0000000000804520

AUTHOR

Valérie Potin

showing 44 related works from this author

Tailoring of highly porous SnO2 and SnO2-Pd thin films

2019

Abstract Tin oxide is a material that attracts attention due to variety of technological applications. The main parameters that influence its properties are morphology, crystalline structure and stoichiometry. Researchers try to develop nanostructured thin films with tunable parameters that would conform its technological applications. Herein, we report on the preparation and characterization of highly porous SnO2 and Pd-doped SnO2 thin films. These films were deposited in the form of nanorods with controllable geometry. Such morphology was achieved by utilizing glancing angle deposition (GLAD) with assisted magnetron sputtering. This arrangement allowed preparation of slanted pillars, zig-…

Materials sciencebusiness.industryAnnealing (metallurgy)chemistry.chemical_element02 engineering and technologySputter deposition010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsTin oxide01 natural sciences0104 chemical scienceschemistryX-ray photoelectron spectroscopyOptoelectronicsGeneral Materials ScienceNanorodThin film0210 nano-technologyHigh-resolution transmission electron microscopyTinbusinessMaterials Chemistry and Physics
researchProduct

Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers

2014

Abstract Multilayered structures with a 40 nm period composed of titanium and two different titanium oxides, TiO and TiO 2 , were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. These multilayers were sputtered onto Al 2 O 3 sapphire to avoid substrate compound diffusion during flash annealing (ranging from 350 °C to 550 °C). Structure and composition of these periodic TiO 2 /TiO/Ti stacks were investigated by X-ray diffraction, X-ray photoemission spectroscopy and transmission electronic microscopy techniques. Two crystalline phases α-Ti and fcc-TiO were identified in the metallic-rich sub-layers whereas the oxygen-rich ones were composed of a mixture…

010302 applied physicsMaterials scienceAnnealing (metallurgy)Metals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesSputter deposition021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidCrystallinitychemistryChemical engineeringRutileElectrical resistivity and conductivity0103 physical sciencesMaterials Chemistry[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTitanium
researchProduct

Structure and chemical bonds in reactively sputtered black Ti–C–N–O thin films

2011

The evolution of the nanoscale structure and the chemical bonds formed in Ti–C–N–O films grown by reactive sputtering were studied as a function of the composition of the reactive atmosphere by increasing the partial pressure of an O2+N2 gas mixture from 0 up to 0.4 Pa, while that of acetylene (carbon source) was constant. The amorphisation of the films observed by transmission electron microscopy was confirmed by micro- Raman spectroscopy, but it was not the only effect associated to the increase of the O2+N2 partial pressure. The chemical environment of titanium and carbon, analysed by X-ray photoemission spectroscopy, also changes due to the higher affinity of Ti towards oxygen and nitro…

Materials sciencePhotoemission spectroscopyReactive sputteringAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciencesElectron spectroscopyX-ray photoelectron spectroscopy0103 physical sciencesMaterials Chemistry010302 applied physicsTitanium oxy-carbo-nitridesScience & TechnologyMetals and AlloysSurfaces and InterfacesPartial pressure021001 nanoscience & nanotechnologyX-ray photoelectron SpectroscopyTransmission electron Microscopy3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCarbon filmAmorphous carbonchemistryRaman spectroscopy0210 nano-technologyCarbonTitanium
researchProduct

Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers

2012

International audience; Nanoparticles formation in a laser-induced plasma plume in the ambient air has been investigated by using numerical simulations and physical models. For high irradiances, or for ultrashort laser pulses, nanoparticles are formed by condensation, as fine powders, in the expanding plasma for very high pairs of temperature and pressure. At lower irradiances, or nanosecond laser pulses, another thermodynamic paths are possible, which cross the liquid-gas transition curve while laser is still heating the target and the induced plasma. In this work, we explore the growth of nanoparticles in the plasma plume induced by nanosecond pulsed lasers as a function of the laser irra…

Materials scienceNanostructureGeneral Physics and AstronomyNanoparticlePhysics::Optics02 engineering and technology01 natural sciencesMolecular physicsElectromagnetic radiationlaw.inventionlawPhysics::Plasma Physics0103 physical sciencesABLATIONPhysics::Atomic Physics010302 applied physicsbusiness.industryCondensationSurfaces and InterfacesGeneral ChemistryPlasmaNanosecond021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserSurfaces Coatings and FilmsPlumeOptoelectronics0210 nano-technologybusiness
researchProduct

Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering.

2010

The interaction of Pt with CeO(2) layers was investigated by using photoelectron spectroscopy. The 30 nm thick Pt doped CeO(2) layers were deposited simultaneously by rf-magnetron sputtering on a Si(001) substrate, multiwall carbon nanotubes (CNTs) supported by a carbon diffusion layer of a polymer membrane fuel cell and on CNTs grown on the silicon wafer by the CVD technique. The synchrotron radiation X-ray photoelectron spectra showed the formation of cerium oxide with completely ionized Pt(2+,4+) species, and with the Pt(2+)/Pt(4+) ratio strongly dependent on the substrate. The TEM and XRD study showed the Pt(2+)/Pt(4+) ratio is dependent on the film structure.

