0000000000457714
AUTHOR
Giuseppe Cavallaro
Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts
A thermo-responsive polymer such as poly(N-isopropylacrylamide) (PNIPAAM) was covalently grafted on the external surface of halloysite nanotubes (HNTs) by means of microwave irradiation. This nanomaterial was used as a support and stabilizer for palladium nanoparticles. The obtained HNT–PNIPAAM/PdNPs was characterized by means of TGA, SEM, EDS and TEM analyses. The palladium content of the catalyst was estimated to be 0.4 wt%. The stability of the catalytic material at different temperatures (below and above the PNIPAAM lower critical solution temperature) was tested in the Suzuki reaction under microwave irradiation. In addition, TEM analysis after five consecutive runs was performed. The …
Properties and Structural Studies of Multi-Wall Carbon Nanotubes-Phosphate Ester Hybrids
Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been investigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demonstrated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase in the decomposition temperature for the hybrids with respect to pristine MWCNT.
Halloysite Nanotube with Fluorinated Lumen: Non-Foaming Nanocontainer for Storage and Controlled Release of Oxygen in Aqueous Media
Halloysite clay nanotubes were selectivity modified by adsorbing perfluoroalkylated anionic surfactants at the inner surface. The modified nanotubes formed kinetically stable dispersions due to the enhanced electrostatic repulsions exercised between the particles. We proved that the modified nanotubes can be used as non-foaming oxygen nanocontainers in aqueous media. The gas release from supersaturated dispersions can be controlled by external stimuli and system composition. In conclusion, we managed to put forward an easy strategy to develop smart materials from natural nanoclays, which can endow important applications like the storage and delivery of gas.
Preparation of palladated porous nitrogen-doped carbon using halloysite as porogen: disclosing its utility as a hydrogenation catalyst
AbstractIn this article, halloysite nanoclay (Hal) was used as porogen for the synthesis of nitrogen doped porous carbon material with high specific surface area and pore volume. To this purpose, polymerization of melamine and terephthalaldehyde (MT) was performed in the presence of amine-functionalized carbon coated Hal (Hal@Glu-2N) that was prepared from hydrothermal treatment of Hal and glucose. Then, the prepared nanocomposite was palladated and carbonized to afford Pd@Hal@C. To further improve the textural properties of the nanocomposite, and introduce more pores in its structure, Hal nanotubes were etched. The characterization of the resulting compound, Pd@C, and comparing it with Pd@…
Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media.
Studies on the adsorption of biopolymers onto halloysite nanotubes (HNTs) in water were conducted. Three polymers with different charges-anionic (pectin), neutral (hydroxypropyl cellulose), and cationic (chitosan)-were chosen. The thermodynamic parameters for the adsorption of polymers onto the HNT surface were determined by isothermal titration calorimetry (ITC). The experimental data were interpreted based on a Langmuir adsorption model. The standard variations in free energy, enthalpy, and entropy of the process were obtained and discussed. Turbidimetry was used to evaluate the stability of functionalized nanoparticles in water. The ζ-potential clarified the surface charge properties of …
Insights into grafting of (3-Mercaptopropyl) trimethoxy silane on halloysite nanotubes surface
Abstract Functionalization of halloysite nanotubes surface by using organosilanes is sensitive to the reaction conditions. Halloysite nanotubes (HNTs) were modified using (3-Mercaptopropyl) trimethoxy silane (MPTMS). The experiments were performed under different reaction conditions including, various solvents [Toluene, Tetrahydrofuran (THF), Ethanol, n-Hexane, 1,4 Dioxane and Acetonitrile], water content in the reaction media, volume of solvent, number of moles of silane and catalysts (triethyl amine, ammonia solution and tetra-ethoxy titanium). The elemental analysis, FT-IR analysis were used to identify the samples, which attained the highest percent of functionalization. SEM image and t…
Tubular Nanocontainers for Drug Delivery
New Insights into Segmental Packing, Chain Dynamics and Thermomechanical Performance of Aliphatic Polyurea Composites: Comparison between Silica Oxides and Titanium (III) Oxides
Polyurea (PU) is intrinsically reinforced by its microphase-separated morphology, giving its excellent mechanical properties. In this study, it is shown how a high-index PU formulation applies easy diffusion of hard segments into the soft phase of the PU matrix and tune its chain mobility. Moreover, the interaction of micro (>100 nm), nano (<100 nm) fillers with the microdomains and their thermomechanical properties are unraveled. Herein, nanosilica oxide (NS) and micro titanium (III) oxide (Ti2O3) are incorporated at low loadings into a solvent-free two-component aliphatic PU via insitu polymerization. While NS achieves an interfacial interaction with urea groups and forms a tight ha…
Halloysite Nanotubes: Controlled Access and Release by Smart Gates
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH) 2 into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO 2 gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We…
Ecocompatible Halloysite/Cucurbit[8]uril Hybrid as Efficient Nanosponge for Pollutants Removal
Hybrid materials based on halloysite nanotubes (HNT) and cucurbit[8]uril (CB[8]) were prepared with the aim to obtain efficient nanosponges towards hydrocarbons both in liquid and vapor phases. The loading on both HNT surfaces and the hybrid morphology were evidenced by FTIR spectroscopy, thermogravimetric analysis and scanning electron microscopy. In order to highlight the interactions in the hybrid 13C {1H} CP-MAS NMR experiments were performed. The aqueous colloidal stability of HNT/CB[8] was highlighted through ζ potential and dynamic light scattering measurements. The HNT/CB[8] composite was employed as nanosponge to capture aromatic oils in aqueous phase as evidenced by fluorescence e…
Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery
[Image: see text] A novel carrier system based on halloysite nanotubes (HNT), for the potential intraarticular delivery of kartogenin (KGN) by means laponite (Lap) hydrogel (HNT/KGN/Lap), is developed. The drug was first loaded into HNT, and the hybrid composite obtained was used as filler for laponite hydrogel. Both the filler and the hydrogel were thoroughly investigated by several techniques and the hydrogel morphology was imaged by transmission electron microscopy. Furthermore, the gelating ability of laponite in the presence of the filler and the rheological properties of the hybrid hydrogel were also investigated. The kinetic release of kartogenin from HNT and HNT/Lap hybrid hydrogel …
A structural comparison of halloysite nanotubes of different origin by Small-Angle Neutron Scattering (SANS) and Electric Birefringence
The structure of halloysite nanotubes (Hal) from different mines was investigated by Small-Angle Neutron Scattering (SANS) and Electric Birefringence (EBR) experiments. The analysis of the SANS curves allowed us to correlate the sizes and polydispersity and the specific surfaces (obtained by a Porod analysis of the SANS data) of the nanotubes with their specific geological setting. Contrast matching measurements were performed on patch Hal (from Western Australia) in order to determine their experimental scattering length density for a more precise analysis. Further characterization of the mesoscopic structure of Hal was carried out by Electric Birefringence (EBR), which allowed to study th…
Synthesis and characterization of nanomaterial based on halloysite and hectorite clay minerals covalently bridged
Halloysite is an aluminosilicate clay with a predominantly hollow tubular structure (HNTs) able to act as a nanocontainer for the encapsulation of several chemicals. However, HNTs possess low affinity for metal ions in their pristine form and they need to be modified for improving their adsorption capabilities. Therefore, to overcome this issue herein we report a straightforward approach for the covalent modification of the external surface of halloysite nanotubes with hectorite clay. Compared to halloysite, hectorite possesses a lamellar structure with higher cation exchange capacity. The covalent linkage between the two clays was verified by several techniques (FTIR spectroscopy, 13C CP-M…
Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials
Halloysite clay nanotubes are functionalized by exploiting the different charges between the inner positive and the outer negative surfaces; accordingly, a selective adsorption is pursued by employing anionic and cationic surfactants. The obtained hybrid materials dispersed in aqueous phase are studied from the physicochemical viewpoint to investigate the colloidal stability that is a crucial parameter for applications. It is demonstrated that the adsorption of anionic surfactant into the HNTs lumen increases the net negative charge of the nanotubes enhancing the electrostatic repulsions and consequently the dispersion stability. The solubilization capability of these functionalized nanotub…
Halloysite Nanotubes for Cleaning, Consolidation and Protection
Herein, we report our recent research concerning the development of halloysite based protocols for cleaning, consolidation and protection purposes. Surface modification of halloysite cavity by anionic surfactants was explored to fabricate inorganic micelles able to solubilize hydrophobic contaminants. Hybrid dispersions based on halloysite and ecocompatible polymers were tested as consolidants for paper and waterlogged archaeological woods. Encapsulation of deacidifying and flame retardant agents within the halloysite lumen was conducted with aim to obtain nanofiller with a long-term protection ability. The results prove the suitability and versatility of halloysite nanotubes, which are per…
Effect of the supramolecular interactions on the nanostructure of halloysite/biopolymer hybrids: A comprehensive study by SANS, fluorescence correlation spectroscopy and electric birefringence
The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological descript…
Ciprofloxacin carrier systems based on hectorite/halloysite hybrid hydrogels for potential wound healing applications
The design of multifunctional nanomaterials which can help the healing processes of skin, preventing the bacterial infections, is crucial for the development of suitable therapy for the treatment of chronic lesions. The use of clay minerals in wound healing applications is well documented since the prehistoric period and offers several advantages due to their intrinsic properties. Herein, we report the development of ciprofloxacin carrier systems based on hectorite/halloysite (Ht/Hal) hybrid hydrogels for potential wound healing applications. To achieve this objective firstly the ciprofloxacin molecules were loaded onto Hal by a supramolecular and covalent approach. The so obtained fillers …
Polymeric micelles as a new generation of anti-oxidant carriers
A promising strategy to immobilize a natural stabilizer in polymeric films is presented. Par-Ticularly, nevadensin (N, a natural basil flavonoid) molecules have been encapsulated in Pluronic F-127 micelles [F127, a triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] and the obtained nanoparticles have been introduced in poly(ethylene glycol), PEG [otherwise known as poly(ethylene oxide), PEO]. In order to verify the effectiveness of the micelles as anti-oxidant carriers, PEG-based films have been subjected to artificial weathering. The encapsulation of anti-oxidant molecules allows the enhancement of N solubility in PEG, leading to advanced materials with enh…
Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection
In the last two decades, the naturally occurring polysaccharides, such as chitosan and pectin, have gained great attention having potential applications in different sectors, from biomedical to new generation packaging. Currently, the chitosan and pectic have been proposed as suitable materials also for the formulation of films and coatings for cultural heritage protection, as well as packaging films. Therefore, the formulation of biopolymer films, considering only naturally occurring polymers and additives, is a current challenging trend. This work reports on the formulation of chitosan (CS), pectin (PC), and chitosan:pectin (CS:PC) films, also containing natural crosslinking and reinforce…
Halloysite nanotubes with fluorinated cavity: an innovative consolidant for paper treatment
AbstractHybrid material based on halloysite nanotubes (HNTs) and sodium perfluorooctanoate (NaPF8) was used as a consolidant for paper treatment. The consolidation efficiency was determined by thermogravimetry as well as by paper grammage determination. Morphological analysis of the treated paper was performed by means of scanning electron microscopy while the effect of modified HNTs on the thermal behaviour of the cellulose fibres was investigated by differential scanning calorimetry which determined the combustion enthalpy of the paper.Water contact angle measurements were performed to study the paper wettability. The physico-chemical properties investigated (mesoscopic structure, thermal…
Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation.
