A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic …
Molecular characterisation of the species of the genus Zygosaccharomyces.
The restriction fragments polymorphisms of the mitochondrial DNA and the PCR fragment that comprised the internal transcribes spacers and the 5.8S rRNA gene, together with the electrophoretic karyotypes of 40 strains from the 10 species of the genus Zygosaccharomyces, including the new species Z. lentus were examined. The RFLP's of the ITS-5.8S region showed a specific restriction pattern for each species, including the new species Z. lentus. The only exception were the species Z. cidri and Z. fermentati that produced identical restriction profiles. The electrophoretic chromosome patterns confirmed the differences between the species of this genus, including the phylogenetic closest species…
Characterisation of four species of the genus Kluyveromyces by mitochondrial DNA restriction analysis
Summary In the present work, we determine the relationships at the within-species level among strains of Kluyveromyces dobzhanskii, K. lactis, K. marxianus, and K. thermotolerans, through the restriction analysis of their mtDNAs. The three first species showed a high level of intraspecific mtDNA divergence, this polymorphism is correlated to the varieties or species defined according to the original taxonomy of the genus, which is in concordance with that shown by other phenotypic or genotypic markers codified for by the nuclear genome. In these species, the analysis of the relationships among strains based on mtDNA restriction data agrees with previous classifications based on morphologica…
Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking
Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three dif…
Natural hybrids fromSaccharomyces cerevisiae,Saccharomyces bayanusandSaccharomyces kudriavzeviiin wine fermentations
Several wine isolates of Saccharomyces were analysed for six molecular markers, five nuclear and one mitochondrial, and new natural interspecific hybrids were identified. The molecular characterization of these Saccharomyces hybrids was performed based on the restriction analysis of five nuclear genes ( CAT8 , CYR1 , GSY1 , MET6 and OPY1 , located in different chromosomes), the ribosomal region encompassing the 5.8S rRNA gene and the two internal transcribed spacers, and sequence analysis of the mitochondrial gene COX2 . This method allowed us to identify and characterize new hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii , between S. cerevisiae and Saccharomyces ba…
Yeast Population Dynamics during the Fermentation and Biological Aging of Sherry Wines
ABSTRACTMolecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of “fino” sherry wine making. The four races of “flor”Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, androuxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-florS. cerevisiaestrains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typ…
The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeasts unveils a high genetic diversity
New double- and triple-hybrid Saccharomyces yeasts were characterized using PCR-restriction fragment length polymorphism of 35 nuclear genes, located on different chromosome arms, and the sequencing of one nuclear and one mitochondrial gene. Most of these new hybrids were originally isolated from fermentations; however, two of them correspond to clinical and dietary supplement isolates. This is the first time that the presence of double-hybrid S. cerevisiae×S. kudriavzevii in non-fermentative substrates has been reported and investigated. Phylogenetic analysis of the MET6 nuclear gene confirmed the double or triple parental origin of the new hybrids. Restriction analysis of gene regions in …
Microbiological and Enological Parameters during Fermentation of Musts from Poor and Normal Grape-Harvests in the Region of Alicante (Spain)
Must and wine from grapes harvested in two vintages (1986 and 1987) were anlyzed during vinification for physicochemical and microbiological characteristics. The 1986 vintage would be considered abnormal or poor vintage because of higher rainfall at harvest, and the 1987 one a normal vintage. Low reducing sugars and high volatile acidity at the beginning of the poor fermentation was observed as compared to normal vinification. The yeast population showed atypical evolution through the process since oxidative yeasts were isolated in the first stages of the poor vinification.
Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which sponta…
A multi-phase multi-objective dynamic genome-scale model shows different redox balancing among yeast species in fermentation
ABSTRACTYeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kin…
Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene.