Cerium oxideMaterials scienceAnalytical chemistryMineralogychemistry.chemical_elementSurfaces and InterfacesChemical vapor depositionSubstrate (electronics)Sputter depositionCondensed Matter PhysicschemistryX-ray photoelectron spectroscopySputteringElectrochemistryGeneral Materials ScienceThin filmPlatinumSpectroscopyLangmuir : the ACS journal of surfaces and colloids
researchProduct

Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum

2014

International audience; Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst's surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria ``nanopocket'', which binds Pt2+ so strongly…

Materials scienceInorganic chemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_elementSinteringPrecious metal02 engineering and technologyengineering.material010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysisCatalysisSurface layerNanocompositeGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryengineering[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Noble metal0210 nano-technologyPlatinum
researchProduct

Interdependence of structural and electrical properties in tantalum/tantalum oxide multilayers

2013

International audience; Dc reactive sputtering was used to deposit tantalum metal/oxide periodic nanometric multilayers using the innovative technique namely, the reactive gas pulsing process (RGPP). Different pulsing periods were used for each deposition to produce metal-oxide periodic alternations included between 5 and 80 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy techniques. Moreover, electrical properties were also studied by the Van der Pauw technique.

Materials scienceInorganic chemistryOxideTantalumchemistry.chemical_element02 engineering and technology01 natural scienceschemistry.chemical_compoundCrystallinityVan der Pauw methodSputtering0103 physical sciencesMaterials Chemistry[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsThin filmDeposition (law)010302 applied physicsSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmschemistryChemical engineeringTransmission electron microscopy[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologySurface and Coatings Technology
researchProduct

Strain state analysis of InGaN/GaN - sources of error and optimized imaging conditions.

2006

Transmission electron microscopy investigation of the chemical composition of In x Ga 1-x N/GaN layers by strain state analysis can lead to substantial artefacts. We evaluated simulated images in dependence of specimen thickness, specimen orientation and objective lens defocus. We observed that the measurement is in agreement with the true strain profile for certain conditions only. An analysis of error sources revealed that artefacts are mainly caused by a combination of delocalization and the composition dependence of the phases of the beams contributing to the image formation. The delocalization effect is minimized for interference of the undiffracted beam with one of the 000 ± 2 beams. …

Image formationbusiness.industryChemistrySurfaces and InterfacesElasticity (physics)Condensed Matter PhysicsMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOpticsTransmission electron microscopyFinite strain theory[ CHIM.MATE ] Chemical Sciences/Material chemistryMicroscopyLattice planeMaterials ChemistryElectrical and Electronic EngineeringbusinessBeam (structure)Plane stress
researchProduct

Growth of nano-porous Pt-doped cerium oxide thin films on glassy carbon substrate

2013

Abstract Glassy carbon (GC) substrates were treated by the oxygen plasma over several periods of time. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) study showed the dramatic influence of oxygen plasma on the morphology of glassy carbon. The treatment leads to the formation of nanostructured surface, which consists of well separated rod-like nanostructures oriented perpendicularly to the substrate surface. The surface roughness was found to increase with increasing treatment time. By using magnetron co-sputtering of platinum and cerium oxide we can prepare oxide layers continuously doped with Pt atoms during the growth. This tec…

Cerium oxideMaterials scienceScanning electron microscopeProcess Chemistry and TechnologyOxideNanotechnologySubstrate (electronics)Glassy carbonSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundChemical engineeringchemistryTransmission electron microscopyMaterials ChemistryCeramics and CompositesSurface roughnessThin filmCeramics International
researchProduct

Preparation of magnetron sputtered thin cerium oxide films with a large surface on silicon substrates using carbonaceous interlayers.

2013

The study focuses on preparation of thin cerium oxide films with a porous structure prepared by rf magnetron sputtering on a silicon wafer substrate using amorphous carbon (a-C) and nitrogenated amorphous carbon films (CNx) as an interlayer. We show that the structure and morphology of the deposited layers depend on the oxygen concentration in working gas used for cerium oxide deposition. Considerable erosion of the carbonaceous interlayer accompanied by the formation of highly porous carbon/cerium oxide bilayer systems is reported. Etching of the carbon interlayer with oxygen species occurring simultaneously with cerium oxide film growth is considered to be the driving force for this effec…

Cerium oxideMaterials scienceSiliconInorganic chemistrychemistry.chemical_element02 engineering and technologySubstrate (electronics)Sputter deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCarbon filmchemistryAmorphous carbonChemical engineeringEtching (microfabrication)General Materials Science0210 nano-technologyCarbonACS applied materialsinterfaces
researchProduct

Synthesis, electron microscopy and X-ray characterization of oxymagnesite, MgO·2MgCO3, formed from amorphous magnesium carbonate

