0000000001310697
AUTHOR
Bruno Domenichini
Effect of the Mo atom flow on the molybdenum growth on TiO2 (110) surface
Abstract Molybdenum has been deposited at room temperature on stoichiometric TiO 2 (1 1 0) surfaces with two deposition rates: 0.1 equivalent monolayer (eqML) and 1.5 eqML min −1 . X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy studies clearly reveal an effect of the deposition rate upon the growth mode and the interfacial reaction. Indeed, whereas a strong interfacial reaction between Mo and TiO 2 involves a Stranski–Krastanov growth mode with the formation of amorphous molybdenum oxide monolayers for the lowest deposition rate, no reaction can be observed for the highest deposition rate. Moreover in this latter case, the growth mode seems to be a 3D …
Molybdenum deposition on TiO2 (110) surfaces with different stoichiometries
Abstract The deposition of ultra thin molybdenum films has been carried out on three different TiO 2 surfaces: a stoichiometric and flat one obtained after annealing, a non stoichiometric and rough surface made by Ar + bombardment and a stoichiometric and rough surface obtained by oxygen bombardment. Whatever the substrate preparation, in situ AES and XPS studies and ex situ AFM and RHEED characterizations have revealed a Stranski–Krastanov growth mode: the completion of three monolayers followed by island growth is observed in any case. The three monolayers are composed of amorphous molybdenum oxide with a molybdenum oxidation state between III and IV. The oxidation of the molybdenum layer…
Sintering of Fe2NiO4 with an internal binder: a way to obtain a very dense material
Abstract The coupled synthesis and sintering of Fe2NiO4 can be carried out from the calcination under air at high temperatures (>1200 °C) of precompacted (under 12 MPa) pellets of different mixtures: NiO/α-Fe2O3; NiO/α-Fe2O3/Fe; NiO/α-Fe2O3/Ni. The densest material is obtained at 1200 °C only from the following mixture: NiO (40 mol%), α-Fe2O3 (50 mol%) and Ni (10 mol%). Because the metallic nickel is very ductile, it is used as an internal binder in order to enhance the precompacting of the samples. Moreover, the role of nickel is to enhance the sintering reaction. This route leads to a final material of relative density close to 98±2%.
Experimental and theoretical evidence for substitutional molybdenum atoms in theTiO2(110)subsurface
Molybdenum was deposited at room temperature on the ${\mathrm{TiO}}_{2}(110)$ surface in the 0--1.3 equivalent monolayer (eqML) range and was then annealed at $400\phantom{\rule{0.2em}{0ex}}\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ in order to reach a kind of equilibrium state. A threshold was found in the behavior of the deposit: below 0.2 eqML, substitutional molybdenum occurs in titanium sites located under the bridging oxygen atoms of the ${\mathrm{TiO}}_{2}(110)$ surface. In this position, molybdenum atoms are in a structural and chemical ${\mathrm{MoO}}_{2}$-like environment. Density-functional theory calculations show that this molybdenum site is actually the most stable one in …
Nitrogen plasma pressure influence on the composition of TiNxOy sputtered films
Thin films of TiNxOy were deposited by d.c. magnetron sputtering on glass substrates using an (Ar+,N2) plasma and Ti target. The N2 partial pressure was changed from 2.3 × 10−4 mbar to 4.6 × 10−3 mbar in order to obtain films with increasing nitrogen contents. X-ray photoelectron spectroscopy was used to determine the as-deposited composition. The presence of oxygen, which is probably due to contamination from the residual atmosphere in the vacuum chamber, is always detected, both in the surface layers and in the bulk of the films, confirming the formation of TiNxOy. When the nitrogen partial pressure was increased, a maximum for the nitrogen content in the films was reached, corresponding …
Electronic exchanges between adsorbed Ni atoms and TiO2(110) surface evidenced by resonant photoemission
Abstract Nickel was deposited on stoichiometric TiO2(1 1 0) surface in the 0.02–2.1 equivalent monolayer (eqML) range and analyzed by means of photoemission and resonant photoemission. In the case of very low coverage (lower than 0.1 eqML), deposited nickel reacts with the surface through an electronic transfer from nickel atoms towards titanium ions. This exchange caused the filling of unoccupied Ti3d states leading to the increase of a peak in the TiO2 band gap. These states can be better characterized through resonant photoemission experiments at the Ti 3p → 3d absorption edge: for very low coverage, these states in the TiO2 band gap have resonant behavior of Ti3d electrons rather than N…
Defects at the TiO2(100) surface probed by resonant photoelectron diffraction.
We report photoelectron diffraction (PED) experiments of weakly sub-stoichiometric TiO 2 (100) rutile surfaces. Apart from standard core-level PED from the Ti-2p3/2 line, we have studied valence band PED from the defect induced Ti-3d states in the insulating band gap. For maximum yield, the latter were resonantly excited at the Ti-2p absorption edge. The PED patterns have been analyzed within the forward scattering approximation as well as by comparison with simulated PED patterns obtained in multiple scattering calculations. The analysis shows that the defect induced Ti-3d charge is mainly located on the second layer Ti atoms. © 2007 Elsevier B.V. All rights reserved.