A phylogenetic analysis of 17 species belonging to the genus Kluyveromyces and 12 reference and outgroup species was performed using mitochondrial cytochrome-c oxidase II gene sequences. The genus Kluyveromyces appears as a polyphyletic taxon formed by species included within the following four main groups. The Kluyveromyces phaffii group encompasses the species Kluyveromyces blattae, K. phaffii and Kluyveromyces yarrowii. The Kluyveromyces marxianus group is a monophyletic group consisting of the species Kluyveromyces aestuarii, Kluyveromyces dobzhanskii, Kluyveromyces lactis, K. marxianus and Kluyveromyces wickerhamii. The monophyletic Kluyveromyces thermotolerans group is formed by K. th…
Selection and molecular characterization of wine yeasts isolated from the ‘El Penedès’ area (Spain)
Abstract A study of the microbiota present during the wine fermentation of five grape varieties from the ‘El Penedes’ area (Spain) was carried out to select autochthonous yeast strains for industrial wine production. In this study we identified members of the genera Candida, Dekkera, Hanseniaspora, Kluyveromyces, Torulaspora, Zygosaccharomyces and Saccharomyces in wine fermentation microbiota. Strains of Saccharomyces cerevisiae, as responsible agents of the alcoholic fermentation, were considered for a selection protocol. In this work we applied different enological criteria for selection, but previously we have characterized and differentiated Saccharomyces isolates by molecular methods t…
Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces
12 pages, 7 figures, 3 tables
Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments
11 pages, 3 figures, 3 tables.-- Article first published online: 8 SEP 2010
Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region.
In recent years, different molecular techniques have led to an important progress in the characterisation of Colletotrichum species, but there are no available methods which permit the easy identification of Colletotrichum strains and their assignation to classical species. In the present work, the restriction patterns generated from the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene, were used to identify a total of 80 strains of Colletotrichum, the majority of them isolated from strawberry. One of the most interesting results derived from this study was the easy and reliable distinction, using the endonuclease MvnI, between Colletotrichum fragariae…
Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity.
Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating lactic-acid bacteria growth. The selection of a yeast strain that simultaneously overproduces mannoproteins and presents good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae × S. cerevisiae hybrid bearing the two oenologically relevant features was constructed. According to the genomic characterisation of the hybrids, different copy numbers of some genes probably related with these physiological features were detected. The hybrid shared not only a similar copy number of genes SPR1…
An analysis of inter- and intraspecific genetic variabilities in theKluyveromyces marxianusgroup of yeast species for the reconsideration of theK. lactistaxon
In the present work, we analyse the sequences of the 5.8S rRNA gene and the two internal transcribed spacers 1 and 2 (5.8S-ITS region), obtained from 39 strains belonging to the species Kluyveromyces aestuarii, K. dobzhanskii, K. lactis and K. marxianus, K. nonfermentans and K. wickerhamii, to solve the phylogenetic relationships among these species and also to determine the possible genetic basis for the delimitation of the two currently accepted K. lactis varieties: lactis, including lactose-positive strains isolated from dairy products, and drosophilarum, comprising lactose-negative strains isolated from insects and plant exudates. The determination of the phylogenetic relationships with…
Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii
During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied t…
Evaluation of the use of phase-specific gene promoters for the expression of enological enzymes in an industrial wine yeast strain
Genes as POT1, HSP104 and SSA3, which are late expressed in laboratory culture conditions are expressed only during the first few days in microvinifications in wine yeast cells. This effect is probably due to the different growth conditions and leads to useless levels of enzyme activity for a reporter gene. However the ACT1 promoter, which is constitutively expressed in laboratory conditions, produces sufficient amounts of enzyme activity in late fermentation phases.
Phylogenetic reconstruction of the yeast genus Kluyveromyces: restriction map analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers
Summary We have constructed restriction site maps of the 5.8S rRNA gene and the two ITS regions in 60 strains of Kluyveromyces genus. We test the value of this region as a phylogenetic indicator, and its possible use as a fast and easy method to identify species of this genus. Despite some minor incongruences, our results are in good agreement with previous phylogenetic reconstructions based on the 18S rRNA gene sequencing (Cai et al., 1996; James et al., 1997). A highly significant monophyletic group was formed by K. lactis, K. marxianus, K. aestuarii, K. dobzhanskii and K. wickerhamii, which should be considered the true Kluyveromyces genus. The other species of the genus were grouped wit…
A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios
8 pages, 1 figure, 4 tables.-- Online version published: May 2009.-- The definitive version is available at www3.interscience.wiley.com
Chimeric Genomes of Natural Hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii
11 pages, 6 figures.-- PMID: 19251887 [PubMed].-- Printed version published Apr 2009.
Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions
This work aims to describe the wine fermentation characteristics of 23 natural S. cerevisiae × S. kudriavzevii hybrid yeasts related to fermentative environments isolated from different regions and their significance for the aroma spectra of the produced wines. Fermentations were performed at 12 °C in artificial must, and S. cerevisiae and S. kudriavzevii pure species strains were used for comparison purposes. We determined the relevant kinetic parameters of fermentation, the concentration of the main metabolites and the main aroma-related compounds produced after fermentation. The results revealed that some strains that show well-rounded characteristics could be profitable yeast starters f…
Rapid characterization of four species of the Saccharomyces sensu stricto complex according to mitochondrial DNA patterns
Several strains of the four sibling species of the genus Saccharomyces (S. bayanus, S. cerevisiae, S. paradoxus, and S. pastorianus) were characterized by using a rapid and simple method of restriction analysis of mitochondrial DNA. Patterns obtained with four-cutter endonucleases (such as AluI, DdeI, HinfI, and RsaI) made it possible to differentiate each species. S. cerevisiae and S. paradoxus presented a greater number of large fragments than S. pastorianus and S. bayanus with all the assay enzymes. With AluI and DdeI, species-specific bands clearly permitted differentiation between S. pastorianus and S. bayanus. To test the resolution of this method, wild Saccharomyces strains were anal…
Molecular evolution in yeast of biotechnological interest
The importance of yeast in the food and beverage industries was only realized about 1860, when the role of these organisms in food manufacture became evident. Since they grow on a wide range of substrates and can tolerate extreme physicochemical conditions, yeasts, especially the genera Saccharomyces and Kluyveromyces, have been applied to many industrial processes, Industrial strains of these genera are highly specialized organisms that have evolved to utilize a range of environments and ecological niches to their full potential. This adaptation is called "domestication". This review describes the phylogenetic relationships among Saccharomyces and Kluyveromyces species and the different me…
Exclusion of Saccharomyces kudriavzevii from a wine model system mediated by Saccharomyces cerevisiae.
This study investigated the competition and potential hybrid generation between the species Saccharomyces cerevisiae and S. kudriavzevii in a wine-model environment. Our main goal was to understand why S. kudriavzevii has not been found in wine fermentations whilst their hybrids are present. Auxotrophic mutants (Ura(-) and Lys(-)) were used to favour the selection of hybrids and to specifically differentiate the two species in mixed fermentations carried out at different temperatures (17 °C, 24 °C and 31 °C). Both yeasts showed a reduction in their maximum specific growth rates in mixed fermentations, indicating a clear antagonistic effect between the two microorganisms. Temperature played …
Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae
The presence of Saccharomyces cerevisiae in grape berries and fresh musts is usually very low. However, as fermentation progresses, the population levels of this species considerably increase. In this study, we use the concept of fitness advantage to measure how increasing ethanol concentrations (0-25%) and temperature values (4-46 °C) in wine fermentations affects competition between S. cerevisiae and several non-Saccharomyces yeasts (Hanseniaspora uvarum, Torulaspora delbrueckii, Candida zemplinina, Pichia fermentans and Kluyveromyces marxianus). We used a mathematical approach to model the hypothetical time needed for S. cerevisiae to impose itself on a mixed population of the non-Saccha…
RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.
Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic m…
Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.
Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several wor…
Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization
Grape must is a sugar‐rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genet…
Molecular Identification of Yeasts Associated with Traditional Egyptian Dairy Products
This study aimed to examine the diversity and ecology of yeasts associated with traditional Egyptian dairy products employing molecular techniques in yeast identification. A total of 120 samples of fresh and stored Domiati cheese, kariesh cheese, and "Matared" cream were collected from local markets and examined. Forty yeast isolates were cultured from these samples and identified using the restriction-fragment length polymorphism (RFLPs) of 5.8S-ITS rDNA region and sequencing of the domains D1 and D2 of the 26S rRNA gene. Yeasts were identified as Issatchenkia orientalis (13 isolates), Candida albicans (4 isolates), Clavispora lusitaniae (Candida lusitaniae) (9 isolates), Kodamaea ohmeri (…
Characterization of wine yeast strains of the Saccharomyces genus on the basis of molecular markers: Relationships between genetic distance and geographic or ecological origin
Summary We identify and characterize 31 Saccharomyces strains from different wine regions, deposited at the Spanish Type Culture Collection, according to mtDNA restriction patterns and chromosomal profiles. By using this kind of information we analyze the correlation between genetic distances and ecological or geographical factors by means of a cluster analysis, assessed by an analysis of the molecular variance (AMOVA). From these analyses, red wine strains are significantly grouped according to their geographic origin, independently of the wine type and the grapevine cultivar, and white wine strians according to ecological factors (wine type of grapevine cultivars). This study also confirm…
A Comparative Study of Different Methods of Yeast Strain Characterization
Summary An extensive survey of different methods of yeast strain identification (classical microbiological tests, whole-cell protein electrophoresis, chromosomal patterns, DNA hybridization and mitochondrial DNA restriction analysis) has been carried out in order to differentiate, with industrial purposes, strains present in the Alicante wine ecosystem. Only chromosomal patterns and mitochondrial DNA (mtDNA) restriction analysis show differences between strains. Both techniques are very complex to be used in bio technological industries. For this reason, we have developed a new, simple, unexpensive and rapid method based on mtDNA restriction analysis.
Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia
Apple chicha is a fresh low alcoholic beverage elaborated by aboriginal communities of Andean Patagonia (Argentina and Chile). In the present work, we identified the yeast microbiota associated with this fermentation, and characterized genetically those belonging to the genus Saccharomyces. Both Saccharomyces cerevisiae and S. uvarum were found in the analyzed fermentations. Phylogenetic and population structure analyses based on genes sequence analysis were carried out for both S. cerevisiae and S. uvarum strains obtained in this study and a set of additional strains from diverse origins. The results demonstrate that S. cerevisiae strains from apple chicha belong to the big group of wine/E…
Differentiation of Penicillium griseofulvum Dierckx isolates by enzyme assays and by patulin and griseofulvin analyses
The production of patulin and griseofulvin by 49 different isolates of Penicillium griseofulvum Dierckx was analyzed by high-performance liquid chromatography. Eleven isolates were obtained from pistachio nuts, 37 were obtained from wheat seeds, and 1 was obtained from the American Type Culture Collection. Activities of 19 enzymes were also assayed by the API ZYM system. From these results it may be deduced that there are two different groups among the strains tested which cannot be distinguished by morphological and cultural characteristics. One group of isolates did not produce detectable amounts of patulin and griseofulvin when grown in sucrose-yeast extract and Wickerham media, while en…
Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii.
The effect of yeasts on wine flavor response is of primary importance. The genus Saccharomyces, and mainly the species Saccharomyces cerevisiae, is responsible for alcoholic fermentation. Recently, several novel yeast isolates from wines have been described as hybrid yeasts between S. cerevisiae x S. kudriavzevii. We have analyzed their influence on two grape musts (Macabeo and Tempranillo) in fermentations conducted at four different temperatures (14, 18, 22 and 32 degrees C) by studying volatile compound production, sugar assimilation and other characteristics influencing the enological properties of wine caused by the impact of yeast. Hybrid yeasts behave particularly well at 14, 18 and …
Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker an…
Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications
In recent years, there has been an increasing interest in identifying and characterizing the yeast populations associated with diverse types of table olive elaborations because of the many desirable technological properties of these microorganisms. In this work, a total of 199 yeast isolates were directly obtained from industrial green table olive fermentations and genetically identified by means of a RFLP analysis of the 5.8S-ITS region and sequencing of the D1/D2 domains of the 26S rDNA gene. Candida diddensiae, Saccharomyces cerevisiae and Pichia membranifaciens were the most abundant yeast species isolated from directly brined Aloreña olives, while for Gordal and Manzanilla cultivars th…
Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations
Lack of the prezygotic barrier in the Saccharomyces genus facilitates the construction of artificial interspecific hybrids among different Saccharomyces species. Hybrids that maintain the interesting features of parental strains have been applied in industry for many beneficial purposes. Two of the most important problems faced by wine makers is nitrogen deficiency in grape must and low-temperature fermentation. In our study, hybrids were constructed by using selected low nitrogen-demanding cryotolerant S. eubayanus, S. uvarum strains and S. cerevisiae. The fermentation capacity of the hybrid strains was tested under four conditions by combining two temperatures, 12 °C and 28 °C, and two ni…
Molecular identification and characterization of wine yeasts isolated from Tenerife (Canary Island, Spain)
Aims: The present study was aimed at the identification, differentiation and characterization of indigenous yeasts isolated from Tenerife vineyards (viticulture region that has never been characterized before). Microbiota were studied from 14 samples taken during fermentations carried out in the 2002 vintage, from 11 wineries belonging to five wine regions on Tenerife Island. Methods and Results: Yeasts’ strains were identified and characterized through restriction analysis of the 5·8S-internal transcribed spacer region and the mitochondrial DNA. At the beginning of alcoholic fermentation, 26 yeast species were found, where 14 species were present in significant frequencies in only one sa…