2014

At present, the peculiar compound called oxymagnesite, MgO·2MgCO3, an intermediate formed during thermal decomposition of hydrated magnesium carbonates, has only been described a handful of times without a distinct description of its formation or morphology. In the current work we present the first scanning and transmission electron microscopy images of an oxymagnesite crystal together with its crystallographic data. Oxymagnesite was synthesized in a controlled manner via decomposition of amorphous magnesium carbonates (AMCs) subjected to varying relative humidity. We show that oxymagnesite is formed only when AMC is hydrated above a certain level, which we attribute to structural inequival…

musculoskeletal diseasesMagnesiumThermal decompositionchemistry.chemical_elementGeneral ChemistryCondensed Matter PhysicsDecompositionlaw.inventionAmorphous solidCrystalCrystallographychemistryTransmission electron microscopylawGeneral Materials ScienceRelative humidityElectron microscopeCrystEngComm
researchProduct

Evidence of hexagonal WO3 structure stabilization on mica substrate

2009

International audience; WO3 nanorods are grown by a simple vapor deposition method on a mica substrate and characterized by Selected Area Electron Diffraction and Energy Dispersive X-rays Spectroscopy. Experimental results show the clear evidence of an unexpected WO3 hexagonal structure as well as an epitaxial growth on the mica substrate. Besides, potassium is evidenced inside the nanorods. It is thus deduced that a metastable WO3 hexagonal phase is stabilized by epitaxy through a tungsten bronze interlayer having same hexagonal structure.

Materials scienceGrowth mechanismSupported nanostructureschemistry.chemical_elementMineralogy02 engineering and technologyChemical vapor depositionTungsten010402 general chemistryEpitaxy01 natural sciencesMaterials ChemistryMetals and AlloysHexagonal phaseTungsten oxideSurfaces and Interfaces021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryElectron diffractionTransmission Electron MicroscopyNanorodMicaSelected area diffraction0210 nano-technologyThin Solid Films
researchProduct

Benzene monitoring by micro-machined sensors with SnO2 layer obtained by using micro-droplet deposition technique

2011

International audience; SnO2 thin layers were deposited by the way of the micro-droplet technique. The sensor substrate consisted of a thin membrane developed on oxidised silicon wafer. The sensing layers were deposited by means of the micro-droplet technique into thin layers of about 100 nm. Such devices were tested for benzene detection. The obtained results showed a very high sensitivity for this chemical compound since 500 ppb were detected. The results presented in this paper were not focused on the reactional mechanism of benzene detection but rather on the development of a cheap and sensitive sensor using sol-gel and micro-droplet processes. Since these layers were elaborated using s…

Materials scienceAnalytical chemistry02 engineering and technologySubstrate (electronics)Gas sensors01 natural scienceschemistry.chemical_compoundMaterials ChemistryCoupling (piping)WaferSol-gel processElectrical and Electronic EngineeringBenzeneInstrumentationBenzene detectionSol-gelThin layersbusiness.industry010401 analytical chemistryMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter PhysicsTin oxideeye diseases0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)SnO2
researchProduct

Back Cover: Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum (Angew. Chem. Int. Ed. 39/2014)

2014

Materials sciencechemistryInorganic chemistryengineeringchemistry.chemical_elementNoble metalCover (algebra)General Chemistryengineering.materialHeterogeneous catalysisPlatinumCatalysisCatalysisAngewandte Chemie International Edition
researchProduct

An epitaxial hexagonal tungsten bronze as precursor for WO3 nanorods on mica.

2008

International audience; Tungsten oxide nanorods are grown at atmospheric pressure and low temperature (360 1C), by sublimation of WO3 and condensation on mica substrates. The nanorods are characterized by atomic force microscopy, high-resolution electron microscopy, energy-dispersive X-ray spectroscopy and high energy electron diffraction. The experimental results evidence the formation of a hexagonal tungsten bronze at the nanorod–substrate interface. The epitaxial relationships of the nanorods on mica are determined and the role of epitaxial orientation of the interfacial bronze in the nanorod growth and morphology are discussed.

Materials sciencechemistry.chemical_elementNanotechnologyTungsten bronzes02 engineering and technologyTungstenengineering.material010402 general chemistryEpitaxy01 natural scienceslaw.inventionInorganic ChemistrylawMaterials ChemistryBronzeGrowth from vapourVapour phase epitaxyOxides021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesNanostructureschemistryElectron diffractionChemical engineeringPACS 61.46.Km 68.37.Og 68.37.Ps 81.07.bengineeringNanorodSublimation (phase transition)MicaElectron microscope0210 nano-technology
researchProduct

Oblique angle co-deposition of nanocolumnar tungsten thin films with two W sources: Effect of pressure and target current

2022

Two series of tungsten thin films are sputtered on silicon and glass substrates by oblique angle co-deposition technique with an original configuration. Two opposite distinct tungsten targets are simultaneously used, both tilted with an oblique angle of 80°. The growth is performed at low (0.33 Pa) and high (1.5 Pa) argon sputtering pressure and the current intensity applied to the targets varies between 50 and 250 mA. The effect of these deposition parameters on the films microstructure and electrical properties is investigated by scanning and transmission electron microscopy, X-ray diffraction and pole figures, and van der Pauw method. Due to self-shadowing effect, all tungsten sputtered …

[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph][SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsGeneral Materials Science[SPI.MAT] Engineering Sciences [physics]/MaterialsCondensed Matter Physics
researchProduct

Elaboration and characterization of barium silicate thin films.