Novel composite bioplastics were successfully prepared by filling pectin matrix with treated coffee grounds. The amount of coffee dispersed into the pectin was changed within a wide filler range. The morphology of the pectin/coffee hybrid films was studied by microscopic techniques in order to investigate their mesoscopic structure as well as the sizes distribution of the particles dispersed into the matrix. The micrographs showed that the coffee grounds are uniformly dispersed within the polymeric matrix. The morphological characteristics of the biocomposite films were correlated to their properties, such as wettability, water uptake, thermal behavior and mechanical performances. Dynamic m…
Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation
Abstract Environmental friendly halloysite-dicationic triazolium salts (second generation) obtained by subsequent click reactions of a diyne derivative in the presence of 2-azidopropyl-modified halloysite nanotubes, were used as supports for palladium catalyst. Thanks to the high triazolium loading (25%) these materials were able to support higher amount of the metal than that on the monocationic derivative (first generation). Such materials were characterized by thermogravimetric analysis, FT-IR spectroscopy and SEM investigations. The new catalytic system was employed in the ligand free Suzuki cross-coupling under microwave irradiation. A set of solvent, time and% loading of palladium was…
Aqueous phase/nanoparticles interface: hydroxypropyl cellulose adsorption and desorption triggered by temperature and inorganic salts
The study highlighted the main forces driving the adsorption of hydroxypropyl cellulose (HPC) onto clay nanoparticles with a disk-like shape (Laponite RD). Modeling the isothermal titration calorimetry data provided the key thermodynamic properties, which enabled us to discuss the microscopic aspects contributing to the energetic and the entropic changes of the polymer adsorption at the nanoparticle/liquid interface. We evidenced that the process is strongly enthalpy-driven and that the interactions lead to constraints of the HPC configuration at interface. The functionalized nanoparticles enhanced the polymer solubility in water expanding the one-phase area of the binodal curve. Temperatur…
Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells
Multicavity halloysite nanotube materials were employed as simultaneous carriers for two different natural drugs, silibinin and quercetin, at 6.1% and 2.2% drug loadings, respectively. The materials were obtained by grafting functionalized amphiphilic cyclodextrin onto the HNT external surface. The new materials were characterized by FT-IR spectroscopy, SEM, thermogravimetry, turbidimetry, dynamic light scattering and ζ-potential techniques. The interaction of the two molecules with the carrier was studied by HPLC measurements and fluorescence spectroscopy, respectively. The release of the drugs from HNT-amphiphilic cyclodextrin, at two different pH values, was also investigated by means of…
Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation
Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelia…
Effect of halloysite nanotubes filler on polydopamine properties
Abstract Hypothesis Polydopamine (PDA) is widely used as hydrophilic coating for several applications. However, most of the methods studied to improve or manipulate PDA properties are multistep and time-consuming, and there is a need for versatile strategies aimed at controlling and modifying the properties of PDA. Experiments PDA-halloysite nanocomposites were produced under different oxidation conditions in alkaline and acidic media and were characterized by UV–visible and attenuated total refraction- Fourier Transform Infrared spectroscopies, thermogravimetric analysis, porosimetry, scanning electron microscopy, X-ray diffraction and contact angle measurements against the reference PDA p…
Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines
The prodrug approach, as well as the development of specific systems able to deliver a chemotherapeutic agent in the target site, decreasing the side effects often associated with its administration, are still a challenging. In this context, both methotrexate drug molecules (MTX) and biotin ligand moieties, whose receptors are overexpressed on the surface of several cancer cells, were loaded on halloysite nanotubes (HNTs) to develop nanomaterial based on multifunctional and "smart" delivery systems. To highlight the crucial role played by biotin, carrier systems based on HNTs and MTX were also synthetized. In detail, several approaches were envisaged: i) a supramolecular interaction between…
Controlled orientation and alignment in films of halloysite nanotubes by liquid-crystalline processing
Clay/Non-Ionic Surfactant Hybrid Nanocomposites
This chapter gives an overview of the structural and chemical physical properties of nanocomposites formed by clay minerals and surfactants, which represent a class of materials with promising features for applications in different industrial, biomedical, and environmental applications. Due to their non-toxicity and biocompatibility, a great deal of attention is nowadays devoted to the study of non-ionic surfactants. Among them, block copolymers represent a combination of the properties of common amphiphilic molecules and long polymer chains. These macromolecules can form a great variety of supra-molecular structures generated from self-organization phenomena in aqueous media. Nanostructure…
Solid state 13C-NMR methodology for the cellulose composition studies of the shells of Prunus dulcis and their derived cellulosic materials.
Lignocellulosic fibers and microcellulose have been obtained by simple alkaline treatment from softwood al- mond shells. In particular, the Prunus dulcis Miller (D.A.) Webb. was considered as a agro industrial waste largely available in southern Italy. The materials before and after purification have been characterized by 13C CPMAS NMR spectroscopy methodology. A proper data analysis provided the relative composition of lignin and holo- cellulose at each purification step and the results were compared with thermogravimetric analysis and FT-IR. To value the possibility of using this material in a circular economy framework, the fibrous cellulosic material was used to manufacture a handmade c…
Safely Dissolvable and Healable Active Packaging Films Based on Alginate and Pectin
Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing efficiency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. T…
Thermal and Mechanical Characterization of Yarn Samples from Flemish Tapestry of the Sixteenth Century
We propose a physico-chemical approach for theharacterization of the conservation condition of yarns from a Flemish tapestry of the sixteenth century. The aging effect on the yarns’ performance was evaluated by comparison with commercial materials. Water uptake experiments highlighted the aptitude of yarns toward water sorption and their increased hydrophilicity upon aging. Thermogravimetric analysis can be considered a fast approach for the fiber identification and assessment on the material life-time. The dynamic mechanical analysis provided direct evidence on the yarns, conservation state and their performance under different mechanical stresses. The proposed characterization path can be…
Effects of halloysite content on the thermo-mechanical performances of composite bioplastics
Abstract The aim of this study is the design and preparation of Mater-Bi/halloysite nanocomposite materials that could be employed as bioplastics alternative to the petroleum derived products. The biocomposite materials at variable halloysite content (from 0 to 30 wt%) were prepared by using the solvent casting method. We investigated the mechanical behaviour and the thermal properties of the prepared nanocomposites in order to estimate their suitability as biocompatible packaging materials. The thermo-mechanical characteristics were correlated to the nanocomposites' morphologies, which were studied by Scanning Electron Microscopy (SEM). As a general result, the physico-chemical performance…
Adsorption isotherms and thermal behavior of hybrids based on quercetin and inorganic fillers
We investigated the adsorption process of quercetin onto several inorganic fillers, such as kaolinite, calcium carbonate and alumina. Firstly, we performed equilibrium adsorption studies in order to determine the quercetin/filler adsorption isotherms, which were successfully fitted through the Langmuir model. Based on the adsorption data analysis, we estimated the maximum adsorption capacity of each filler as well as the Langmuir constant, which is related to the affinity between quercetin and the surfaces of the inorganic particles. Then, we prepared hybrids formed by fillers saturated with quercetin. The obtained composites were characterized by thermogravimetric analysis with the aim of …
Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement.
