CCDC 1014821: Experimental Crystal Structure Determination
Related Article: Moussa Ali , Lucile Dondaine , Anais Adolle , Carla Sampaio , Florian Chotard , Philippe Richard , Franck Denat , Ali Bettaieb , Pierre Le Gendre , Véronique Laurens , Christine Goze , Catherine Paul , and Ewen Bodio|2015|J.Med.Chem.|58|4521|doi:10.1021/acs.jmedchem.5b00480
CCDC 1421137: Experimental Crystal Structure Determination
Related Article: Adrien T. Normand, Constantin G. Daniliuc, Birgit Wibbeling, Gerald Kehr, Pierre Le Gendre, and Gerhard Erker|2015|J.Am.Chem.Soc.|137|10796|doi:10.1021/jacs.5b06551