2008

International audience; Room temperature depositions of barium on a thermal silicon oxide layer were performed in ultra high vacuum (UHV). In-situ X-ray photoelectron spectroscopy (XPS) analyses were carried out as well after exposure to air as after subsequent annealings. These analyses were ex-situ completed by secondary ion mass spectrometry (SIMS) profiles and transmission electron microscopy (TEM) cross-sectional images. The results showed that after air exposure, the barium went carbonated. Annealing at sufficient temperature permitted to decompose the carbonate to benefit of a barium silicate. The silicate layer was formed by interdiffusion of barium with the initial SiO2 layer.

Materials scienceAnnealing (metallurgy)Ultra-high vacuumAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural scienceschemistry.chemical_compoundIn-situ analysesX-ray photoelectron spectroscopyStructural Biology0103 physical sciencesXPSGeneral Materials ScienceThin filmBarium silicateSilicon oxide010302 applied physicstechnology industry and agricultureBariumCell Biology021001 nanoscience & nanotechnologySilicateSecondary ion mass spectrometrychemistry0210 nano-technology
researchProduct

Growth and size distribution of Au nanoparticles in annealed Au/TiO2 thin films

2014

Abstract Nanocomposites consisting of noble metal nanoparticles (NPs) embedded in TiO2 thin films are of great interest for applications in optoelectronics, photocatalysis and solar-cells for which the plasmonic properties of the metal NPs play a major role. This work investigates the first stages of the formation of gold NPs by thermal annealing of Au-doped TiO2 thin films grown by magnetron sputtering. A low concentration of gold in the films is considered (5 at.%) in order to study the first stages of the formation of the NPs. Raman spectroscopy is used to follow the crystallization of TiO2 when increasing the annealing temperature. In addition, low-frequency Raman scattering (LFRS) is u…

Materials scienceNanocompositeAnnealing (metallurgy)Metals and AlloysNanoparticleNanotechnologySurfaces and InterfacesSputter depositionSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeChemical engineeringTransmission electron microscopyMaterials ChemistrysymbolsThin filmRaman spectroscopyRaman scatteringThin Solid Films
researchProduct

TiO2 anatase films obtained by direct liquid injection atomic layer deposition at low temperature

2014

International audience; TiO2 thin films were grown by direct liquid injection atomic layer deposition (DLI-ALD) with infrared rapid thermal heating using titanium tetraisopropoxide and water as precursors. This titanium tetraisopropoxide/water process exhibited a growth rate of 0.018 nm/cycle in a self-limited ALD growth mode at 280 degrees C. Scanning electron microscopy and atomic force microscopy analyses have shown a smooth surface with a low roughness. XPS results demonstrated that the films were pure and close to the TiO2 stoichiometric composition in depth. Raman spectroscopy revealed that the films were crystallized to the anatase structure in the as-deposited state at low temperatu…

AnataseMaterials scienceScanning electron microscope[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Analytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencessymbols.namesakeAtomic layer depositionX-ray photoelectron spectroscopyThin filmSurfaces and InterfacesGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsTitanium oxidechemistry[ CHIM.MATE ] Chemical Sciences/Material chemistrysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyTitanium
researchProduct

High efficiency of Pt2+ - CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells

2016

Abstract The elevated price of Pt limits the large-scale implementation of commercial proton exchange membrane fuel cells, which effectively convert chemical energy into electricity. In order to increase the cost-efficiency in proton-exchange membrane fuel cells, we have designed a family of novel anode catalysts consisting of thin films of ceria with low Pt loadings sputtered on a nanostructured carbon support. Remarkably, only such small amounts of Pt are necessary for achieving power density values comparable to the reference commercial catalysts, which results in excellent specific activities of our samples. By combining photoelectron spectroscopy and catalytic performance analysis, we …

Cerium oxideMaterials scienceSURFACEInorganic chemistrychemistry.chemical_elementProton exchange membrane fuel cell02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesCatalysisCatalysisWAVE BASIS-SETX-ray photoelectron spectroscopyNANOPARTICLESSPECTRAHYDROGENATIONThin filmThin filmGeneral Environmental SciencePLATINUMProcess Chemistry and TechnologyTOTAL-ENERGY CALCULATIONSCERIUM OXIDE-FILMSNANOSTRUCTUREFuel cellCerium oxide021001 nanoscience & nanotechnology0104 chemical sciencesAnodeELECTRONIC-STRUCTUREMembranechemistry0210 nano-technologyPlatinum
researchProduct