Four new Candida cretensis strains isolated from Spanish fermented sausages (chorizo): Taxonomic and phylogenetic implications
Four yeast strains were isolated from Spanish traditional fermented sausages (chorizo) spoiled by gas production. Using the classical identification procedures, they were identified as Debaryomyces hansenii. However, they fermented galactose and did not produce positive results in Debaryomyces differential medium (DDM), a growth medium highly specific for this species. Phylogenetic analysis showed identical sequences for the D1/D2 domain of the 26S rRNA gene and almost identical sequences for the 5.8S-ITS region with those of the recently described yeast species Candida cretensis. This result was confirmed by sequencing the gene encoding actin of the type and the new strains. Candida creten…
Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region
In this study, we identified a total of 33 wine yeast species and strains using the restriction patterns generated from the region spanning the internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene. Polymerase chain reaction (PCR) products of this rDNA region showed a high length variation for the different species. The size of the PCR products and the restriction analyses with three restriction endonucleases (HinfI, CfoI, and HaeIII) yielded a specific restriction pattern for each species with the exception of the corresponding anamorph and teleomorph states, which presented identical patterns. This method was applied to analyze the diversity of wine yeast species during sponta…
Mycotoxins and mycotoxigenic moulds in nuts and sunflower seeds for human consumption
A survey was carried out to obtain data on the occurrence of mycotoxins and the mycotoxin-producing potential of fungi isolated from nuts (almonds, peanuts, hazelnuts, pistachio nuts) and sunflower seeds in Spain. Thin-layer chromatography was used to separate the toxins. Aflatoxins were detected in one sample of almonds (95 ppb aflatoxin B1 and 15 ppb aflaxtoxin B2) and in one sample of peanuts at a level below 10 ppb of aflatoxin B1. 100% of samples showed variable incidence of fungal contamination. The predominant fungi present in samples were Penicillium spp, Aspergillus niger, A. flavus, A. glaucus and Rhizopus spp. The results showed that isolates of different species were able to pro…
Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid
Available online 17 March 2015
Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.
Along the fermentation process yeasts are affected by a succession of stress conditions that affect their viability and fermentation efficiency. Among the stress conditions the most relevant are high sugar concentration and low pH in musts, temperature and, as fermentation progresses, ethanol accumulation. Nowadays, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing search for particular wine yeast strains possessing a wide range of optimized, improved or novel enological characteristics. Traditionally, the species S. cerevisiae and S. bayanus within the Saccharomyces sensu stricto species are considered some of the most impor…
Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations
Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that …
Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid
In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present work studies, in a wine model system, the effects of temperature, pH and sugar concentration on the glycerol and ethanol syntheses by yeasts Saccharomyces cerevisiae T73, the type strain of Saccharomyces kudriavzevii IFO 1802(T), and an interspecific hybrid between both species (W27), which was accomplished by the application of response surface methodology based in a central composite circumscrib…
Role of yeasts in table olive production
Table olives are a traditional fermented vegetable of the Mediterranean countries, but their production and consumption are now spread all around the world. Yeasts can play a double role in this food. They are present throughout the fermentative process and it is generally accepted that they can produce compounds with important organoleptic attributes determining the quality and flavour of the final product. However, yeasts can also be spoilage microorganisms in olive fermentation/storage and packing causing gas pockets, swollen containers, cloudy brines and off-flavours and off-odours. Candida boidinii, Debaryomyces hansenii, Pichia anomala, P. membranifaciens, Rhodotorula glutinis and Sac…
Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation
7 pages, 4 figures, 5 tables.