The filling of halloysite nanotubes with active compounds solubilized in aqueous solvent was investigated theoretically and experimentally. Based on Knudsen thermogravimetric data, we demonstrated the water confinement within the cavity of halloysite. This process is crucial to properly describe the driving mechanism of halloysite loading. In addition, Knudsen thermogravimetric experiments were conducted on kaolinite nanoplates as well as on halloysite nanotubes modified with an anionic surfactant (sodium dodecanoate) in order to explore the influence of both the nanoparticle morphology and the hydrophobic/hydrophilic character of the lumen on the confinement phenomenon. The analysis of the…
Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials.
Biopolymers as alternative to fossils-derived polymers are attracting the interest of researcher in material science. Besides the economic advantages, the sustainability makes polysaccharides ideal candidates to prepare films and formulations. The addition of Halloysite nanotubes as green inorganic fillers was exploited to improve the physico-chemical properties and to introduce smart response abilities to the material. Halloysite is a natural tubular nanomaterial with hollow cavity and large aspect ratio. The effect of polymer charge on the morphology and mesoscopic properties of polysaccharides/halloysite nanocomposites has been highlighted. Different strategies (solvent casting, lyophili…
SUSTAINABLE WATER FREE CLEANING PROTOCOL FOR WAX REMOVAL FROM A SOLID SURFACE
Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications
Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Ex…
Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend
Abstract This study was focused on the preparation and characterization of biofilms based on pectin/polyethylene glycol 20000 (PEG) blend and halloysite nanotubes (HNTs). The obtained blends loaded with a natural nanoclay are proposed as sustainable alternative to the polymers produced from non-renewable resources such as fossil fuels. Properties of technological interest have been monitored and they were correlated to the structural features of the nanocomposites. It turned out that the wettability of the films can be tuned by changing the composition and the distribution of HNTs into the material as well as the surface roughness. The tensile properties of the blend are enhanced by the pre…
Clay Nanotube/PNIPAAM Hybrid material
Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods
A novel green protocol for the consolidation and protection of waterlogged archeological woods with wax microparticles has been designed. First, we focused on the development of halloysite nanotubes (HNTs) based Pickering emulsions using wax as the inner phase of the oil-in-water droplets. The optimization of the preparation strategy was supported by both optical microscopy and scanning electron microscopy, which allowed us to show the morphological features of the prepared hybrid systems and their structural properties, i.e., the distribution of the clay at the interface. Also, the dependence of the overall dimensions of the prepared systems on the halloysite content was demonstrated. Micr…
Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior
In this work, we propose an easy strategy for the separation of halloysite/kaolinite mixtures in sucrose aqueous solution. Preliminarily, we investigated the influence of the sucrose addition on the colloidal stability of kaolinite nanoplates and halloysite nanotubes (HNTs) dispersed in water. Dynamic Light Scattering (DLS) measurements revealed that the HNTs aqueous mobility is dependent on the sucrose concentration, while the ζ-potential is negligibly affected by the addition of the carbohydrate in the aqueous solvent. On the other hand, any variations on the surface charge and dynamic behavior of kaolinite were detected in the presence of sucrose. The obtained ζ-potential and DLS results…
Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage
The peculiar surfaces of halloysite nanotubes and their biocompatibility are attracting the interest of researchers based on the wide range of attainable applications. The large aspect ratio of this nanotubular material ensures promising properties as a reinforcing agent in polymeric matrixes, such as cellulose and its derivatives, that entail strengthening due to, for instance, aging-induced degradation. The halloysite cavity has a suitable size for hosting a large variety of active species such as deacidifying (calcium hydroxide) and flame retardant agents (fluorinated surfactants) for a controlled and sustained release relevant to the conservation of cultural heritage. Additionally, anio…
Boosting the properties of a fluorescent dye by encapsulation into halloysite nanotubes
Abstract The synthesis of a new biocompatible bichromophoric system (CURBO) was developed, by connecting the skeleton of the naturally occurring curcumin to a BODIPY derivative. The system exhibited an intense fluorescence band with maximum at about 510 nm in organic solvent, while its emission spectra in aqueous solution were more complicated and slightly red-shifted, due to the effect of aggregation for the poor solubility of the dyad. To overcome these problems, the bichomophoric system has been loaded into the halloysite nanotubes (HNT). The HNT/CURBO nanocomposite, suspended in aqueous solution, showed an intensity of emission in the red region of the spectrum higher than the one exhib…
Layered composite based on halloysite and natural polymers: a carrier for the pH controlled release of drugs
We have prepared new biohybrid materials based on halloysite nanotubes and natural polymers (alginate and chitosan) for the controlled and sustained release of bioactive species. A functional nanoarchitecture has been designed allowing us to generate a layered tablet with a chitosan/halloysite nanocomposite film sandwiched between two alginate layers. The assembly of the raw components and the final structure of the hybrid tablet have been highlighted by the morphological and wettability properties of the prepared materials. Since the biohybrid has been designed as a smart carrier, halloysite nanotubes have been first loaded with a model drug (sodium diclofenac). The effect of the tablet th…
Exploring Historical Scientific Instruments by Using Mobile Media Devices
We describe an educational activity that can be completed with mobile media devices in order to understand the working principle of a pair of tuning forks, from the Historical Collection of Physics Instruments of the University of Palermo, and how they were used to explain acoustic interference and beats with the Lissajous optical method. This approach can be used with any tuning fork and it is a valuable teaching strategy that does not require specific laboratory equipment.
Chitosan Functionalized with Carboxyl Groups as a Recyclable Biomaterial for the Adsorption of Cu (II) and Zn (II) Ions in Aqueous Media
The modification of chitosan represents a challenging task in obtaining biopolymeric materials with enhanced removal capacity for heavy metals. In the present work, the adsorption characteristics of chitosan modified with carboxyl groups (CTS-CAA) towards copper (II) and zinc (II) ions have been tested. The efficacy of the synthesis of CTS-CAA has been evaluated by studying various properties of the modified chitosan. Specifically, the functionalized chitosan has been characterized by using several techniques, including thermal analyses (differential scanning calorimetry and thermogravimetry), spectroscopies (FT-IR, XRD), elemental analysis, and scanning electron microscopy. The kinetics an…
Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release
The use of nanocomposites based on biopolymers and nanoparticles for controlled drug release is an attractive notion. We used halloysite nanotubes that were promising candidates for the loading and release of active molecules due to their hollow cavity. Gel beads based on chitosan with uniformly dispersed halloysite nanotubes were obtained by a dropping method. Alginate was used to generate a coating layer over the hybrid gel beads. This proposed procedure succeeded in controlling the morphology at the mesoscale and it had a relevant effect on the release profile of the model drug from the nanotube cavity.
Halloysite nanotubes filled with salicylic acid and sodium diclofenac: effects of vacuum pumping on loading and release properties
AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavi…
Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection
We investigated the filling process of cellulose-based paper with natural clay nanotubes and their mixtures with hydroxypropyl cellulose (HPC) that is commonly used as glue and consolidant for degraded paper. A comprehensive characterization of the materials was carried out through morphology, wettability, thermal degradation, and tensile properties. The treatment with halloysite nanotubes generated a decrease of the paper mechanical performance and did not alter the thermal properties. The co-presence of HPC and nanoparticles generated a more uniform nanotubes distribution in the paper fibrous structure and a significant enhancement of both the mechanical properties and the surface hydroph…
Composite films of natural clay nanotubes with cellulose and chitosan
Composite films based on cellulose, chitosan and halloysite clay nanotubes were prepared using a solution casting method, which allowed for a uniform distribution of nanotubes within the material and provided control over the morphology of the composite. The mechanical performance of these bio nanocomposites is influenced by humidity and the nanotubes showed a plasticisation effect on the polymeric matrix. The composites of chitosan and halloysite nanotubes (HNTs), with modified hydrophobic inner lumens, resulted in a technique for controlled and sustainable surface cleaning. Lignocellulose wood microfibres modified with HNTs were also produced by a layer-by-layer assembly. The obtained ma…
1,2,3-Oligotriazoles modified halloysite nanotubes as potential active biological species: synthesis and characterization
In the last years, the development of nano-formulations for cancer treatment represents one of the major challenges of the scientific research. The prodrug strategy, that combines chemotherapeutic agents with nanocarriers such as halloysite nanotubes (HNTs), is a promising strategy both to improve the biological activity of the drug molecules and to reduce the side effects of drugs. Herein we report the synthesis and characterization of a HNTs prodrug based on 1,2,3-triazole units covalently linked to HNTs external surface, bearing different positively charged moieties, which could present interesting pharmacological activities.
Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications
Pectin bionanocomposite films filled with various concentrations of two different types of halloysite nanotubes were prepared and characterized in this study as potential films for food packaging applications. The two types of halloysite nanotubes were long and thin (patch) (200-30 000 nm length) and short and stubby (Matauri Bay) (50-3000 nm length) with different morphological, physical, and dispersibility properties. Both matrix (pectin) and reinforcer (halloysite nanotubes) used in this study are considered as biocompatible, natural, and low-cost materials. Various characterization tests including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, rele…
Adsorption Studies of Molecules on the Halloysite Surfaces: A Computational and Experimental Investigation
We report the results of joint computational and experimental investigations on the adsorption capability of halloysite toward a set of common molecules (water, alcohols, halides, and carboxylic acids). The halloysite system has been modelized by means of a cluster approach choosing a portion of a spiral nanotube; it has a slight curvature, with a convex aluminic layer. The adsorption geometries are described in terms of hydrogen bond network structures; calculated interaction energies invariably indicate that the inner aluminic surface is the place for preferential adsorption of polar molecules. The presence of substitutional defects on the outer or inner surface of the halloysite model ca…
Supramolecular Association of Halochromic Switches and Halloysite Nanotubes in Fluorescent Nanoprobes for Tumor Detection
Fluorescence imaging has become an indispensable tool in the biomedical laboratory to elucidate the fundamental dynamic and structural factors regulating cellular processes. The development of fluorescent nanoprobes represents a challenge to detect any cellular process under a microscope. Herein, a fluorescent nanomaterial was synthesized by exploiting the supramolecular interaction between a halochromic switch (1Cl) and halloysite nanotubes (HNTs). The successful synthesis of a HNTs/1Cl nanomaterial was confirmed by thermogravimetric analysis and Fourier transform infrared. The aqueous mobility was investigated by dynamic light scattering and ζ-potential measurements as well. Furthermore, …
Bionanocompositi pectina/nanotubi di argilla: uno studio chimico-fisico
Hand-made paper obtained by green procedure of cladode waste of Opuntia ficus indica (L.) Mill. from Sicily
Cellulosic fibres have been obtained by green procedures from the cladodes of Opuntia ficus indica (L.) Mill., constituting a large agro industrial waste in our territory. The materials have been analysed for its relative composition, applying, IR and TG methodologies and it was characterised by the absence of lignin. The fibrous material allowed the manufacture of a handmade paper obtaining an ecological material suitable for packaging purposes. The authors evidenced that the simple protocol based on hot water treatment was able to decrease the amount of hemicellulose in the final material.
Steric stabilization of modified nanoclays triggered by temperature.
Halloysite clay nanotubes were modified through the adsorption of poly(N-isopropylacrylamide)-amine terminated (PNIPA-NH2) onto the external surface by exploiting electrostatic interactions at pH=6. In spite the amount of attached polymer is rather low (1 wt%), the properties of the nanotubes are deeply modified. The apparent specific volume and isentropic compressibilities of the hybrid nanomaterial dispersed in water evidenced the transferring of the termosensitive property from the polymer to halloysite. The hydrodynamic radius as well as the ζ-potential of the nanohybrid are consistent with the attachment of a positively charged polymer onto the negative surface of the nanotube. The col…
Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release
An easy strategy to obtain nanohydrogels within the halloysite nanotube (HNTs) lumen was investigated. Inorganic reverse micelles based on HNTs and hexadecyltrimethylammonium bromides were dispersed in chloroform, and the hydrophilic cavity was used as a nanoreactor to confine the gel formation based on alginate cross-linked by calcium ions. Spectroscopy and electron microscopy experiments proved the confinement of the polymer into the HNT lumen and the formation of calcium-mediated networks. Biological tests proved the biocompatibility of the hybrid hydrogel. The nanogel in HNTs was suitable for drug loading and sustained release with the opportunity of triggered burst release by chemical …
Polyethylene glycol/clay nanotubes composites
Nanocomposites of poly(ethylene) glycol (PEG) 20000 filled with clay nanotubes (HNTs) were prepared. The thermal properties obtained from thermogravimetry and differential scanning calorimetry were correlated to the morphology imaged by scanning electron microscopy. Low amounts of HNTs generate compact structure while large amounts of HNTs create craters and voids. The decrease of polymer degradation temperature in the presence of large amount of nanoclay (ca. 80 wt%) is a consequence of the morphology at the mesoscale range. The thermal opposite effect observed in the HNTs low regime (up to ca. 20 wt%) is due to the gas entrapment into the nanoparticles lumen. The quantitative analysis of …
Synthesis, characterization and study of covalently modified triazole LAPONITE® edges
Abstract LAPONITE® (Lap) clay mineral was successful functionalized by triazole groups in a two steps procedure. First, the Lap edges were modified with 3-azidopropyltrimethoxysilane by traditional heating and microwave irradiation. Microwave irradiation allowed us to obtain high loading onto the Lap edges in lower times compared to those obtained through conventional method. Afterwards, the triazole moieties were obtained by reaction between azido functionalized Lap and propargyl alcohol. The successful functionalization of Lap was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and ζ-potential measurements. Finally, the effects of the surface modificatio…
Innovative smart materials designed for environmental purposes
Nanoclays for Conservation
Within the conservation of artworks materials, this chapter describes innovative strategies based on clay nanoparticles that are promising for protective coating, surface cleaning, and consolidation. We present the preparation of polymer/montmorillonite nanocomposites, which are revealed as efficient protective coatings for highly porous stones, marbles, and bread-made artifacts. Anticorrosive films for metal substrates have been obtained by polymer filling with laponite and halloysite nanotubes (HNTs) containing corrosion inhibitors into their lumen. The dispersion of hydrophobically modified HNTs into chitosan matrix drives to fabricate biofilms with surface cleaning capacity. Rust stains…
Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin
In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium…
Orientation of charged clay nanotubes in evaporating droplet meniscus.
© 2014 Elsevier Inc. During drying, an aqueous suspension of strongly charged halloysite clay nanotubes concentrates at the edge of the droplet ("coffee-ring" effect) which provides alignment of the tubes along the liquid-substrate contact line. First, the surface charge of the nanotubes was enhanced by polyanion adsorption inside of the lumen to compensate for the internal positive charges. This increased the magnitude of the ξ-potential of the tubes from -36 to -81mV and stabilized the colloids. Then, colloidal halloysite was dropped onto the substrate, dried at 65°C and after a concentration of ~0.05mgmL-1 was reached, the alignment of nanotubes occurred starting from the droplet edges. …
Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres
The design of novel nanocomposite films based on hydroxypropyl cellulose (HPC) and wax/halloysite hybrid microspheres has been reported. In particular, we first prepared wax/clay Pickering emulsions which were characterized by thermogravimetric analysis and microscopy. SEM images allowed more detailed insights on the nanotubes disposition at the wax/water interface, acting as an outer stabilizing shell. Therefore, the cellulosic biopolymer was added, and it was found that HPC enhances the colloidal stability of the particles, preventing their coalescence and sedimentation. The preparation of the composite films was carried out by the solvent casting method, which enabled the development of …
Emulsions based on fatty acid from vegetable oils for cosmetics
Vegetable oils are sources of saturated, monounsaturated and polyunsaturated fatty acids. In this work, we studied the suitability of a mixture of vegetable oils and some fatty acids (similar to the those of the human skin) as a cosmetic emulsion. Hypericum (Hypericum perforatum L.) – 1 %, thistle (Silybum marianum (L.) Gaertn.) – 42 %, linen (Línum usitatíssimum L.) – 1.1 %, wheat germ (Triticum aestivum L.) – 1 %, sesame (Sésamum índicum L.) – 1 %, mustard (Sinápis álba L.) – 2%, pumpkin (Cucúrbita p é po L.) – 5 %, – were selected as vegetable oils. The emulsion based on the proposed mixture of vegetable oils has a higher antioxidant activity (1.623 OD) compared with that based on minera…
Beeswax/halloysite microparticles embedded within a geopolymeric layer for the protective coating of steel
A halloysite-based geopolymer filled with microwax particles was designed as a protective layer on steel substrates. Beeswax microparticles were obtained from the clay stabilized Pickering emulsions and they were homogeneously dispersed within the geopolymeric network, thus improving the coating physico-chemical properties. Specifically, this treatment changed the steel's wettability by increasing its hydrophobicity. Moreover, XRF analysis was conducted in order to have details on the chemical compositions.