The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers

2013

International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_elementNanotechnology02 engineering and technologySputter deposition021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidchemistryElectrical resistivity and conductivityHall effectRutile0103 physical sciencesCeramics and Composites[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTemperature coefficientTitanium
researchProduct

Pt–CeO thin film catalysts for PEMFC

2015

Abstract Platinum is the mostly used element in catalysts for fuel cell technology, but its high price limits large-scale applications. Platinum doped cerium oxide represents an alternative solution due to very low loading, typically few micrograms per 1 cm2, at the proton exchange membrane fuel cell (PEMFC) anode. High efficiency is achieved by using magnetron sputtering deposition of cerium oxide and Pt of 30 nm thick nanoporous films on large surface carbon nanoparticle substrates. Thin film techniques permits to grow the catalyst film characterized by highly dispersed platinum, mostly in ionic Pt2+ state. Such dispersed Pt species show high activity and stability. These new materials ma…

Cerium oxideMaterials scienceNanoporousCatalyst supportInorganic chemistryProton exchange membrane fuel cellchemistry.chemical_elementGeneral ChemistrySputter depositionCatalysisCatalysischemistryThin filmPlatinumCatalysis Today
researchProduct

Structural and electrical properties in tungsten/tungsten oxide multilayers

2014

International audience; Tungsten and tungsten oxide periodic nanometric multilayers have been deposited by DC reactive sputtering using the reactive gas pulsing process. Different pulsing periods have been used for each deposition to produce metal-oxide periodic alternations ranging from 3.3 to 71.5 nm. The morphology, crystallinity and chemical composition of these films have been investigated by transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The produced multilayers exhibited an amorphous structure and the composition stability of WO3 sub-layers has been pointed out. Moreover, electrical properties have also been studied by the van der Pauw technique…

Materials scienceInorganic chemistrychemistry.chemical_element02 engineering and technologyTungsten01 natural sciencesCrystallinityVan der Pauw methodElectrical resistivity and conductivitySputtering0103 physical sciencesMaterials ChemistryThin film[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010302 applied physicsTungsten CompoundsMetals and AlloysSurfaces and Interfaces021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidchemistryChemical engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technology
researchProduct

Rücktitelbild: Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen-Platin (Angew…

2014

General MedicineAngewandte Chemie
researchProduct

Electrochemically shape-controlled transformation of magnetron sputtered platinum films into platinum nanostructures enclosed by high-index facets

2017

Abstract A new method based on transformation of magnetron sputtered platinum thin films into platinum nanostructures enclosed by high-index facets, using electrochemical potential cycling in a twin working electrode system is reported. The controllable formation of various Pt nanostructures, described in this paper, indicates that this method can be used to control a selective growth of high purity Pt nanostructures with specific shapes (facets or edges). The method opens up new possibilities for electrochemical preparation of nanostructured Pt catalysts at high yield.

NanostructureMaterials scienceWorking electrodechemistry.chemical_elementNanotechnology02 engineering and technologySurfaces and InterfacesGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectrochemistry01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsCatalysischemistryCavity magnetronMaterials ChemistryThin film0210 nano-technologyPlatinumElectrochemical potentialSurface and Coatings Technology
researchProduct

Oxide-based nanomaterials for fuel cell catalysis:the interplay between supported single Pt atoms and particles

2017

The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a co…

Materials sciencePHOTOELECTRON-SPECTROSCOPYReducing agentCatalitzadorsOxideProton exchange membrane fuel cellNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesRedoxPALLADIUM NANOPARTICLESCatalysisNanomaterialsCatalysischemistry.chemical_compoundAdsorptionPiles de combustibleD-METAL ATOMSFuel cellsCatalystsCEO2(111) SURFACECO OXIDATIONIN-SITUNanostructured materialsSILICON SUBSTRATE021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringGRAPHITE FOILengineeringTHIN-FILM CATALYSTSNoble metalMaterials nanoestructuratsCERIA-BASED OXIDE0210 nano-technology
researchProduct

Growth, Structure, and Stability of KxWO3 Nanorods on Mica Substrate

2012

International audience; KxWO3 nanorods, interesting as gas sensors, were elaborated on mica muscovite substrate and characterized by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and mainly transmission electron microscopy. A combination of structural analyses allowed determining the morphology of these rods, and selected area electron diffraction experiments pointed out the simultaneous presence of the exotic hexagonal and stable monoclinic phases. Moreover, the presence of potassium inside the nanorods, coming from the mica substrate, was revealed. By combining all the observations, a growth model is proposed, consisting of the stacking of two di…