Impact of Nitrogen Addition on Wine Fermentation by S. cerevisiae Strains with Different Nitrogen Requirements
In modern oenology, supplementation of nitrogen sources is an important strategy to prevent sluggish or stuck fermentation. The present study thoroughly determined the effect of nitrogen addition timing and nitrogen source type on fermentation kinetics and aroma production, carried out by yeast strains with low and high nitrogen requirements. The results revealed that yeast strains with different nitrogen requirements have divergent reactions to nitrogen addition. Nitrogen addition clearly shortened the fermentation duration, especially for the high-nitrogen-demanding yeast strain. Nitrogen addition at 1/3 fermentation was the most effective in terms of fermentation activity, nitrogen assim…
Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and non-clinical isolates of Saccharomyces cerevisiae
The concept of Saccharomyces cerevisiae as an emerging opportunistic pathogen is relatively new and it is due to an increasing number of human infections during the past 20 years. There are still few studies addressing the mechanisms of infection of this yeast species. Moreover, little is known about how S. cerevisiae cells sense and respond to the harsh conditions imposed by the host, and whether this response is different between clinical isolates and non-pathogenic strains. In this regard, mitogen-activated protein kinase (MAPK) pathways constitute one of the major mechanisms for controlling transcriptional responses and, in some cases, virulence in fungi. Here we show differences among …
New Trends in the Uses of Yeasts in Oenology
Abstract The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rose wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S…
Human-associated migration of Holarctic Saccharomyces uvarum strains to Patagonia
Our results show that the greatest S. uvarum population diversity worldwide is observed in Patagonia, where strains of this species can be isolated from industrial and traditional fermentations as well as from natural environments. This greater Patagonian diversity is due to the presence of strains belonging to two genetically differentiated populations, South America B (SA-B), and Holarctic/South America A (H/SA-A). The H/SA-A population of Patagonia is directly related to apple fermentation environments, mainly from cider fermentations but also, to a lesser extent, from traditional apple chicha. Our data suggest that strains from the Holarctic population colonized Patagonia. This is possi…
Genomic instability in an interspecific hybrid of the genus Saccharomyces: a matter of adaptability
Ancient events of polyploidy have been linked to huge evolutionary leaps in the tree of life, while increasing evidence shows that newly established polyploids have adaptive advantages in certain stress conditions compared to their relatives with a lower ploidy. The genus Saccharomyces is a good model for studying such events, as it contains an ancient whole-genome duplication event and many sequenced Saccharomyces cerevisiae are, evolutionary speaking, newly formed polyploids. Many polyploids have unstable genomes and go through large genome erosions; however, it is still unknown what mechanisms govern this reduction. Here, we sequenced and studied the natural S. cerevisiae × Saccharomyces…
The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeasts unveils a high genetic diversity.
11 pages, 2 tables, 4 figures. --Article first published online: 6 JAN 2012. --This is the pre-peer reviewed version of the following article: Peris, D., Belloch, C., Lopandić, K., Álvarez-Pérez, J. M., Querol, A. and Barrio, E. (2012), The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast, 29: 81–91. which has been published in final form at http://dx.doi.org/10.1002/yea.2891
Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids
Wine fermentation has not significantly changed since ancient times and the most traditional aspects are seen by the market as elements that uplift wine nuances and quality. In recent years, new trends have emerged from the sector in line with consumer preferences, and due to the effects of global climate change on grape ripening. In the first cases, the consumers are looking for wines with less ethanol and fruitier aromas and in the second cases the wineries want to reduce the wine alcohol levels and/or astringency. New yeast starters of alternative Saccharomyces species and their hybrids can help to solve some problems that wineries face. In this article we review several physiological an…
The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation
Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermenta…
Inter- and intraspecific chromosome pattern variation in the yeast genusKluyveromyces
The analysis of the electrophoretic chromosome patterns of the species of the genus Kluyveromyces, reveals a high polymorphism in size, number and intensity of bands. DiVerent sets of electrophoresis running conditions were used to establish species-specific patterns and also to detect intraspecific variation. According to their karyotypes, the species of this genus can be divided into two major groups. The first group includes the species K. africanus, K. bacillisporus, K. delphensis, K. lodderae, K. phaY, K. polysporus and K. yarrowii, composing the so-called ‘Saccharomyces cerevisiae-like’ group, because their karyotypes resemble that of the species S. cerevisiae. The second group compri…
On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation
Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequenc…
Analysis of the genetic variability in the species of theSaccharomyces sensu strictocomplex
Random amplified polymorphic DNA–polymerase chain reaction (RAPD–PCR) analysis was applied to differentiate the sibling species Saccharomyces bayanus, S. cerevisiae, S. paradoxus and S. pastorianus, which constitute the most common strains of the Saccharomyces sensu stricto complex. Six decamer primers of arbitrary sequences were used to amplify the DNA of 58 strains. Species-specific (diagnostic) bands were obtained for each species. Two phylogenetic trees constructed by the neighbour-joining and maximum parsimony methods clearly showed that the delimitation of these related yeast species is possible by using RAPD analysis. Four groups of strains, corresponding to the species S. bayanus, S…
On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids
Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed so…
A new PCR-based method for monitoring inoculated wine fermentations.