Reversible oxidation of WOx and MoOx nano phases
International audience; WOx and MoOx nano phases were prepared on TiO2(1 1 0) surfaces by a CVD procedure consisting of adsorption and decomposition of W(CO)(6) or Mo(CO)(6) precursors followed by annealing under UHV. Metal amount involved in each elaborated sample is in the fractional range from 0.1 to 0.35 equivalent monolayer (eqML) of W or Mo. Evolution of sample stoichiometry as a function of subsequent treatment is followed by valence band and core level photoemission as well as work function measurement. In each case, exposure of samples to molecular oxygen at room temperature induces an increase of sample work function in a range of several tenth of eV. Such a work function change i…
Nanodiamond‐Palladium Core–Shell Organohybrid Synthesis: A Mild Vapor‐Phase Procedure Enabling Nanolayering Metal onto Functionalized sp 3 ‐Carbon
MoO (x≤2) ultrathin film growth from reactions between metallic molybdenum and TiO2 surfaces
Abstract Exposures to oxygen at room temperature and annealings under vacuum were carried out on deposits obtained from molybdenum interacting with (1 1 0) TiO 2 surfaces in order to obtain molybdenum oxide ultra thin films. Exposures to oxygen at room temperature show that the interfacial molybdenum oxide layers resulting from the TiO 2 /Mo interactions are inactive towards oxygen whereas the metallic molybdenum clusters, which grew on top of the interfacial layers, oxidise into MoO 3 . Besides, during annealings under vacuum, substrate oxygen anions can diffuse into the deposit. Thus, between 400 and 500°C, molybdenum oxide layers are progressively oxidised into MoO 2 . Moreover, from the…
Aging of the surface of an Al-Cr-Fe approximant phase in ambient conditions: Chemical composition and physical properties
ABSTRACTWe have investigated the surface properties of quasicrystalline and approximant phases in the Al-(Cu)-Cr-Fe system upon aging in ambient conditions. We found that some of these properties (like the electrochemical behavior, wetting or friction) slowly evolves with the length of exposure to normal atmospheric conditions, reaching a stable state only after several days. This report essentially focuses on one of these alloys, an Al65Cr27Fe8 approximant phase with g-brass structure. In a first part, we describe the effect of aging on the electrochemical behavior of this alloy and we propose an interpretation based on a simple electrical model of the oxidized surface. In a second part, w…
CVD elaboration and in situ characterization of barium silicate thin films.
International audience; This study is concerned with the elaboration of barium silicate thin films by metal organic chemical vapor deposition (MOCVD) and in situ characterization by X-ray photoemission spectroscopy (XPS) with an apparatus connected to the deposition reactor. The difficulty to find an efficient metal organic precursor for barium is described. After characterizations of the selected reactant, Ba(TMHD)2tetraglyme, the development of an original specific vapor delivering source which allows reactant sublimation in the CVD reactor was performed. In the most optimized cases, including use of oxygen introduction during the deposition, barium silicate films were obtained. Moreover,…
Diamondoid Nanostructures as sp 3 ‐Carbon‐Based Gas Sensors
Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on prim…
Surface preparation influence on the initial stages of MOCVD growth of TiO2 thin films
In situ chemical surface analyses using X-ray photoelectron spectroscopy (XPS), completed by ex situ atomic force microscopy (AFM) analyses, were performed in order to compare the initial stages of MOCVD growth of TiO 2 thin films on two different surface types. The first type was a silicon native oxide free hydrogen terminated surface and the second one was a silicon dioxide surface corresponding to a thin layer of 3.5 nm thick in situ thermally grown on silicon substrate. Si(100) was used as substrate, and the growths of TiO 2 thin films were achieved with titanium tetraisopropoxide (TTIP) as precursor under a temperature of 675 °C, a pressure of 0.3 Pa and a deposition time of 1 h. Whate…
Nanodiamonds: Emergence of Functionalized Diamondoids and Their Unique Applications
ARXPS double layers model for in-situ characterization of MOCVD nanometric films.
Communication orale
Defect States at theTiO2(110)Surface Probed by Resonant Photoelectron Diffraction
The charge distribution of the defect states at the reduced ${\mathrm{TiO}}_{2}(110)$ surface is studied via a new method, the resonant photoelectron diffraction. The diffraction pattern from the defect state, excited at the $\mathrm{Ti}\mathrm{\text{\ensuremath{-}}}2p\mathrm{\text{\ensuremath{-}}}3d$ resonance, is analyzed in the forward scattering approach and on the basis of multiple scattering calculations. The defect charge is found to be shared by several surface and subsurface Ti sites with the dominant contribution on a specific subsurface site in agreement with density functional theory calculations.
Field-induced tip–sample oxygen transfer in scanning tunneling microscopy on TiO2(110) (1 1).
International audience; A study on the field-induced tip–surface oxygen transfer at room temperature and its influence on the tunneling conditions for stable STM imaging of the TiO2(110) (1 1) surface is reported. A simple model of field-induced transfer is applied to tungsten and platinum–iridium tips. The oxygen transition rates from the sample to the tip or from the tip to the sample depend on the oxygen desorption barriers formed at tunneling distance. For stable imaging the applied bias voltage has to balance the oxygen transfer probabilities in both directions. In the case of Pt/Ir tips, the tunneling conditions for images with clear evidence of bridging oxygen point defects have been…
Molybdenum thin-film growth on rutile titanium dioxide ()
Molybdenum films were deposited at room temperature on rutile TiO2(1 1 0) surfaces having different stoichiometries, surface roughnesses and crystallinities. The film structures and compositions and the substrate–film interfaces were investigated by X-ray diffraction, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. Different substrate pretreatments resulted in markedly different film and interface structures. Under the growth conditions studied, no amorphous molybdenum oxide interlayers were formed upon deposition in contrast to previous studies. Preferred (1 1 0) textured Mo films grew on both air-annealed and oxygen-bombarded substrates. While sh…
Watching adsorption and electron beam induced decomposition on the model system Mo(CO)(6)/Cu(111) by X-ray absorption and photoemission spectroscopies
Abstract An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 …
Structural and in depth characterization of newly designed conducting/insulating TiN O /TiO2 multilayers obtained by one step LP-MOCVD growth
Abstract TiNxOy/TiO2 multilayers have been grown by LP-MOCVD using titanium isopropoxide (TIP) precursor during the whole growth, but with an ammonia flow interrupted for the TiO2 layers. The one step growth process used to grow these structures allowed to stack the conducting and insulating layers without any growth breakdown. SIMS and TEM analyses showed the presence of an alternated insulating/conducting layers structure. Moreover, electrical measurements allowed to measure the dielectric part of insulating TiO2 stacked in these structures, whose permittivity was found to be about 80 for a MOS structure. Thus, such multilayers may lead to very promising applications in the microelectroni…
A photoemission study of molybdenum hexacarbonyl adsorption and decomposition on TiO2(110) surface.