Materials scienceScanning electron microscopePHASE02 engineering and technology010402 general chemistryEpitaxy01 natural sciencesPARAMETERSTHIN-FILMSCHEMISTRYSENSORSPhysical and Theoretical ChemistryTEMPERATURESPECTROSCOPYHexagonal phase[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOXIDE NANORODSCrystallographyGeneral EnergyTransmission electron microscopyHEXAGONAL TUNGSTEN TRIOXIDE[ CHIM.MATE ] Chemical Sciences/Material chemistryNanorodMicaSelected area diffractionNANOCRYSTALLINE WO3 FILMS0210 nano-technologyMonoclinic crystal system
researchProduct

Structure and properties of GaNxOy films grown by nitridation of GaAs (100) substrates

2004

GaAs (100) substrates have been heat-treated in a metal-organic chemical vapor deposition reactor under flows of NH 3 and an oxygen organo-metallic precursor at temperatures between 650°C and 750°C. Yellowish films formed at the surface of all the samples. Gallium, nitrogen and oxygen were detected by EDX analysis of the films. The oxygen content was estimated in the range of at 5-10 at% depending on the heat-treatment temperature. X-ray diffraction and HRTEM results indicate that the structure of the films corresponds to the hexagonal wurtzite phase of GaN with an expanded unit cell. Raman spectra show hands corresponding to the Raman active GaN modes as well as disorder-activated broad ba…

Analytical chemistrychemistry.chemical_elementChemical vapor depositionCondensed Matter PhysicsOxygenInorganic Chemistrysymbols.namesakeCrystallographychemistryMaterials ChemistrysymbolsMetalorganic vapour phase epitaxyThin filmGalliumHigh-resolution transmission electron microscopyRaman spectroscopyWurtzite crystal structureJournal of Crystal Growth
researchProduct

Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil.

2015

The morphology and composition of CeOx films prepared by r.f. magnetron sputtering on a graphite foil have been investigated mainly by using microscopy methods. This study presents the formation of nanocrystalline layers with porous structure due to the modification of a carbon support and the formation of cerium carbide crystallites as a result of the deposition process. Chemical analyses of the layers with different thicknesses performed by energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and X-ray photoelectron spectroscopy have pointed to the reduction of the cerium oxide layers. In the deposited layers, cerium was present in mixed Ce(3+) and Ce(4+) valence. Ce(3+…

Cerium oxideMaterials scienceElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementSputter depositionCeriumChemical stateChemical engineeringchemistryX-ray photoelectron spectroscopyGeneral Materials ScienceGraphiteThin filmNanoscale
researchProduct

Deposition of Pt and Sn doped CeOx layers on silicon substrate

2013

Abstract Radio Frequency Magnetron Sputtering is used to elaborate CeO x layers doped with platinum and/or tin on a SiO 2 /Si substrate. Morphology, chemical composition and crystallographic structures were investigated by Transmission Electron Microscopy. The presence of nanoparticles of mainly ceria and metallic platinum is exhibited.

Materials scienceSiliconInorganic chemistryDopingchemistry.chemical_elementSurfaces and InterfacesGeneral ChemistrySubstrate (electronics)Sputter depositionCondensed Matter PhysicsSurfaces Coatings and FilmschemistryChemical engineeringTransmission electron microscopyMaterials ChemistryThin filmTinPlatinumSurface and Coatings Technology
researchProduct

Photoemission study of the reactivity of barium towards SiOx thermal films

2011

Abstract Barium was deposited at room temperature on a thermal silicon oxide layer and the interfacial reaction was monitored by synchrotron induced photoemission (both core level and valence band). The first step of the growth consists of an interfacial reaction which leads to the formation of an interfacial silicate layer. The next step consists in formation of barium oxide while metallic barium occurs subsequently. The deposit can be also homogenized by annealing above 575 K. This results in the formation of several layers of silicate by consumption of silicon oxide. In the case of fractional coverage, subsequent annealing at 975 K induces the decomposition of barium silicate. However, s…

Materials scienceAnnealing (metallurgy)Inorganic chemistrychemistry.chemical_element02 engineering and technology01 natural scienceslaw.inventionMetalchemistry.chemical_compoundlaw0103 physical sciencesMaterials ChemistrySilicon oxide010302 applied physicsBarium oxideChemical process of decompositionBariumSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsSynchrotronSilicateSurfaces Coatings and FilmschemistryChemical engineeringvisual_artvisual_art.visual_art_medium0210 nano-technologySurface Science
researchProduct

In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

2012

Import JabRef; International audience; Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

Materials sciencePhysics and Astronomy (miscellaneous)SURFACEAnalytical chemistryNanoparticle02 engineering and technology01 natural scienceslaw.inventionlaw0103 physical sciencesMicroscopy010302 applied physics[PHYS]Physics [physics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS ] Physics [physics]ScatteringSmall-angle X-ray scatteringPlasma plumePlasma021001 nanoscience & nanotechnologyLaserTransmission electron microscopyTITANIUMSmall-angle scattering0210 nano-technology
researchProduct

Optical properties of nanocrystalline-coatedY2O3:Er3+, Yb3+ obtained by mechano-chemical and combustion synthesis.