A new PCR-based method has been developed to monitor inoculated wine fermentations. The method is based on the variation in the number and position of introns in the mitochondrial gene COX1. Oligonucleotide primers homologous to the regions flanking the Saccharomyces cerevisiae COX1 introns have been designed and tested for S. cerevisiae wine yeast strain differentiation. Four primers were selected for their subsequent use in a multiplex PCR reaction and have proved to be very effective in uncovering polymorphism in natural and commercial yeast strains. An important point is that the speed and simplicity of the technique, which does not require the isolation of DNA, allows early detection o…
Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid
The effects of temperature, pH and sugar concentration (50% glucose + 50% fructose) on the growth parameters of Saccharomyces cerevisiae T73, S. kudriavzevii IFO 1802T and the hybrid strain S. cerevisiae × S. kudriavzevii W27 were studied by means of response surface methodology based in a central composite circumscribed design. Lag phase could not be properly modelled in the wine model system, where yeasts started the fermentation in few hours after inoculation. In the case of the maximum specific growth rate (μ max), the temperature was the most important variable for three yeasts, although the effects of sugar concentration (in T73 and W27) and pH (W27 and 1802) were also significan…
Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi‐omic analysis
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human‐associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose,…
Effect of temperature on the prevalence of Saccharomyces non-cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations,…
Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers
The identification and classification of yeasts have traditionally been based on morphological, physiological and biochemical traits. Various kits have been developed as rapid systems for yeast identification, but mostly for clinical diagnosis. In recent years, different molecular biology techniques have been developed for yeast identification, but there is no available database to identify a large number of species. In the present study, the restriction patterns generated from the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene were used to identify a total of 132 yeast species belonging to 25 different genera, including teleomorphic and anamorphic a…
Analysis of the stress resistance of commercial wine yeast strains
Alcoholic fermentation is an essential step in wine production that is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. The ability to carry out vinification is largely influenced by the response of yeast cells to the stress conditions that affect them during this process. In this work, we present a systematic analysis of the resistance of 14 commercial S. cerevisiae wine yeast strains to heat shock, ethanol, oxidative, osmotic and glucose starvation stresses. Significant differences were found between these yeast strains under certain severe conditions, Vitilevure Pris Mouse and Lalvin T73 being the most resistant strains, while Fermiblanc arom SM102 and UCLM …
A comparison of the performance of natural hybrids Saccharomyces cerevisiae × Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution.
Fermentation performance at low temperature is a common approach to obtain wines with better aroma, and is critical in industrial applications. Natural hybrids S. cerevisiae × S. kudriavzevii, isolated from fermentations in cold-climate European countries, have provided an understanding of the mechanisms of adaptation to grow at low temperature. In this work, we studied the performance of 23 S. cerevisiae × S. kudriavzevii hybrids at low temperature (8, 12 and 24 °C) to characterize their phenotypes. Kinetic parameters and spot tests revealed a different ability to grow at low temperature. Interestingly, the genome content of the S. kudriavzevii in hybrids was moderately correlated with a s…
A rapid and simple method for the preparation of yeast mitochondrial DNA
Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model YeastSaccharomyces cerevisiae
Saccharomyces cerevisiae is an important unicellular yeast species within the biotechnological and the food and beverage industries. A significant application of this species is the production of ethanol, where concentrations are limited by cellular toxicity, often at the level of the cell membrane. Here, we characterize 61 S. cerevisiae strains for ethanol tolerance and further analyze five representatives with various ethanol tolerances. The most tolerant strain, AJ4, was dominant in coculture at 0 and 10% ethanol. Unexpectedly, although it does not have the highest noninhibitory concentration or MIC, MY29 was the dominant strain in coculture at 6% ethanol, which may be linked to differen…
Adaptive evolution of wine yeast.