International audience; The adsorption and decomposition of molybdenum hexacarbonyl on (110) TiO2 surfaces were studied using both core levels and valence band photoemission spectroscopies. It was found that after an adsorption at 140 K, when going back to room temperature, only a small part of molybdenum compounds, previously present at low temperature, remained on the TiO2 surface. This indicates that the desorption temperature on such a surface is lower than the decomposition one. The use of photon irradiation to decompose the hexacarbonyl molecule was also studied. It was shown that during such a decomposition molecular fragments were chemisorbed on the surface allowing a higher amount …
Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110)
Abstract Molydenum has been deposited at room temperature on (110) TiO2 surfaces with different stoichiometries, roughnesses and crystallinities. Whatever the substrate preparation is, in-situ Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) studies as well as ex-situ atomic force microscopy (AFM) and reflexion high-energy electron diffraction (RHEED) studies reveal a Stranski–Krastanov growth mode: the completion of three monolayers followed by islands growth is observed in every case. The three monolayers are always composed of amorphous molybdenum oxide with an oxidation state of molybdenum less than IV. The oxidation of the molybdenum layers generates Ti3+ an…
Tunneling induced decomposition of Mo(CO)(6) onto TiO2(110) surface
International audience; Tunneling induced decomposition of Mo(CO)(6) from the gas phase was studied on TiO2(110) surface by scanning tunneling microscopy (STM) and spectroscopy (STS). The efficiency of the procedure was followed by measuring the dot volume as a proportional indicator of the amount of the decomposed precursor. It was found that below 1 x 10(-5) Pa background pressure of Mo(CO)(6), there is no measurable effect and above 1 x 10(-4) Pa, the nanodot size is too large compared to the curvature of the tip (20-40 nm). A threshold bias of +3.1(+/- 0.1) V on the sample was measured for the decomposition of Mo(CO)(6) in gas ambient. In the absence of the precursor, dot formation was …
Comparative study of air and vacuum annealing atmosphere towards Pt/Ti–W/SiO2 stability
Abstract The thermal stability of Pt/Ti–W/SiO2 system was studied after annealing under air or vacuum in the present work. A Ti–W adhesive film (30 at. % Ti) was deposited on a SiO2 substrate followed by a thicker Pt layer. Depositions were performed using DC magnetron sputtering. The whole as-deposited films are metallic with a columnar growth of platinum deposit which totally wets the substrate. Whatever the atmosphere is, annealing at 500 °C for 12 h does not change the platinum state but modifies the morphology of platinum particles, the lateral average size of which increasing from less than 10 nm up to ca. 75 nm. Besides, a noticeable diffusion of metallic tungsten through Pt film is …
Redox reactions in the Pt/TiO2–WO3/SiO2 planar system
Abstract The thermal behavior of the titanium–tungsten adhesive layer (30–70 at.%) deposited on a SiO2 substrate followed by a thicker Pt layer was investigated. The resulting Pt/TiW/SiO2 planar system was annealed under air or vacuum. Morphological and chemical characterizations at different stages of the annealing, as a function of several parameters such as treatment atmosphere, annealing temperature and thickness of the Pt film were performed through surface science analyses. When annealing under air, even at mild temperature (773 K), the whole interlayer oxidizes while a low amount of tungsten diffuses through platinum film. This phenomenon is related to tungsten oxidation which acts a…
Evidence of hexagonal WO3 structure stabilization on mica substrate
International audience; WO3 nanorods are grown by a simple vapor deposition method on a mica substrate and characterized by Selected Area Electron Diffraction and Energy Dispersive X-rays Spectroscopy. Experimental results show the clear evidence of an unexpected WO3 hexagonal structure as well as an epitaxial growth on the mica substrate. Besides, potassium is evidenced inside the nanorods. It is thus deduced that a metastable WO3 hexagonal phase is stabilized by epitaxy through a tungsten bronze interlayer having same hexagonal structure.
Intrinsic Nature of the Excess Electron Distribution at theTiO2(110)Surface
The gap state that appears upon reduction of TiO2 plays a key role in many of titania's interesting properties but its origin and spatial localization have remained unclear. In the present work, the TiO2(110) surface is reduced in a chemically controlled way by sodium adsorption. By means of resonant photoelectron diffraction, excess electrons are shown to be distributed mainly on subsurface Ti sites strikingly similar to the defective TiO2(110) surface, while any significant contribution from interstitial Ti ions is discarded. In agreement with first principles calculations, these findings demonstrate that the distribution of the band gap charge is an intrinsic property of TiO2(110), indep…
Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness
Abstract Characterizations of ultra-thin iron films deposited on TiO 2 (110) surfaces with different stoichiometries, roughnesses and crystallinities have been carried out by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). For a high initial roughness of the substrate, a 2D growth mode is observed up to three monolayers. But, if the initial roughness is low, clusters grow on the TiO 2 surface. Whatever the initial surface stoichiometry, electronic exchanges occur between titanium and iron leading to a reduction of titanium and an oxidation of iron. This interaction between iron and titanium dioxide surface takes place only at the interface between the metal and…
Conductimetry and impedance spectroscopy study of low pressure metal organic chemical vapor deposition TiN O films as a function of the growth temperature: a percolation approach
Abstract Titanium oxinitride thin films have been grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) using titanium isopropoxide, Ti(OCH(CH 3 ) 2 ) 4 (TIP) and NH 3 precursors in a growth temperature range from 450 to 750°C on sapphire substrates. The electrical behaviour of these films was studied between 400 and 173 K, revealing three different behaviours, ranking from a hopping conductivity (450–500°C) to a conducting one (700–750°C), with a dual behaviour for the intermediate growth temperatures. Moreover, at room temperature, both conductimetry and impedance spectroscopy highlighted a percolation behaviour, interpreted in terms of continuum percolation. The effect…
MOCVD growth of porous cerium oxide thin films on silicon substrate
Abstract Porous cerium oxide thin films were grown by pulsed direct liquid injection metal organic chemical vapor deposition (DLI-MOCVD) on silicon substrate, using cerium tetrakis (1-methoxy-2-methyl-2-propanolate) dissolved in cyclohexane as precursor as well as oxygen as oxidant agent. The chemical and morphological characteristics of the films were investigated by XPS, SEM and TEM. The influence of the growth conditions on the morphological features of the thin films and the cerium chemical states are reported and discussed. The decrease of the oxygen and/or alkoxide flow rate induces the decrease of both the film thickness and the porosity of the layer. Moreover, the growth of silicate…
Growth of tungsten nanostructures on TiO2 (110) by decomposition of metalorganic precursor. Reactivity towards oxygen.