2009

International audience; Y2O3:Er3+, Yb3+ nanocrystals have been obtained by ball milling and using a combustion synthesis procedure. In both cases the nanocrystals have been successfully coated with SiO2 following the Stöber method. The average size of the as-synthesized nanoparticles has been estimated from X-ray diffraction patterns and transmission electron microscopy images. The dependence of the optical properties of these samples on synthesis procedure or dopant concentration has been investigated. Emission, excitation and lifetime measurements have been carried out. Upconversion luminescence has been detected in all samples and an enhancement of the red to green emission ratio has bee…

Materials sciencePhotoluminescenceBiophysicsAnalytical chemistryMineralogyNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryCoatingMicroscopyDopantOptical propertiesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsNanocrystalline materialPhoton upconversion0104 chemical sciencesTransmission electron microscopyEnergy transferNanoparticles0210 nano-technologyLuminescenceUpconversion
researchProduct

WOx phase growth on SiO2/Si by decomposition of tungsten hexacarbonyl:Influence of potassium on supported tungsten oxide phases

2009

International audience; Synchrotron based photoemission spectroscopy was used to study the adsorption of tungsten hexacarbonyl on SiO2 surfaces modified by potassium. Results were compared with the ones obtained when no potassium was present. Experiments using W4f and Si2p intensities variations show that, at 140 K, the tungsten hexacarbonyl growth proceeds via a simultaneous multilayer mode for the two kinds of surfaces but with differences in compositions of growing layers. Indeed, it is evidenced that, even at cryogenic temperatures, the presence of potassium induces decomposition of a significant part of tungsten hexacarbonyl molecules through a strong interaction between tungsten and p…

Growth; Supported nanostructures; Tungsten hexacarbonyl; SiO2; Potassium; Tungsten bronze; Photoelectron spectroscopyTungsten hexacarbonylMaterials scienceSilicongenetic structuresPhotoemission spectroscopyPotassiumInorganic chemistrySupported nanostructureschemistry.chemical_element02 engineering and technologyGrowthTungsten010402 general chemistry01 natural scienceschemistry.chemical_compoundAdsorptionX-ray photoelectron spectroscopyTransition metalMaterials ChemistrySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter Physicsequipment and supplieseye diseases0104 chemical sciencesSurfaces Coatings and FilmsPhotoelectron spectroscopychemistryTungsten hexacarbonylPotassiumTungsten bronzesense organsSiO20210 nano-technology
researchProduct

Tungsten oxide thin films sputter deposited by the reactive gas pulsing process for the dodecane detection

2015

International audience; The DC reactive magnetron sputtering of a metallic tungsten target was performed in an argon + oxygen atmosphere for depositing tungsten oxide thin films. In order to control the oxygen concentration in the films, the reactive gas pulsing process, namely RGPP, was implemented. Rectangular pulses were used with a constant pulsing period T = 16 s whereas the duty cycle α (time of oxygen injection to pulsing period T ratio) was systematically changed from 0 to 100% of T. This pulsing injection of the reactive gas allowed a gradual evolution of the films composition from pure metallic to over-stoichiometric WO3+ɛ’ compounds. These WOx films were sputter deposited on comm…

[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ArgonMaterials scienceDodecane020502 materials[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Analytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyOxygen[SPI.AUTO]Engineering Sciences [physics]/Automatic[SPI.MAT]Engineering Sciences [physics]/Materialschemistry.chemical_compound0205 materials engineeringchemistrySputteringDuty cycleDeposition (phase transition)Limiting oxygen concentrationThin film[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technology
researchProduct

Proton exchange membrane fuel cell made of magnetron sputtered Pt–CeO and Pt–Co thin film catalysts

2015

Abstract Preparation of catalysts for proton exchange membrane fuel cells (PEMFCs) is of growing interest during last years. The magnetron sputtering technique is a promising method of catalyst preparation because it permits to synthesize catalysts in a fast and relatively less expensive way, however control of specific surface and durability of such catalysts still remains the main concern. We tested a single cell PEMFC catalyzed by using exclusively thin film approach by combining state-of-the art Pt-doped cerium oxide anode and a new Pt–Co alloy cathode. We have shown that beside very high mass activity of the catalysts relative to the membrane electrode assembly the catalyst nanoporous …

Cerium oxideMaterials scienceRenewable Energy Sustainability and the EnvironmentNanoporousInorganic chemistryMembrane electrode assemblyEnergy Engineering and Power TechnologyProton exchange membrane fuel cellSputter depositionAnodeCatalysisElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmJournal of Power Sources
researchProduct

Structural analysis of W3O/WO3 and TiO/TiO2 periodic multilayer thin films sputter deposited by the reactive gas pulsing process