Abstract Alcoholic fermentation is one of the main phases in wine production. It is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. Industrial S. cerevisiae strains are highly specialized organisms, which have evolved to utilize to their full potential the different environments or ecological niches. So, during the alcoholic fermentation, the yeast has been adapted to different kinds of stress conditions; this adaptation is call “domestication”. In this review, we describe the different mechanisms involved in the adaptive evolution of wine yeast strains.
A multi-phase multi-objective genome-scale model shows diverse redox balance strategies in yeasts
Yeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic mod…
Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid
During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethan…
Mitochondrial introgression suggests extensive ancestral hybridization events amongSaccharomycesspecies
1.AbstractHorizontal Gene Transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested betweenS. cerevisiaeandS. paradoxus. However, few strains have been explored due to the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur and their role in cytonuclear incompatibilities and fitness. In fact, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. In this study, we have explored the mitochondrial inher…
Authentication and identification of Saccharomyces cerevisiae‘flor’ yeast races involved in sherry ageing
Yeasts involved in velum formation during biological ageing of sherry wine have to date been classified into four races of Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, rouxii) according to their abilities to ferment different sugars. It has been proposed that race succession during biological ageing is essential for the development of the organoleptical properties of sherry wines. In this work we studied the physiological characteristics, the molecular differentiation and the phylogenetic relationships of the four races employing type and reference strains from culture collections and natural environments. Using restriction analysis of the ribosomal region that includes th…
Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…
Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains
Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between chromosomes VIII and XVI due to unequal crossing-over mediated by microhomology between very short sequences on the 5' upstream regions of the SSU1 and ECM34 genes. We also show that this translocation is only present in wine yeast strains, suggesting that the use for millennia of sulfite as a preservative in wine production could have favored …
Molecular Identification and Characterization of Wine Yeasts
The transformation of grape must into wine is a complex microbiological process involving the sequential growth of bacteria and yeasts, although only the yeasts are responsible for alcoholic fermentation. In the past, winemaking was purely empirical, but it is now a well-understood, controlled process that has been gradually improved over time. Advances have largely been made possible by the development of molecular techniques to identify and characterize wine yeasts based on analysis of their DNA. These methods are rapid, reproducible, and sensitive, and continue to be used for a variety of purposes, such as analyzing variation in naturally occurring and inoculated yeast populations, monit…
Natural hybrids of S. cerevisiae×S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii
Saccharomyces kudriavzevii, a yeast species described from a pair of strains isolated from decayed leaves in Japan, has recently been isolated from oak barks in Portugal. Some data suggest that these European S. kudriavzevii populations could be closely related to the S. kudriavzevii genetic background present in natural hybrids isolated from wines and beers in different regions of Europe. However, a more exhaustive study of European S. kudriavzevii natural populations is necessary to confirm this observation. In this study, new S. kudriavzevii isolates were recovered from oak trees in different areas in Spain, and identified and characterized according to their molecular and physiological …
Molecular Characterization of New Natural Hybrids of Saccharomyces cerevisiae and S. kudriavzevii in Brewing▿ †
ABSTRACT We analyzed 24 beer strains from different origins by using PCR-restriction fragment length polymorphism analysis of different gene regions, and six new Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrid strains were found. This is the first time that the presence in brewing of this new type of hybrid has been demonstrated. From the comparative molecular analysis of these natural hybrids with respect to those described in wines, it can be concluded that these originated from at least two hybridization events and that some brewing hybrids share a common origin with wine hybrids. Finally, a reduction of the S. kudriavzevii fraction of the hybrid genomes was observed, but th…
Molecular characterization of Colletotrichum strains derived from strawberry
Strains of Colletotrichum species derived from diseased strawberry plants from a wide geographical range were studied using mitochondrial and ribosomal DNA RFLPs, and acetyl and propionyl esterase isoenzymes. Two major species aggregates were detected, centred on C. acutatum and C. gloeosporioides respectively, with significant further subdivision. There were apparent discrepancies in the hierarchical nesting of some taxon groups based on the different molecular techniques. Strains assigned to C. acutatum fell into several rDNA RFLP groups, but there was less variation in mtDNA RFLP band patterns. There appears to be at least one probably clonal population in the U.S.A. which is also presen…
Comparative genomics among Saccharomyces cerevisiae x Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins
Abstract Background Interspecific hybrids between S. cerevisiae × S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae × S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. Results Comparative genomic hybridization (CGH) and ploidy analyses carried out in thi…