Communication orale
Non-hindered ansasamarocenes, versatile catalysts for diene/olefin/polar monomer copolymerisations. What is really the active species?
Abstract Catalytic systems containing an ansabiscyclopentadienyllanthanide core and lithium and/or magnesium salts are obtained by reaction of the chloride precursors with allyllithium. These allyl complexes lead to the same active species which polymerises 1,3-dienes, copolymerises 1,3-dienes and α-olefin or α,ω-dienes or allows the controlled diblock polyisoprene/polycaprolactone copolymerisation. The exact nature of this active species and of the allyl precursors is investigated here.
Theoretical investigation of the platinum substrate influence on BaTiO 3 thin film polarisation
Density functional theory calculations are performed to study the out-of-plane polarisation in BaTiO3 (BTO) thin films epitaxially grown on platinum. Prior to any polarisation calculation, the stability of the Pt(001)/BaTiO3(001) structure is thoroughly discussed. In particular, the nature of the Pt/BTO and BTO/vacuum interfaces is characterised. The growth of BTO is shown to start with a TiO2 layer while the nature of the surface termination does not broadly modify the stability. Therefore both upper terminations are considered when describing the ferroelectric behaviour in Pt/BTO interfaces. The geometric and electronic effects of the substrate on the polarisation are investigated. To iso…
Effect of the Mo atom flow on the interaction between deposited Mo and TiO2 (110)”.
Polar surfaces stabilization : Role of reactivity.
Communication orale
Réactivité interfaciale métal /TiO2(110)
Molybdenum nanostructures on TiO2 (1 1 0) : Growth and reactivity (Poster)
The functionalization of nanodiamonds (diamondoids) as a key parameter of their easily controlled self-assembly in micro- and nanocrystals from the vapor phase.
We detail herein readily accessible processes to control previously unobserved robust self-assemblies of nanodiamonds (diamondoids) in micro- and nanocrystals from their mild vapor deposition. The chemical functionalization of uniform and discernible nanodiamonds was found to be a key parameter, and depending on the type of functional group (hydroxy, fluorine, etc.) and its position on the diamondoid, the structure of the discrete deposits can vary dramatically. Thus, well-defined anisotropic structures such as rod, needle, triangle or truncated octahedron shapes can be obtained, and self-assembled edifices of sizes ranging from 20 nm to several hundred micrometers formed with conservation …
Temperature and substrate influence on the structure of TiN O thin films grown by low pressure metal organic chemical vapour deposition
Abstract This paper presents the growth and characterization of titanium oxinitride (TiN x O y ) films grown by low pressure metal organic chemical vapour deposition (LP-MOCVD). The film nitrogen content, obtained by Rutherford backscattering spectroscopy (RBS), increases as the growth temperature increases (from 23 at.% at 450°C to 46 at.% at 750°C). Below 550°C, the films do not show any X-ray diffraction pattern. Above 550°C, the deposited films present the (111) and (200) TiN textures. Films deposited on (100) Si exhibit a 2 θ shift to higher Bragg angles, depending on the N/O ratio. These shifts are explained by using a substitutional oxygen model. Moreover, the atomic structure of suc…
Monolayer Formation of Molybdenum Carbonyl on Cu(111) Revealed by Scanning Tunneling Microscopy and Density Functional Theory
International audience; Molybdenum carbonyl Mo(CO)(6) was adsorbed on the Cu(111) surface at 160 K in the monolayer coverage range and studied by scanning tunneling microscopy. A well-ordered monolayer of hexacarbonyl molecules was observed experimentally for the first time. The monolayer has a hexagonal structure compatible with a (root 7 x root 7)R19 superlattice on the copper (111) plane. The arrangement and orientation of the molecules on the surface were determined by density functional theory calculations, including van der Waals interactions. The comparison of adsorption and cohesive energies reveals that the molecule-substrate interaction is stronger than the intermolecular one, whi…
An epitaxial hexagonal tungsten bronze as precursor for WO3 nanorods on mica.
International audience; Tungsten oxide nanorods are grown at atmospheric pressure and low temperature (360 1C), by sublimation of WO3 and condensation on mica substrates. The nanorods are characterized by atomic force microscopy, high-resolution electron microscopy, energy-dispersive X-ray spectroscopy and high energy electron diffraction. The experimental results evidence the formation of a hexagonal tungsten bronze at the nanorod–substrate interface. The epitaxial relationships of the nanorods on mica are determined and the role of epitaxial orientation of the interfacial bronze in the nanorod growth and morphology are discussed.
Formation of Bimetallic Nanoparticle Arrays and Evidence for their Stability at High Temperature under Gas Pressure in the Environmental TEM - VIRTUAL
MICROSCOPIE+MEME+EEH:FCA:LBU:TEP; International audience; Supported catalysts are generally composed of, at least, one nanometric active phase deposited and/or synthesized at the surface of a convenient nanometer/micrometer powder support. As such these are rather complex systems with many variable parameters: dispersion on the support, size distribution, morphology, structure, defects, variable chemical phases, variable exposed facets of the active phases, interaction with the support, etc. It is thus quite cumbersome to correlate a catalytic behavior with specific physicochemical properties. The synthesis of nanometric particles (NPs) with well controlled characteristics is thus crucial t…
Scanning tunneling microscopy and spectroscopy of Mo clusters grown on TiO2(110).