2012

International audience; DC reactive sputtering was used to deposit titanium and tungsten-based metal/oxide periodic nanometric multilayers using pure metallic targets and Ar + O-2 gas mixture as reactive atmosphere. The innovative technique namely, the reactive gas pulsing process allows switching between the metal and oxide to prepare a periodic multilayered structure with various metalloid concentrations and nanometric dimensions. The same pulsing period was used for each deposition to produce metal-oxide periodic alternations close to 10 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Raman spectroscopy, X-ray diffraction and Energ…

Materials scienceMAGNETRONInorganic chemistryOxidechemistry.chemical_element02 engineering and technologyTungsten01 natural sciencesTUNGSTEN-OXIDE[SPI.MAT]Engineering Sciences [physics]/Materialschemistry.chemical_compoundSputtering0103 physical sciencesWO3Materials ChemistryNITRIDE[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsThin filmHigh-resolution transmission electron microscopy[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010302 applied physicsMetals and AlloysSurfaces and InterfacesSputter deposition021001 nanoscience & nanotechnologyPARTIAL-PRESSURE CONTROLSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTitanium oxideEVAPORATIONchemistryChemical engineeringTITANIUM-OXIDEGROWTHARC DEPOSITION0210 nano-technologyDIOXIDETitanium
researchProduct

Structural and Chemical Characterization of Cerium Oxide Thin Layers Grown on Silicon Substrate

2015

In this study, we report transmission electron microscopy and electron energy loss spectroscopy study of cerium oxide thin layers deposited on silicon substrate. Transmission electron microscopy experiments have revealed the flat morphology of the deposited layers. In addition, studies of high resolution images have indicated the presence of mainly ceria crystallized nanoparticles. Energy electron loss spectroscopy measurements were also performed in scanning mode to study the evolution of the cerium valence. In addition to Ce4+ inside the layer, the presence of amorphous cerium silicate with valence +3 is pointed out at the vicinity of the substrate.

Cerium oxideCeriumMaterials scienceValence (chemistry)Thin layersSiliconchemistryChemical engineeringTransmission electron microscopyElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementAmorphous solidMaterials Today: Proceedings
researchProduct

Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen-Platin

2014

Platin ist das am vielseitigsten eingesetzte Element in der Katalyse. Allerdings begrenzt der hohe Preis des Edelmetalls die Verwendung in vielen Bereichen, z. B. in Katalysatormaterialien fur Brennstoffzellen. Trotzdem nutzen konventionelle Katalysatoren oftmals nur einen Bruchteil ihres Pt-Gehaltes, namlich diejenigen Atome, die sich auf der Oberflache des Katalysators befinden. Eine effizientere Edelmetallnutzung setzt somit eine hohere, bevorzugt atomare Dispersion der Pt-Atome auf der Oberflache voraus. Tatsachlich ist es moglich, solche atomar dispergierten Pt-Spezies mit sehr hoher Stabilitat auf einer Katalysatoroberflache herzustellen. Mithilfe von DFT-Rechnungen identifizieren wir…

General MedicineAngewandte Chemie
researchProduct

Thermal stability of Au–TiO2 nanocomposite films prepared by direct liquid injection CVD

2015

Abstract Nanocomposite films composed of gold nanoparticles (AuNPs) embedded in a TiO 2 matrix have been prepared by direct liquid injection chemical vapor deposition process, using preformed nanoparticles and titanium isopropoxide as precursors. The spherical AuNPs about 4.1 nm in diameter were synthesized by using gold (III) chloride trihydrate and stabilized by thiol ligands. The depositions were carried out by performing at first oxide deposition, then gold nanoparticle one and capping with oxide. The morphology, structure; the chemical state and optical properties of nanocomposite films were characterized by scanning electron microscopy, Raman, X-ray photoelectron and UV–Vis absorption…

Materials scienceNanocompositetechnology industry and agricultureOxideNanoparticleNanotechnologyChemical vapor depositionCondensed Matter PhysicsSurfaces Coatings and Filmschemistry.chemical_compoundchemistryX-ray photoelectron spectroscopyChemical engineeringColloidal goldThermal stabilityTitanium isopropoxideInstrumentationVacuum
researchProduct

Chemical and structural characterization of periodic metal/oxide nanometric layers using STEM-EELS

2013

Chemical and structural characterization of periodic metal/oxide nanometric layers using STEM-EELS

[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
researchProduct

Structuration of nanometric tungsten/tungsten oxide periodic films combining gas pulsing and glancing angle deposition

2013

Structuration of nanometric tungsten/tungsten oxide periodic films combining gas pulsing and glancing angle deposition

[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
researchProduct

Ballistic and thermalized regimes to tune structure and conducting properties of W-Mo thin films

2022

[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph][SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.MAT] Engineering Sciences [physics]/Materials
researchProduct

Influence of flash annealing on structure and electrical properties of multilayered TiO2/TiO/Ti thin films

2013

Influence of flash annealing on structure and electrical properties of multilayered TiO2/TiO/Ti thin films

[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
researchProduct