Structure of Hybrid Materials Based on Halloysite Nanotubes Filled with Anionic Surfactants
The structures of pristine halloysite nanotubes (HNTs) and ones functionalized by anionic surfactants (sodium dodecanoate and sodium dodecyl sulfate) were investigated by small angle neutron scattering (SANS). These experiments evidenced the structural organization of the surfactants adsorbed onto the HNT cavity and the importance of the surfactant headgroup. Contrast matching experiments were employed in order to mask the dominant scattering effect of the clay hollow nanotubes and to focus on the surfactant organization within the lumen. Further investigation on the mesoscopic structure of the investigated materials was carried out by electric birefringence (EBR), which allowed study of th…
Organic-nanoclay composite materials as removal agents for environmental decontamination
Here we overview the recent advances in the fabrication of sustainable composite nanomaterials with decontamination capacity towards inorganic and organic pollutants. In this regards, we present the development of hybrid systems based on clay nanoparticles with different shapes (such as kaolinite nanosheets and halloysite nanotubes) and organic molecules (biopolymers, surfactants, cucurbituril) as efficient removal agents for both aliphatic and aromatic hydrocarbons. Due to their high specific surface area, clay nanoparticles have been successfully employed as fillers for composite membranes with excellent filtration capacity. The preparation of composite gel beads based on biopolymers (alg…
Restoration of a XVII Century’s predella reliquary: From Physico-Chemical Characterization to the Conservation Process
We report on the restoration of a XVII century’s predella reliquary, which is a part of a larger setup that includes a wall reliquary and a wooden crucified Christ, both belonging to the church of “Madre Maria SS. Assunta”, in Polizzi Generosa, Sicily, Italy. The historical/artistic and paleographic research was flanked successfully by the scientific objective characterization of the materials. The scientific approach was relevant in the definition of the steps for the restoration of the artefact. The optical microscopy was used for the identification of the wood species. Electron microscopy and elemental mapping by energy-dispersive X-ray (EDX) was successful in the identification of the l…
Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles
New temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes (HNTs) containing grafted polymer brushes with silver nanoparticles have been successfully fabricated. We used a three steps process including synthesis of the initiating coatings onto HNTs surface, fabrication of the POEGMA – poly(oligo(ethylene glycol)ethyl ether methacrylate) grafted brushes and synthesis of the silver nanoparticles (AgNPs). The synthesis and properties of hybrid nanomaterials were studied by FT-IR, TGA and DLS methods. It is shown that the introduction of AgNPs, formed from 0.005 M AgNO3 solution leads to a significant reduction of low critical solution temperature (LCST) of the polym…
Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film
Abstract The purpose of this paper is to show how a functional bionanocomposite film with both antioxidant and antimicrobial activities was successfully prepared by the filling of a pectin matrix with modified Halloysite nanotubes (HNT) containing the essential peppermint oil (PO). Firstly, HNT surfaces were functionalized with cucurbit[6]uril (CB[6]) molecules with the aim to enhance the affinity of the nanofiller towards PO, which was estimated by means of HPLC experiments. The HNT/CB[6] hybrid was characterized by several methods (thermogravimetry, FT-IR spectroscopy and scanning electron microscopy) highlighting the influence of the supramolecular interactions on the composition, therma…
ChemInform Abstract: Eco-Friendly Functionalization of Natural Halloysite Clay Nanotube with Ionic Liquids by Microwave Irradiation for Suzuki Coupling Reaction.
Abstract Microwave assisted halloysite (HNT) external surface functionalization with ionic liquids is described. HNTs modification was achieved in two steps: a) grafting of 3-mercaptopropyl trimethoxysilane on the external surface of HNT by a microwave irradiation; b) anchorage of vinylimidazolium ionic liquids by a thiol-ene reaction. MW irradiation allowed us to obtain high loading onto the HNT surface compared to those obtained through conventional synthesis. Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the grafting has occurred only on the external surface of HNT. Turbidimetric and dynamic light scattering analyses showed that the introduction of…
Halloysite nanotubes-based nanocomposites for the hydrophobization of hydraulic mortar
Abstract The treatment of stone surfaces for their protection from ageing caused by natural and anthropogenic effects is an open issue in materials development for Cultural Heritage. We thought interesting to verify the suitability of a modified cellulose biofilm filled with halloysite nanotubes as wax compatibilizers to design a protecting layer. A hydraulic mortar was selected as a stone prototype. To improve the physico-chemical properties of the covering layer, wax microparticles have been incorporated to control transport, consolidation and wettability features. In particular, different application protocols have been studied, namely brushing and spraying, to assess whether the propos…
Pd supported on magnetic carbon coated halloysite as hydrogenation catalyst: Study of the contribution of carbon layer and magnetization to the catalytic activity
Abstract In this article, a magnetic carbon-coated halloysite nanoclay (Hal) was prepared through introduction of hydrothermally carbonized glucose (Glu) on Hal followed by the immobilization of magnetic nanoparticles (MNPs) and incorporation of resorcinol-formaldehyde polymeric shell (RF) and carbonization. The resulting composite was then successfully applied for the immobilization of Pd nanoparticles to afford Pd@Hal@Glu-Fe-C that could efficiently promote hydrogenation of nitroarenes in the aqueous media at low temperature. The catalyst exhibited high selectivity toward nitro group. Moreover, it was highly recyclable with low MNPs and Pd leaching. To elucidate the contribution of each c…
Lifetime predictions of non-ionic and ionic biopolymers: kinetic studies by non-isothermal thermogravimetric analysis
AbstractIn this paper, films based on sustainable polymers with variable charge have been investigated by non-isothermal thermogravimetry in order to predict their lifetime, which is a key parameter for their potential use in numerous technological and biomedical applications. Specifically, chitosan has been selected as positively charged biopolymer, while alginate has been chosen as negatively charged biopolymer. Among non-ionic polymers, methylcellulose has been investigated. Thermogravimetric measurements at variable heating rates (5, 10, 15 and 20 °C min−1) have been performed for all the polymers to study their degradation kinetics by using isoconversional procedures combined with ‘Mas…
Colloidal stability of halloysite clay nanotubes
Abstract The colloidal stability of halloysite clay nanotubes dispersion is reviewed showing the strategy and the mechanism to obtain stable systems in water and apolar solvents. The selective modification of halloysite inner/outer surfaces can be achieved by exploiting electrostatic interactions. The adsorption of anionic surfactants onto the halloysite cavity allows generating inorganic cylindrical micelles that can be separated from the solvent. On the other hand, the functionalization of halloysite shell by positively charged surfactants drives to obtain stable water-in-oil emulsions. The interactions with ionic and nonionic polymers alters the dispersability of halloysite due to electr…
Microemulsion encapsulated into halloysite nanotubes and their applications for cleaning of a marble surface
Halloysite nanotubes were used to incorporate anionic surfactant micelles and an organic solvent to generate a cleaning system to be applied in Cultural Heritage restoration. The targeted adsorption is driven by electrostatic interactions based on the nanotubes peculiar charge separation. Namely anionic species are driven to the positively charged inner surface while being prevented from interacting with the halloysite outer surface that possesses a positive charge density. The hybrid organic/inorganic emulsion was characterized by dynamic light scattering. Analysis of the autocorrelation function allowed us to define the presence of surfactant aggregates inside/outside the nanotube lumen a…
Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study
Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na2, ADP Na3, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl2, while MgCl2 facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA an…
Magnetic coiffure: Engineering of human hair surfaces with polyelectrolyte-stabilised magnetite nanoparticles
Here we report a spontaneous electrostatic coating of human hair with aqueous Fe3O4 colloids capable to tailor magnetic properties to hair, orienting and even moving them under the influence of the external magnetic field. Magnetite particles were modified by cationic and anionic polyelectrolytes and then successfully deposited in dense arrays, starting from cuticle gaps and spreading further over a major hair surface. These biocompatible and biodegradable magnetic nanoparticles may serve as carriers for drug loading and delivery for topical pharmaceutical treatments. The deposition process was imaged in real-time using dark-field microscopy. The hair specimens were further studied using a …
Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion.
An easy strategy to obtain inorganic reverse micelles based on halloysite nanotubes (HNTs) and alkyltrimethylammonium bromides has been developed. The selective modification of the HNTs external surface with cationic surfactants endows to generate tubular nanostructures with a hydrophobic shell and a hydrophilic cavity. The influence of the surfactants alkyl chain on the HNTs functionalization degree has been investigated. The dynamic behavior of the surfactant/HNT hybrids in solvents with variable polarity has been correlated to their affinity toward hydrophobic media explored through partition experiments. The water-in-oil emulsion is able to solubilize copper sulfate, proving the incorpo…
Mesoporous inorganic nanoscale particles for drug adsorption and controlled release.
The review provides an overview of the mesoporous inorganic particles employed as drug delivery systems for controlled and sustained release of drugs. We have classified promising nanomaterials for drug delivery on the basis of their natural or synthetic origin. Nanoclays are available in different morphologies (nanotubes, nanoplates and nanofibers) and they are typically available at low cost from natural resources. The surface chemistry of nanoclays is versatile for targeted modifications to control loading and release properties. Synthetic nanomaterials (imogolite, laponite and mesoporous silica) present the advantages of well-established purity and availability with size features that …
Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films
Selective modification of the inner surface of halloysite nanotubes (HNTs) by the cycloaddition of azides and alkynes (click reaction) was successfully achieved. Fourier transform infrared spectroscopy and thermogravimetry confirmed that the modification involved only the HNT cavity. Morphological investigations evidenced that the functionalized nanotubes formed microfibers and clusters in the micrometer range. By means of the casting method, these nanomaterials were dispersed into biopolymeric matrixes (chitosan and hydroxypropyl cellulose) with the aim of obtaining nanocomposite films with tunable properties from the physicochemical viewpoint. For comparison purposes, we also characterize…
Effect of different processing techniques and presence of antioxidant on the chitosan film performance
In the last two decades, the naturally occurring polysaccharides have gained great attention because of their potential applications in different sectors, for example, from food to biomedical sectors. Chitosan is a cationic polysaccharide with good transparency, and currently, it has been considered also as suitable material for the formulation film and coating in cultural heritage protection. In this work, the chitosan films (Ch), with and without natural antioxidant such as citric acid (CA), are formulated considering two different processing techniques: (i) conventional solvent casting and (ii) compression molding, that is an unconventional method for this polysaccharide, giving the poss…
Halloysite nanotubes sandwiched between chitosan layers: novel bionanocomposites with multilayer structures
This work is a contribution to the design of multilayer biocomposites based on halloysite nanotubes (HNTs) and chitosan. Both the polymer and nanotubular inorganic additive have been selected among easily available green materials. An innovative preparation procedure based on the sequential casting of chitosan and HNTs has been proposed in order to obtain multilayer composite biofilms. A physico-chemical investigation (contact angle measurements, differential scanning calorimetry, thermogravimetry) has been conducted to characterize the bionanocomposites. As evidenced by scanning electron microscopy, the nanocomposites possess an intermediate halloysite layer between the chitosan ones. The …
Pluronic nanoparticles as anti-oxidant carriers for polymers
Abstract The immobilization of anti-oxidant stabilizers for polymers, particularly naturally occurring systems, can be considered a valuable route for preventing their migration, volatilization, thermo-degradation and decomposition at typical high processing temperatures, as well as for enhance their solubility in polymers. In this work, an innovative approach for the immobilization of naturally occurring stabilizer, through the encapsulation in copolymer nanoparticles, is proposed. Pluronic nanoparticles (PNPs), based on PEO-PPO-PEO, (PEO: poly (ethylene oxide); PPO: poly(propylene oxide)), without and with quercetin, Q, have been successfully formulated and the critical micellar condition…
Covalently modified nanoclays: synthesis, properties and applications
Abstract Clay minerals are phyllosilicates of nanoscale dimensions. According to their ability to entrap and release organic moieties, they have found applications in several fields, such as drug carrier and delivery, support for catalyst, environmental remediation and filler for polymeric matrices. The possibility to modify, by covalent linkage, their surfaces gives the possibility to form new nanomaterials with improved properties respect to the pristine clay minerals. In this chapter, the modifications of the siloxane surfaces of the most representative clay minerals, namely montmorillonite, sepiolites, laponite and halloysite were reviewed and discussed.
Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin
Hypothesis: Oral insulin administration is not actually effective due to insulin rapid degradation, inactivation and digestion by proteolytic enzymes which results in low bioavailability. Moreover insulin is poorly permeable and lack of lipophilicity. These limits can be overcome by the loading of protein in some nanostructured carrier such as halloysite nanotubes (HNTs). Experiments: Herein we propose an easy strategy to obtain HNT hybrid materials for the delivery of insulin. We report a detailed description on the thermal behavior and stability of insulin loaded and released from the HNTs hybrid by the combination of several techniques. Findings: Release experiments of insulin from the H…
Inclusion complexes of triblock L35 copolymer and hydroxyl propyl cyclodextrins: a physico-chemical study
In this work, we studied the formation of supramolecular inclusion complexes (pseudopolyrotaxanes) generated by the interactions between L35 Pluronic (PEO-PPO-PEO triblock copolymer) and hydroxyl propyl-modified cyclodextrins (HP-alpha-CD and HP-beta-CD). The structural characteristics of the L35/CD composites were investigated by X-ray diffraction spectroscopy, which highlighted the effective inclusion of the copolymer. The thermodynamic properties of the pseudopolyrotaxanes were determined through density and speed of sound experiments conducted on aqueous mixtures with various L35/CD compositions, while turbidimetric analyses allowed the investigation of the kinetics of the threading pro…
Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry
The differential scanning calorimetry (DSC) technique was demonstrated to be a reliable and fast tool for the investigation of the selective impregnation of archaeological woods with poly(ethylene) glycols (PEGs) mixtures. To this aim, waterlogged archaeological woods were impregnated by using aqueous mixtures of PEG 4000 and PEG 400 as well as mixtures of these polymers in the melt state. The efficiency of the treatments was also estimated by determining the total consolidant content entrapped into the cavities of degraded wood by means of DSC and thermogravimetry.
Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis
Abstract Hypothesis Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. Experiments Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were dete…
Non-isothermal thermogravimetry as an accelerated tool for the shelf-life prediction of paracetamol formulations
Abstract In this work, non-isothermal thermogravimetric studies have been carried out on several paracetamol formulations with the aim to predict their shelf-lives under variable storage conditions. Specifically, paracetamol tablets of different brands have been investigated allowing to estimate their pharmaceutical quality by considering the specific drug stability. The proposed protocol is based on the kinetic study of thermogravimetric data by the combination of isoconversional procedures (Friedman and Kissinger-Akahira-Sunose (KAS) methods) and “Master plot” analysis. Accordingly, the kinetics of the paracetamol degradation is totally explored in terms of activation energy, pre-exponent…
Preparation and characterization of bio-organoclays using nonionic surfactant
The present study was aimed at the preparation and characterization of tailor made hybrid materials, whose peculiar hosting capability could be exploited in biotechnological applications. With this purpose, the modification of K10 montmorillonite by intercalation of Tween 20 surfactant, was accomplished. The influence of two internal parameters, namely pH and surfactant/clay ratio, on the surfactant uptake ability by clay was investigated. The adsorption mechanism was elucidated on the basis of complementary kinetic and equilibrium studies and, then, corroborated by the useful information provided by the FT-IR, TGA and XRD characterization. The gathered results allow to draw the conclusion …
Bionanocomposite films containing halloysite nanotubes and natural antioxidants with enhanced performance and durability as promising materials for cultural heritage protection
In the last decade, the interest toward the formulation of polymer films for cultural heritage protection continuously grew, and these films must be imperatively transparent, removable, and should not react/interact with surface of the artworks. In this research, bionanocomposite films, based on chitosan (Ch) and pectin (P) and containing naturally occurring fillers and antioxidants, were formulated by solvent casting methods and were accurately characterized. The natural halloysite nanotubes (HNT) have a two-fold role, specifically, physical compatibilizer and antioxidant carrier. Therefore, the theoretical solubility between Ch and P was estimated considering Hoy&rsquo
IBRIDI FORMATI DA NANOTUBI DI CARBONIO A PARETE MULTIPLA E ESTERI FOSFORICI: PROPRIETA’ E STUDI STRUTTURALI
Nel corso degli ultimi anni i nanotubi di carbonio in virtù delle loro proprietà fisiche, chimiche e meccaniche sono diventati tra i più promettenti materiali per la realizzazione di congegni a livello nanometrico. I CNT trovano numerose applicazioni nel campo, della nanoelettronica, nella costruzione di materiali ad elevata conducibilità elettrica ed elevata resistenza meccanica,2 e vengono, anche, impiegati come agenti di rinforzo dispersi in una matrice polimerica.3 Problema principale di questi materiali è che essi risultano scarsamente solubili in ambiente acquoso e in solventi organici, a causa delle forti forze attrattive di van der Waals che esistono tra le superfici dei CNT, che li…
Printable Hydrogels Based on Alginate and Halloysite Nanotubes.
The design of hydrogels for the controlled release of active species is an attractive challenge. In this work, we prepared hybrid hydrogels composed of halloysite nanotubes as the inorganic component, and alginate as the organic counterpart. The reported procedure allowed us to provide the resulting materials with a peculiar wire-like shape. Both optical and scanning electron microscopy were used to characterize the morphological properties of the hydrogel wires, whose diameters were ca. 0.19 and 0.47 mm, respectively. The possibility to be exploited as drug delivery systems was carried out by loading the nanoclay with salicylic acid and by studying the release profiles. Thermogravimetric e…
Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers.
Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of th…
Olive mill wastewaters decontamination based on organo-nano-clay composites
Abstract Green composites for environmental applications were successfully prepared by intercalation of the biosurfactant Quillaja saponin onto montmorillonite mineral clay on varying pH and surfactant/clay ratio. Equilibrium adsorption isotherms were constructed and the system was characterized by performing TGA and XRD analyses. The efficiency of the surfactant-modified clay in the removal of the organic content present in olive mill wastewaters (OMW) was evaluated by means of spectrophotometric measurements. The interest for this cogent issue comes from the consideration that, despite their high pollutant content, OMW can be considered as a potential resource of several organic compounds…
Alginate gel beads filled with halloysite nanotubes
Abstract Novel hybrid gel beads with a well defined and controlled size formed by alginate biopolymer and halloysite (Hal) nanotubes were designed, prepared and characterized from the physico-chemical viewpoint. The thermogravimetry made it possible to determine the water content, the total as well as the local compositions of Hal into the gel beads. Dielectric spectroscopy evidenced that Hal reduced the fluctuation of ions. The SEM micrographs showed that the dried beads exhibit a rough surface, with pores in the micrometer range. In addition, the concentration of nanotubes was higher into the bead core at a higher overall loading. The performance of these materials was verified with the s…
A comparative thermogravimetric study of waterlogged archaeological and sound woods
Waterlogged archaeological woods Pinus pinaster and Fagus sylvatica L. were analyzed by using TG technique. Degradation processes ascribable to the holocellulose decay were evidenced at nearly the same temperature for sound and archaeological samples. The residual matters at 600 and 900 °C of the sound woods are much lower than those of archaeological waterlogged woods in agreement with the presence of inorganic materials encapsulated during the burial into the marine environment. It was proposed a new protocol to rapidly calculate the maximum water content parameter, which is related to the wood degradation state. TG experiments at variable heating rates were performed to obtain kinetic pa…
Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods
A novel green protocol for the deacidifying consolidation of waterlogged archaeological woods through aqueous dispersions of polyethylene glycol (PEG) 1500 and halloysite nanotubes containing calcium hydroxide has been designed. First, we prepared functionalized halloysite nanotubes filled with Ca(OH)2 in their lumen. The controlled and sustained release of Ca(OH)2 from the halloysite lumen extended its neutralization action over time, allowing the development of a long-term deacidification of the wood samples. A preliminary thermomechanical characterization of clay/polymer nanocomposites allows us to determine the experimental conditions to maximize the consolidation efficiency of the wood…
Halloysite based geopolymers filled with wax microparticles as sustainable building materials with enhanced thermo-mechanical performances
This work proposes a novel protocol for the fabrication of halloysite based geopolymers filled with beeswax microparticles obtained from Pickering emulsions. The actual filling of the microwax into the geopolymers has been demonstrated by using several techniques, including thermal analyses, spectroscopies, microscopies and contact angle experiments. According to the morphological and structural investigations, microwax spherical particles (diameter ranging between ca. 3 and 5 μm) have been homogeneously dispersed within the geopolymeric network conferring excellent properties to the hybrid geopolymers in terms of mechanical performances and heat storage capacity although their low content …
Pickering Emulsion Gels Based on Halloysite Nanotubes and Ionic Biopolymers: Properties and Cleaning Action on Marble Surface
We have fabricated ecocompatible Pickering emulsions based on halloysite nanotubes and ionic biopolymers (chitosan and pectin) from renewable resources. The effect of pectin and chitosan on the Pickering emulsion was investigated by direct visualization of the oil droplets and by the thermodynamic characterization at the interface. Pectin enhances the Pickering emulsion stability, while a phase separation and nonhomogeneous gel was observed in the presence of chitosan. We have demonstrated that the Pickering emulsion in a pectin based gel phase is suitable for wax layer removal from a marble surface. A controlled cleaning is achieved by tuning the contact time between the gel and the marble…
Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes
This study evidences the adsorption of model nonionic polymers onto aluminogermanate imogolite nanotubes, attractive porous nanofillers with potential molecular loading and release applications. We resolve the underlying mechanisms between nanotubes and polyethylene glycols with different molecular weights by means of nanoisothermal titration calorimetry. The analysis of the results provides a direct thermodynamic characterization, allowing us to propose a detailed description of the energetics involved in the formation of polymer/imogolite complexes. The affinity toward the nanotube surface is enthalpy-driven and strongly depends on the polymer chain length, which significantly affects the…
Halloysite Nanotubes/Perfluoroctanote: an efficient consolidant and flame retardant for paper
Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials
This work represents a contribution to the design, preparation, and characterization of nanocomposite materials based on biocompatible components. The effects of composition, filler geometry, and polymer charge were highlighted, and their role on the final properties of the nanocomposites was revealed. We combined some biopolymers (methylcellulose, alginate, chitosan) with two nanoclays (kaolinite sheets and halloysite nanotubes) to prepare nanocomposites by means of the casting method from water. The thermal stability, the surface wettability, and the mechanical properties of the obtained films were studied. SEM micrographs highlighted the surface morphology of the biocomposite materials. …
Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study
Dispersions of nanofillers into aqueous and solid biopolymeric matrices were studied from the physicochemical viewpoint. This work was carried out based on the idea that the combination of biopolymers, derived from renewable resources, and nanofiller, environmentally friendly, may form a new generation of nanomaterials with excellent and unique properties at low cost. To this purpose, two pectins with different degrees of methyl esterification and nanoclays like halloysite and laponite RD were selected. The thermodynamic and structural studies on the aqueous mixtures of pectin and nanoclay were able to discriminate the interactions, which control the adsorption of pectin onto the filler and…
Conversion of Organic Dyes into Pigments: Extraction of Flavonoids from Blackberries (Rubus ulmifolius) and Stabilization
The blackberry’s color is composed mainly of natural dyes called anthocyanins. Their color is red–purple, and they can be used as a natural colorant. Anthocyanins are flavonoids, which are products of plants, and their colors range from orange and red to various shades of blue, purple and green, according to pH. In this study, the chemical composition of an extract obtained from blackberries was defined by LC-ESI/LTQOrbitrap/MS in positive and negative ionization mode. Furthermore, we investigated the adsorption process of blackberry extract using several inorganic fillers, such as metakaolin, silica, Lipari pumice, white pozzolan and alumina. The pigments exhibit different colors as a func…
Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads
Abstract Kinetic and equilibrium studies have been carried out to evaluate Cd(II) and Cu(II) sorption from aqueous solution by calcium alginate and new synthesized hybrid calcium alginate/pectate gel beads with different alginate/pectate concentration ratios. Physical and chemical properties of the beads were characterized by different techniques (SEM, EDX, TGA). The best experimental pH conditions were selected on the basis of a study on the acid–base properties of pectin and alginate in aqueous solution and their ability to act as sequestering agents for copper(II) and cadmium(II) ions. Calcium released during the sorption process was determined in order to elucidate a possible ion exchan…
Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography
Filling a polymer with halloysite nanotubes is considered a promising strategy to generate nanocomposites with tailored physicochemical properties. We have focused our attention on pluronic block copolymer/halloysite nanocomposites prepared by melt blending. The effect of composition on thermal stability and polymer crystallinity was investigated by thermogravimetry and differential scanning calorimetry. Electron microscopy was used to monitor the nanoparticle distribution in the polymeric matrix. The pluronic thermal stability is reduced by the clay nanoparticles. Concerning the polymer crystallinity, it is slightly decreased even if the melting temperature is lowered by halloysite. Furthe…
Sustainable plastics based on halloysite nanotubes and biopolymers
Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity
We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, …
Chemical modification of halloysite nanotubes for controlled loading and release.
Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug…
Mixed aggregates based on tetronic-fluorinated surfactants for selective oils capture
Abstract An aqueous star-like copolymer solution was titrated with perfluoro carboxylic acids at various compositions to prepare a polymeric surfactant composed of fluorinated nano-domains. The copolymer is X-shaped where each arm contains ethylene oxide and propylene oxide repetitive units linked to a central ethylenediamine group. The aggregation behavior of the hybrid macromolecule was studied from the physico-chemical point of view by changing parameters like temperature and composition. The solubilization of perfluorinated and hydrogenated alcohols in mixed self-assembled structure revealed that a selectivity toward the fluorinated moiety can be done. The self-assembled structures are …
Effect of Polarity of Solvent on Silanization of Halloysite Nanoclay Using (3-Glycidyloxy propyl) Trimethoxy Silane
Abstract: The grafting of silane groups on clay surfaces has been recently investigated in order to fabricate versatile compounds with new potential applications in materials science and ecological engineering. This work explored the influence of variety of solvents with variable polarity on the silanization of halloysite nanoclay (HNT) surface by (3-Glycidyloxy propyl) trimethoxy silane. To this purpose, the functionalization of HNT by 3-Glycidyloxypropyltrimethoxysilane (GOPTMS) has been conducted in Ethanol (polar protic solvent), Tetrahydrofuran (THF) and Acetonitrile (polar aprotic solvents), and Hexane, 1,4-Dioxane and Toluene (non polar solvents). The silane grafted materials were ch…
Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods
Abstract Thermal and mechanical properties were determined for the halloysite nanotubes (HNT)/beeswax composites at various compositions. The beeswax degradation temperatures and time course, provided by thermogravimetry (TG), evidenced the improvement of the thermal properties operated by HNT. Differential scanning calorimetry (DSC) allowed us to determine the enthalpy of melting as well as the time course of the melting process for beeswax. A slight loss of beeswax crystallinity was observed upon HNT addition. The dynamical mechanical analysis (DMA) provided the loss and the storage modulus for the nanocomposites upon heating and it was shown that the nanoclays create an inorganic framewo…
Pickering Emulsions Stabilized by Halloysite Nanotubes: From General Aspects to Technological Applications
Besides surfactants, which decrease the interfacial tension between two immiscible liquids, also interfacially active particles can successfully stabilize an emulsion system by attaching at the liquid–liquid interface. The preparation of the resulting Pickering emulsions has been so far investigated starting from the study of the interactions arising between the dispersed droplets and the stabilizers, till the application of these systems in a wide range of different fields. This work is intended to provide an overall overview about the development of Pickering emulsions by considering the most general aspects and scanning the diverse types of solid stabilizers. Among them, Halloysite nanot…
Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability
Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…
Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases
We prepared hybrid halloysite nanotubes (HNT/sodium alkanoates) in which the inner cavity of the nanoclay was selectively modified. Physicochemical studies evidenced the interactions between HNT and sodium alkanoates, ruled out clay exfoliation, quantified the amount of the loaded substance, and showed an increase of the total net negative charge, allowing us to obtain rather stable aqueous nanoclay dispersions. These dispersions were exploited as inorganic micelles to capture hydrocarbon and aromatic oils in the vapor and liquid states and were revealed to be nonfoaming but very efficient in encapsulating oils. Here, we have fabricated biocompatibile and low-cost inorganic micelles that ca…
Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy
Abstract Hypothesis The use of non-viral vectors for gene therapy is hindered by their lower transfection efficiency and their lacking of self-track ability. Experiments This study aims to investigate the biological properties of halloysite nanotubes-carbon dots hybrid and its potential use as non-viral vector for oral gene therapy. The morphology and the chemical composition of the halloysite hybrid were investigated by means of high angle annular dark field scanning TEM and electron energy loss spectroscopy techniques, respectively. The cytotoxicity and the antioxidant activity were investigated by standard methods (MTS, DPPH and H2O2, respectively) using human cervical cancer HeLa cells …
Colloidal stability and self-assembling behavior of nanoclays
Abstract Currently, nanoclays are attracting the attention of a wide part of the scientific community, due to some of their most peculiar features that make them good candidates for applications in different fields. In light of this, some strategies can be pursued in order to obtain stable colloidal dispersions of nanoclays with the aim to improve their features and to expand their use. Hence, this chapter presents an overview on the structural and morphological characteristics, the physico-chemical properties and the main approaches that are taken into account for the preparation of homogeneous suspensions of Halloysite, Imogolite and Laponite in both aqueous and apolar solvent media. In p…
Functionalized halloysite multivalent glycocluster as a new drug delivery system.