Molybdenum was deposited in two steps (3 eq. ML and 1 eq. ML) on the light blue rutile TiO2 10) (1 x 1) surface at room temperature, each Mo deposition cycle being followed by an annealing up to 950-1000 K. This procedure was found to lead to formation of separated clusters having a size in very wide range (1-20 nm). Scanning tunneling microscopy showed a dependence of the cluster morphology as a function of the size. The scanning tunneling spectra of Mo clusters was studied as a function of cluster dimensions and discussed in comparison with photoelectron spectroscopy results previously obtained for homogeneous Mo films. The dI/d V curves do not display the valence band structure of deposi…
Dynamics of molybdenum nano structure formation on the TiO2(110) surface: A kinetic Monte Carlo approach
Abstract The rutile TiO 2 (1 1 0) surface is a highly anisotropic surface exhibiting “channels” delimited by oxygen rows. In previous experimental and theoretical DFT works we could identify the molybdenum adsorption sites. They are located inside the channels. Moreover, experimental studies have shown that during subsequent annealing after deposition, special molybdenum nano structures can be formed, especially two monolayer high pyramidal chains of atoms. In order to better understand the dynamics of nano structure formation, we present a kinetic Monte Carlo study on diffusion and adsorption of molybdenum atoms on a TiO 2 (1 1 0) surface. A quasi one-dimensional lattice gas model has been…
Trivalent cation substitution of pulverulent cobalt—iron molybdates Co1 − xFexMoO4
Abstract Different mixed cobalt—iron molybdates Co1 − xFexMoO4 (0 ≤ x ≤ 1) have been prepared by means of a ceramic process. The oxidation of pulverulent samples leads to ferric molybdate Fe2(MoO4)3, spinelle Co3O4 and cobalt molybdate CoMoO4. After a strong grinding which reduces the grain size (about 0.1 μm) and induces crystallographic defects in the grains, the cobalt—iron molybdates can be partially oxidized into cation-deficient phases. This oxidation corresponds to an isostructural substitution of part of the Fe2+ and Co2+ ions by Fe3+ and Co3+ ions and the creation of cation vacancies. The concomitant presence of trivalent cations and associated cation vacancies in the lattice stabi…
Thermal stability under air of tungsten–titanium diffusion barrier layer between silica and platinum
Abstract The present work investigated the thermal stability of tungsten–titanium diffusion barrier layers intercalated between SiO 2 substrate and platinum thin film. The resulting structures were annealed under air in the temperature range 400–600 °C for annealing times up to 100 h. Chemical and structural characterizations at different stages of the treatment evidenced several phenomena occurring during annealing under air, especially the complete oxidation of the adhesive layer, the diffusion of tungsten oxide through platinum film at particle boundaries as well as the sublimation process of tungsten oxide. The results of film surface chemistry and microstructure were correlated with di…
Mo(CO)6 dissociation on Cu(111) stimulated by a Scanning Tunneling Microscope
Abstract The surface of Cu(111) was exposed to molybdenum hexacarbonyl Mo(CO)6 with monolayer coverage at temperature 160 K and studied by a Scanning Tunneling Microscope. The monolayer structure has a hexagonal arrangement and forms a (√7 × √7) R19 superlattice on the copper (111) plane. Upon repeated scanning the monolayer is transformed into a (1 × 2) superstructure with 3-fold oriented domains. The domains of (1 × 2) superstructure can change orientation under scanning according to 3-fold surface symmetry. From analysis of the domain mobility, it follows that CO groups of carbonyl fragments are organized in the (1 × 2) superstructure conditioning the domain reorientation. The observed s…
Ferroelectric polarization switching induced from water adsorption in BaTiO 3 ultrathin films
The influence of water on the out-of-plane polarization of ${\mathrm{BaTiO}}_{3}$ (BTO) ultrathin films is studied by means of density functional theory calculations. The adsorption is investigated for different coverages on both terminations of BTO with, for each case, all possible states of polarization, namely, paraelectric, polarized upward, and polarized downward. We thus demonstrate different behavior as a function of the termination. While ${\mathrm{H}}_{2}\mathrm{O}$ adsorbs only dissociatively on the BaO termination, with a reinforced interaction compared to BTO without out-of-plane polarization, only molecular adsorption is observed on the ${\mathrm{TiO}}_{2}$ termination. In addi…
Interfacial reaction during MOCVD growth revealed by in situ ARXPS.
International audience; Angle-resolved X-ray photoelectron spectroscopy (ARXPS) experiments were performed to study in situ the reaction at the film–substrate interface during metal organic chemical vapor deposition (MOCVD) growth of TiO2 thin films deposited on the silicon substrate. The in-depth distribution of chemical species was determined using several ARXPS thickness calculation models considering either single or bilayer systems. By the comparison of two single-layermodels, the presence of a second layer composed of silicon oxidewas evidenced. High-resolution transmission electron microscopy (HRTEM) observations confirmed the stratification of the film in two layers, as well as the …
Molybdenum thin film growth on a TiO2 (1 1 0) substrate.
International audience; We report a first principles study on the structure and energetics of thin films of molybdenum on a (1 1 0) surface of rutile TiO2. Mo films with 1 × 1 epitaxy in the coverage range between 0.5 and 2 monolayer are investigated. The most stable structures are those which maximize the number of Mo–Mo bonds. This leads to two-dimensional structures with zigzag Mo–Mo coordination for 1 monolayer coverage and three-dimensional structures with approximately body-centered cubic coordination for higher coverage. For a coverage up to 1.5 monolayers, the interface Mo atoms preferentially occupy the so-called upper hollow adsorption site with three Mo–O bonds
New way to perform supported metallic nano structures.
Angle resolved X-ray photoemission spectroscopy double layer model for in situ characterization of metal organic chemical vapour deposition nanometric films.
International audience; In situ Angle Resolved X-ray Photoemission Spectroscopy (ARXPS) characterizations of TiO2 thin films grown on silicon by Metal Organic Chemical Vapour Deposition were performed in order to get information on interfacial reactions at the first stages of the growth, one of the aims being to understand the influence of deposition conditions. Thickness measurements were also carried out from ARXPS analyses. As the real structure of the films was shown to be a double layer system such as TiO2/SiO2/Si, an ARXPS model of thickness and surface coverage determination was applied to each layer independently. However, the application of this model to very thin films underestima…
Nanostructured Pt–TiO2 composite thin films obtained by direct liquid injection metal organic chemical vapor deposition: Control of chemical state by X-ray photoelectron spectroscopy
Abstract Nanostructured Pt–TiO 2 composite thin films were synthesized by direct liquid injection metal organic chemical vapor deposition process, using trimethyl(methylcyclopentadienyl)platinum and titanium isopropoxide as precursors. Surface and cross-sectional morphologies obtained by scanning electron microscopy and transmission electron microscopy evidenced the uniform distribution of platinum nanoparticles in the TiO 2 matrix. At higher Pt content, the X-ray diffraction analysis showed that the face-centered cubic phase of platinum appeared together with an anatase TiO 2 structure. In addition, as far as the platinum chemical state is concerned, the co-deposition of TiO 2 and Pt allow…
Elaboration and characterization of barium silicate thin films.
International audience; Room temperature depositions of barium on a thermal silicon oxide layer were performed in ultra high vacuum (UHV). In-situ X-ray photoelectron spectroscopy (XPS) analyses were carried out as well after exposure to air as after subsequent annealings. These analyses were ex-situ completed by secondary ion mass spectrometry (SIMS) profiles and transmission electron microscopy (TEM) cross-sectional images. The results showed that after air exposure, the barium went carbonated. Annealing at sufficient temperature permitted to decompose the carbonate to benefit of a barium silicate. The silicate layer was formed by interdiffusion of barium with the initial SiO2 layer.
Defects in topmost oxide layers probed by resonant photoelectron diffraction.
International audience
Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces
Abstract Compositional and chemical changes of titanium dioxide monocrystalline surfaces induced by bombardment with 4 keV argon and oxygen ions have been studied by AES, XPS and AFM. Argon ion bombardment induced strong changes in the composition and chemical state of the surface: loss of oxygen due to preferential sputtering occurred, and, related to this, Ti4+ species were reduced to Ti3+ and Ti2+. During oxygen bombardment, competition between preferential sputtering of oxygen ions of the oxide surface and oxygen implantation was observed. This phenomenon was found to be strongly dependent upon the incidence angle of the oxygen ions. Moreover, an oxygen bombardment with normal incidence…
XPS and EELS investigations of chemical homogeneity in nanometer scaled Ti-ferrites obtained by soft chemistry
Abstract Nanocrystalline Ti-ferrites with composition Fe 3− x Ti x O 4 with 0≤ x ≤1 are synthesized using the soft chemistry route. Heterogeneities in precipitate and annealed powders are investigated by a combination of XPS and EELS techniques. As-prepared powder consists in particles with spinel structure and grain size of about 15 nm. Due to high reactivity towards oxygen of nanoparticules, a significant amount of Fe 2+ cations oxidize during precipitation, so that precipitated powders present large deviation from oxygen-metal stoichiometry. Moreover precipitated particles are evidenced to exhibit a strong surface titanium enrichment and an iron richer core. Observation of such cation se…
Epitaxial growth of molybdenum on TiO2(110)
Abstract Molybdenum was deposited on blue (i.e. non-stoichiometric) TiO2(1 1 0) surface using a very low deposition rate (less than 0.05 eqML min−1). The resulting deposit was investigated by means of X-ray photoelectron diffraction (XPD), LEED and XPS. Just after deposition, the film is mainly constituted of metallic molybdenum, contains oxygen homogeneously dispersed through the whole deposit and the broad features detected in XPD scans are interpreted as a coarse epitaxy between TiO2(1 1 0) surface and the (0 0 1) face of bcc molybdenum. The orientation relationship is: Mo(1 0 0)[0 0 1]//TiO2(1 1 0)[0 0 1]. After annealing the deposit at 673 K, XPD scans become sharper and epitaxy is ach…
Surface composition analysis during the oxidation of ferrites: A necessity
The cationic composition of a titanium ferrite (Fe 2.5 Ti 0.5 O 4 ) has been followed by XPS during its oxidation in cation deficient phases (without crystallographic transformation) in order to reveal a dynamic segregation phenomenon. Indeed, during this oxidation, an important modification of the chemical composition of the first layers of the material has been revealed: below 350 °C, the titanium ferrites surface becomes richer in iron and poorer in titanium. But, if the reaction is extended above 400 °C, some titanium can move to the surface. This phenomenon has been interpreted on the basis of the differences of mobility of the different ions which are present in the material. Finally,…
Reactivity between molybdenum and TiO2(110) surfaces: evidence of a sub-monolayer mode and a multilayer mode
Small amounts of molybdenum (from 0.03 to 1.3 eqML) were deposited on non-stoichiometric TiO 2 (1 1 0) surface. The deposits were investigated by means of LEED and X-ray/UV photoemission using synchrotron radiation. For the smallest coverage (<0.2 eqML), deposition leads to oxidation of molybdenum into species close to Mo 4+ .In such a case, states appearing in TiO 2 band gap are mainly due to reduced titanium. For higher coverages, metallic behaviour of molybdenum is observed. This phenomenon was explained, thanks to first principle calculations, as a decrease of the Mo-O interactions for the benefit of the Mo-Mo interactions as the surface molybdenum atom density increases.
Stabilization of polar solid oxide surfaces: competition between adsorption and reconstruction
Multi-cationic spinel compounds are solids that exhibit polar faces. X-ray Photoelectron spectroscopy revealed the main phenomena allowing the stabilization of these faces, carried out as a function of the material treatment, particularly the cooling rate after thermal treatment at a high temperature (1200°C). This study showed that, whatever the cooling rate, each sample is subject to a significant hydroxylation that reduces the polarity. Nevertheless, it appears that the hydroxyl group content at the surface is a strong function of the cooling rate. Indeed, whereas quenched materials are subject to high levels of hydroxylation, slowly cooled samples are sparingly hydroxylated. This phenom…
The route from molecules to nanostructures followed by Synchrotron Radiation Photoemission.