A new design for halloysite nanotube materials was obtained by grafting chemically modified cyclodextrin units onto the nanotube surface. In particular, grafted cyclodextrins were decorated with thiosaccharide pendants, in order to mimic the well-known binding of sugars to proteins and the glyco-cluster effect occurring during cellular recognition events. The obtained materials were characterized by using a combination of varied techniques (FT-IR spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, turbidimetry), and their potential drug-delivery abilities were tested by studying their interactions with the common naturally occurring anticancer a…
Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods
We have designed an innovative protocol for the consolidation of waterlogged archaeological woods by using acetone mixtures of halloysite clay nanotubes and a chemically modified colophony (Rosin). Firstly, we have investigated the thermal properties of HNTs/Rosin nanocomposites, which have been prepared by means of the casting method from acetone. The HNTs content have been systematically changed in order to study the influence of the inorganic filler on the thermal stability and glass transition process of Rosin. We have observed that the thermal properties of the hybrids are affected by the specific HNTs/Rosin interactions. Then, acetone dispersions of HNTs/Rosin composites at variable f…
Stability of Halloysite, Imogolite, and Boron Nitride Nanotubes in Solvent Media
Inorganic nanotubes are attracting the interest of many scientists and researchers, due to their excellent application potential in different fields. Among them, halloysite and imogolite, two naturally-occurring aluminosilicate mineral clays, as well as boron nitride nanotubes have gained attention for their proper shapes and features. Above all, it is important to reach highly stable dispersion in water or organic media, in order to exploit the features of this kind of nanoparticles and to expand their applications. This review is focused on the structural and morphological features, performances, and ratios of inorganic nanotubes, considering the main strategies to prepare homogeneous col…
Films of Halloysite Nanotubes Sandwiched between Two Layers of Biopolymer: From the Morphology to the Dielectric, Thermal, Transparency, and Wettability Properties
This study focused on the preparation and characterization of films based on biopolymers (hydroxypropylcellulose and low methoxyl pectin) and halloysite nanotubes (HNTs). The morphology is strongly dependent on the polymer nature. In particular, we observed a sandwich-like structure composed of two hydroxypropylcellulose layers incorporating the HNTs and a homogeneous distribution of the nanotubes into the low methoxyl pectin matrix. The different mesoscopic properties were invoked to explain the dielectric, thermal, and wettability properties of the corresponding films. Nanocomposites obtained by combining materials from renewable resources and HNTs is a challenging task in view of designi…
Grafting of (3-chloropropyl)-trimethoxy silane on halloysite nanotubes surface
Modified halloysite nanotubes (HNTs-Cl) were synthesized by a coupling reaction with (3-chloropropyl) trimethoxysilane (CPTMS). The incorporation of chloro-silane onto HNTs surface creates HNTs-Cl, which has great chemical activity and is considered a good candidate as an active site that reacts with other active molecules in order to create new materials with great applications in chemical engineering and nanotechnology. The value of this work lies in the fact that improving the degree of grafting of chloro-silane onto the HNT’s surface has been accomplished by incorporation of HNTs with CPTMS under different experimental conditions. Many parameters, such as the dispersing media, the molar…
Biocompatible Poly(N-isopropylacrylamide)-halloysite Nanotubes for Thermoresponsive Curcumin Release
The grafting of poly(N-isopropylacrylamide) (PNIPAAM) onto the halloysite external surface is proposed in order to obtain a novel thermoresponsive drug carrier for curcumin delivery. The new nanomaterial is characterized by means of FT-IR spectroscopy, thermogravimetric analysis, and SEM investigations. A high density of polymer chain was achieved at the nanoparticle surface. The PNIPAAM dehydration phenomenon was observed in water above 32 °C that is nearly coincident with the lower critical solution temperature for the polymer. The colloidal stability as well as the wettability of the obtained nanomaterial may be triggered by temperature stimuli. In vitro tests simulating the gastro-intes…
Chitosan-based smart hybrid materials: a physico-chemical perspective.
Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-che…
Sedimentation of halloysite nanotubes from different deposits in aqueous media at variable ionic strengths
Abstract Halloysite clay is a natural nanomaterial that is attracting a growing interest in colloidal science. The halloysite aqueous dispersion stability is a key aspect for the configuration of a purification protocol as well as to establish the durability of a formulation. A physico-chemical study demonstrated the role of ionic strength and nanotube characteristic sizes on the sedimentation behavior. We highlighted the importance of the electrostatic repulsions exercised between the particles in the settling process. A protocol for image analysis has been proposed to provide robust information from time resolved optical images on the suspensions. In conclusion, we managed to correlate mi…
Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction
Abstract Microwave assisted halloysite (HNT) external surface functionalization with ionic liquids is described. HNTs modification was achieved in two steps: a) grafting of 3-mercaptopropyl trimethoxysilane on the external surface of HNT by a microwave irradiation; b) anchorage of vinylimidazolium ionic liquids by a thiol-ene reaction. MW irradiation allowed us to obtain high loading onto the HNT surface compared to those obtained through conventional synthesis. Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the grafting has occurred only on the external surface of HNT. Turbidimetric and dynamic light scattering analyses showed that the introduction of…
Halloysite nanotubes filled with MgO for paper reinforcement and deacidification
Abstract A novel material for the deacidification and protection of paper has been designed by using MgO filled halloysite nanotubes (Hal). The ability of MgO loaded nanotubes to control the acidic conditions was evaluated by pH measurements in aqueous solvent. Afterwards, paper was impregnated into hydroxypropyl cellulose dispersions containing the consolidating material. A simulation of strong acidic conditions allowed us to evaluate the deacidification effect of the composite material on the samples. In particular, the paper reaches a pH of 7.7 after 1 h exposition to HNO3 vapours when MgO-Hal nanoparticles are added to the impregnation mixture at a concentration of 10 wt% and it remains…
Crystallinity of block copolymer controlled by cyclodextrin
We report a differential scanning calorimetry study to investigate the effect of cyclodextrins (CD) on the crystallinity of a copolymer. Tetronics was selected as copolymer with star-like shape formed by four polyethylene oxide flanked by four polypropylene oxide blocks linked to ethylenediamine central group. The use of CD with different cavity size was exploited for a block selective inclusion. A model for supramolecular association was considered for a quantitative description of the enthalpy data. The polymer chain incorporation into the CD cavity generates a loss of crystallinity. The stoichiometry of the CD/copolymer aggregates can be tuned by changing the CD cavity size. The investig…
Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating
We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-cla…
The Use of Silicones as Extractants of Biologically Active Substances from Vegetable Raw Materials
Based on theoretical studies, the authors of this paper propose the use of cosmetic organosilicon polymers (commonly called silicones) for the extraction of a complex of biologically active substances contained in vegetable raw materials. It is important to note that the biological molecules do not interact with the organosilicones and, therefore, their properties are not altered after the extraction. In this work, we investigate the efficiency of several polyorganosiloxanes as extractants of vegetable raw materials (Calendula Officialis L. and Artemisia Absinthium L.) useful for the preparation of cosmetic emulsions. Specifically, the extraction studies were conducted by using polyorganosi…
Comparative study of historical woods from XIX century by thermogravimetry coupled with FTIR spectroscopy
Thermal and structural properties of historical woods from apparatuses of the Historical Collection of the Physics Instruments of the University of Palermo have been investigated by FTIR spectroscopy coupled with thermogravimetric analysis. Specifically, the wooden portions of apparatuses from XIX century have been studied. The investigated woods belong to different taxa (Swietenia mahagoni, Picea abies and Juglans regia). The thermal behavior of the wooden materials has been successfully interpreted on the basis of specific indexes determined by the quantitative analysis of the FTIR spectra. The kinetics of the wood pyrolysis have been investigated by using a non-isothermal approach based …
An assembly of organic-inorganic composites using halloysite clay nanotubes
Halloysite is natural tubular clay suitable as a component of biocompatible nanosystems with specific functionalities. The selective modification of halloysite inner/outer surfaces can be achieved by exploiting supramolecular and covalent interactions resulting in controlled colloidal stability adjusted to the solvent polarity. The functionalized halloysite nanotubes can be employed as reinforcing filler for polymers as well as carriers for the sustained release of active molecules, such as antioxidants, flame-retardants, corrosion inhibitors, biocides and drugs. The tubular morphology makes halloysite a perspective template for core-shell metal supports for mesoporous catalysts. The cataly…