International audience
Atomic Layer Deposition of Au-TiO2 inverse opals for the visible light photocatalysis of dyesdegradation
The pollution of waste water due to organic dyes used in the textile and chemical industries is an important environmental issue. Inverse opals (IO) offer a great potential for increasing the efficiency of their degradation by semiconductor photocatalysts such as TiO2 by the synergy of high specific surface and photonic crystal properties [1]. Doping TiO2 with gold nanoparticles is another possible strategy to enhance its photocatalytic activity by increasing its optical absorption in the visible range [2].This work reports the synthesis of Au-TiO 2 IO films by Atomic Layer Deposition and the study of their visible-light photocatalytic activity for the degradation of methylene blue in water…
Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles
MICROSCOPIE+ATARI+EEH:GMA:TBG:NSP:MAO; International audience; The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate …
Dynamic segregation during ferrite oxidation revealed by XPS
Dynamic segregation phenomena were revealed by XPS during the oxidation of some ferrites (Fe 2.5 Ti 0.5 O 4 , Fe 2.5 Ni 0.5 O 4 , Fe 2 CrO 4 and FeCr 2 O 4 ). This kind of phenomenon induces, at a low temperature (below room temperature), drastic changes in the cationic composition of the most external layers. Dynamic segregation is a function of the cationic composition, the oxidation capability and the morphology of these ferrites. Although dynamic segregation seems to be a quite frequent phenomenon that often can be observed during ferrite oxidation, there are materials in existence where it does not appear, such as molybdenum ferrite.
Photoemission study of the reactivity of barium towards SiOx thermal films
Abstract Barium was deposited at room temperature on a thermal silicon oxide layer and the interfacial reaction was monitored by synchrotron induced photoemission (both core level and valence band). The first step of the growth consists of an interfacial reaction which leads to the formation of an interfacial silicate layer. The next step consists in formation of barium oxide while metallic barium occurs subsequently. The deposit can be also homogenized by annealing above 575 K. This results in the formation of several layers of silicate by consumption of silicon oxide. In the case of fractional coverage, subsequent annealing at 975 K induces the decomposition of barium silicate. However, s…
Interfacial reaction between deposited molybdenum and TiO2(110) surface: role of the substrate bulk stoichiometry
Abstract The interfacial reaction between deposited molybdenum and three different TiO2(1 1 0) substrates (a bulk and surface stoichiometric TiO2; a bulk stoichiometric and surface reduced crystal; a bulk and surface slightly reduced crystal) was investigated by means of X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). While the interfacial reaction is not a function of the substrate at room temperature (in any case, molybdenum layers grow with oxygen dissolved in), this study clearly reveals a strong effect of the substrate bulk stoichiometry on the chemical state of the deposit after annealing up to 750 °C whereas the substrate surface stoichiome…
From tungsten hexacarbonyl adsorption on TiO2(1 1 0) surface to supported tungsten oxide phases.
Abstract Synchrotron-based photoemission spectroscopies were used to study the adsorption of tungsten hexacarbonyl on (1 1 0) TiO 2 surfaces: experiments using W4f and Ti2p intensities variations show that, at 140 K, the hexacarbonyl growth proceeds via a layer-by-layer mode. Moreover, it was evidenced using both core levels and valence band experiments that, after back to room temperature, W(CO) 6 desorbs without significant decomposition. However, low energy (500 eV) ion (Ar + ) irradiation can allow partial decomposition of tungsten hexacarbonyl molecules leading to sub-carbonyl tungsten molecules. The bonding of sub-carbonyl species to the TiO 2 surface was then stronger than the one of…
Effect of the preparation method and grinding time of some mixed valency ferrite spinels on their cationic distribution and thermal stability toward oxygen
Abstract The reactivity in oxygen of several mixed valency ferrite spinels, namely Fe3O4, FeCr2O4, Fe3 − xTixO4 and Fe3 − xMoxO4 was investigated by derivative thermogravimetry (DTG) analysis as a function of the conditions of preparation and grinding. For all these compounds, low temperature preparation or prolonged grinding time enables small particles ( 0.5 μm), it was observed that oxidation was starting at higher temperature and that the defect spinel phases could not be retained during oxidation. This behaviour was attributed to the presence of stresses induced by the lattice parameter gradient and promoting the formation of nuclei of the α-rhombohedral phase from the superficial γ-de…
Excess Electrons at Oxide Surfaces
Excess electrons profoundly affect the properties of oxide surfaces. The present review deals with excess charges on rutile and anatase. These much studied titania polymorphs open with strong prospects regarding (photo)catalysis and dye-sensitized solar cells. In the complex landscape of the mechanisms of electron trapping and electron transfer toward adsorbates, excess electrons open with flexible model systems which are the focus of an extensive research effort.
Growth of supported nanostructures on TiO2 (110) by soft CVD.
Communication orale
WOx phase growth on SiO2/Si by decomposition of tungsten hexacarbonyl:Influence of potassium on supported tungsten oxide phases
International audience; Synchrotron based photoemission spectroscopy was used to study the adsorption of tungsten hexacarbonyl on SiO2 surfaces modified by potassium. Results were compared with the ones obtained when no potassium was present. Experiments using W4f and Si2p intensities variations show that, at 140 K, the tungsten hexacarbonyl growth proceeds via a simultaneous multilayer mode for the two kinds of surfaces but with differences in compositions of growing layers. Indeed, it is evidenced that, even at cryogenic temperatures, the presence of potassium induces decomposition of a significant part of tungsten hexacarbonyl molecules through a strong interaction between tungsten and p…
Titanium dioxide surface stoichiometry and ordering studied by resonant photoemission spectroscopy
Abstract The electronic structure of titanium dioxide surfaces having undergone different preparations leading to different stoichiometries and crystallinities has been studied using resonant photoemission spectroscopy. Valence band photoemission spectra through the Ti 3p–3d/4s absorption edge between 45 and 55 eV were measured and allowed a characterization of defects present at the surface as well as of the quality of the surface organization. Indeed, from the comparison of the resonance results obtained for each kind of surface with the LEED patterns on the one hand and the corresponding Ti 2p core level lines on the other hand, it was evidenced that the high binding energy part of the v…
Refractory metal reactivity towards oxide surface : W/TiO2(1 1 0) case.
International audience; Reactivity of deposited tungsten towards TiO2(1 1 0) surface was studied using synchrotron radiation photoemission spectroscopy (both core levels, valence band and resonant photoemission) on Materials Science Beamline at ELETTRA. W depositions carried out at room temperature on TiO2(1 1 0) surface give rise to an interfacial reaction which leads to a metastable situation due to kinetic limitations. Annealing induces chemical changes which are function of the initial coverage; for fractional coverage, annealing induces completion of oxidation of deposit whereas reduction to metallic tungsten occurs for highest coverage. These results demonstrate that interaction of W …
Chemical surface ageing in ambient conditions of an Al–Fe–Cr approximant phase.
International audience; The γ -Al65Cr27Fe8 phase is a complex metallic alloy with interesting electrochemical properties. Here we present a detailed study of the surface ageing of this alloy when exposed to ambient conditions for a long time. A combination of x-ray reflectivity, photoemission spectroscopy and secondary neutral mass spectroscopy measurements is used to provide a model of the modification of the surface structure and its composition as functions of ageing time. The near surface structure is described by the stacking of three layers. The first layer on top of the substrate corresponds to a mixed metal oxide and is amorphous. The intermediate layer consists of pure aluminum oxy…
Localisation d'électrons en excès sur une surface d'oxyde par diffraction de photoélectrons en résonance.
International audience
Correlation Between the Electrical Properties and the Morphology of Low-Pressure MOCVD Titanium Oxynitride Thin Films Grown at Various Temperatures
Titanium oxynitride (TiN x O y ) thin films were deposited by low-pressure metal-organic CVD (LP-MOCVD) on (100) silicon, sapphire, and polycrystalline alumina substrates. Titanium isopropoxide (TIP) and ammonia were used as precursors. The influence of the growth temperature, ranking from 450°C to 750°C, was investigated by scanning electron microscopy (SEM), and electrical DC measurements. Rutherford back-scattering (RBS) measurements were used to determine the N/O ratio in the films. The surface observations of the deposited films showed two morphological transitions. The resistivity decreased with the growth temperature, while the nitrogen content increased. Moreover, for the highest de…
Amorphous TiO2 in LP-OMCVD TiNxOy thin films revealed by XPS
Abstract TiN(O)–TiO 2 thin films were prepared on Si(1 0 0) by the low pressure organo metallic chemical vapor deposition (LP-OMCVD) method, using ammonia and titanium isopropoxide as precursors. In order to complete previous characterizations, an Ar + bombardment/XPS coupled study was carried out. This method is based on the fact that the behavior of a compound towards an ion bombardment is a function of its composition. In particular, Ar + bombardment of TiO 2 (whatever its form) leads to a preferential sputtering of oxygen atoms with subsequent reduction of titanium and formation of Ti 3+ and Ti 2+ easily detectable by XPS from a significant broadening of the Ti 2p lines. In the opposite…
WC-based thin films obtained by reactive radio-frequency magnetron sputtering using W target and methane gas
Abstract Deposition of tungsten carbide (WC) films was investigated by radio-frequency reactive sputtering using a tungsten target and methane gas. The effect of some processing parameters (pressure, power, CH 4 -to-Ar gas flow ratio) upon the chemical and structural properties of the films has been investigated. The evolution of the chemical composition has been analyzed by photoemission, the microstructure has been studied through electron microscopy techniques and the crystallographic structure was investigated by X-ray diffraction as well as Raman spectroscopy. This study demonstrates that the formation of tungsten carbide is highly dependent on the deposition conditions: thin films are…
Optical interfaces in GD-OES system for vacuum far ultraviolet detection
A Glow Discharge Optical Emission Spectrometry device has been designed for glove box adaptation in CEA Valduc to analyze carbon, hydrogen, nitrogen and oxygen at low concentration in nuclear materials. Vacuum ultraviolet region of the spectrum (between 120 and 160 nm) was chosen for light elements analysis with the aim to avoid optical interferences with matrix emission lines (20000 lines in the visible region for plutonium element). For this purpose, two different systems of collection have been developed: a first based on two focusing lenses and a second having an optical interface based on mirrors. In the present paper, the whole set-up integrated in a glove box is described. Optical li…
Thermal stability of Au–TiO2 nanocomposite films prepared by direct liquid injection CVD
Abstract Nanocomposite films composed of gold nanoparticles (AuNPs) embedded in a TiO 2 matrix have been prepared by direct liquid injection chemical vapor deposition process, using preformed nanoparticles and titanium isopropoxide as precursors. The spherical AuNPs about 4.1 nm in diameter were synthesized by using gold (III) chloride trihydrate and stabilized by thiol ligands. The depositions were carried out by performing at first oxide deposition, then gold nanoparticle one and capping with oxide. The morphology, structure; the chemical state and optical properties of nanocomposite films were characterized by scanning electron microscopy, Raman, X-ray photoelectron and UV–Vis absorption…
CCDC 1875843: Experimental Crystal Structure Determination
Related Article: Oana Moncea, Juan Casanova-Chafer, Didier Poinsot, Lukas Ochmann, Clève D. Mboyi, Houssein O. Nasrallah, Eduard Llobet, Imen Makni, Molka El Atrous, Stéphane Brandès, Yoann Rousselin, Bruno Domenichini, Nicolas Nuns, Andrey A. Fokin, Peter R. Schreiner, Jean-Cyrille Hierso|2019|Angew.Chem.,Int.Ed.|58|9933|doi:10.1002/anie.201903089