0000000000969454
AUTHOR
Markus Albrecht
Pentafluorophenyl salicylamine receptors in anion–π interaction studies
A crystal structure analysis confirms the appropriateness of pentafluorophenyl salicylamine (1a) as a π-acceptor for anion–π interactions. Crystals of 1a·HCl show that the OH-group fixes the anion in a η2-type binding motif above the electron-deficient arene. Attempts to find some relevance for this weak intermolecular force in solution failed. Stronger CH–, NH– and OH–anion interactions are dominant over the weak anion–π interactions. Due to the hydrogen bonding, the non-fluorinated receptor exhibits the highest binding constants within this series.
Iron(III) chloride as mild catalyst for the dearomatizing cyclization of N-acylindoles
A catalytic approach for the preparation of indolines by dearomatizing cyclization is presented. FeCl3 acts as a catalyst to afford tetracyclic 5a,6-dihydro-12H-indolo[2,1-b][1,3]benzoxazin-12-ones in good yields. The cyclization also proceeds with tosylamides forming C-N bonds in 53 % yield. peerReviewed
Stacking of Sterically Congested Trifluoromethylated Aromatics in their Crystals – The Role of Weak F···π or F···F Contacts
European journal of organic chemistry : EurJOC 2020(38), 6073-6077 (2020). doi:10.1002/ejoc.202001008
Weak Intermolecular Anion–π Interactions in Pentafluorobenzyl-Substituted Ammonium Betaines
A series of ammonium–carboxylate and ammonium–sulfonate betaines was synthesized and studied by single-crystal X-ray diffraction analysis to investigate the weak intermolecular interactions as well as the intramolecular interactions in the solid state. None of the expected intramolecular anion–π interactions could be observed, probably because of the steric demands and the reduced nucleophilicity of the anionic part of the betaines. Nevertheless, a weak intermolecular anion–π interaction between the anionic part of the betaine and the pentafluorophenyl unit is present in the structure of 5a.
Helicates with Ether-Substituted Catechol Esters as Ligands
European journal of organic chemistry 2020(32), 5161-5172 (2020). doi:10.1002/ejoc.202000843
2H -[1,3]Oxazino[3,2-α]indolin-4(3H )-ones: A Class Of Polyheterocyclic Indole-Based Compounds
The pentafluorophenyl group as π-acceptor for anions: a case study
Chemical science 6(1), 354-359 (2015). doi:10.1039/C4SC02762K
Hierarchical, Lithium‐Templated Assembly of Helicate‐Type Complexes: How Versatile Is This Reaction?
Catechol ligands that bear carbonyl functions such as esters or aldehydes in the 3-position (1a–c-H2) form triple-stranded, helicate-type complexes [Li3(1a–c)6Ti2]– with titanium(IV) and the corresponding double-stranded compounds [Li2(1a–c)4B2] with boron(III) in hierarchical, lithium-templatedprocesses. The related 8-hydroxyquinoline ligands 2a,b-H can be used for the formation of similar complexes[Li3(2a,b)6M2]+ with cobalt(II), nickel(II), or zinc(II). A prerequisite for the formation of the lithium-bridged dimers is a negative charge of the mononuclear complexes, which are able to electrostatically attract the lithium cations and thus compensate the repulsion between the cations. (© Wi…
Single-Crystal X-ray Diffraction and Solution Studies of Anion-π Interactions inN-(Pentafluorobenzyl)pyridinium Salts
A solid-state structural study on anion–π interaction in various N-(pentafluorobenzyl)pyridinium salts accompanied by NMR spectroscopic investigations is presented. The crystal structures of 1a–1d reveal different kinds of contacts with anions, including anion–π interactions. In particular, the solid-state structure of 1b-I3 shows distinct evidence of anion–π interactions. Attempts to study anion–π interactions in solution were not successful, but their presence in solution could not be ruled out.
From attraction to repulsion : anion–π interactions between bromide and fluorinated phenyl groups
Anion–π interactions in crystals of fluorobenzyl ammonium salts depend on the degree of fluorination at the aromatics.
Solid State Structures of Amide-Substituted 8-Hydroxyquinoline Derivatives
Abstract The amide substituted 8-hydroxyquinoline derivatives 3 and 4 form, in the solid state, hydrogen bonded polymers. Polymeric 3 adopts a helical conformation while 4 forms a double-stranded ladder-type structure.
Synthesis of 7-Pentafluorophenyl-1H-indole: An Anion Receptor for Anion–π Interactions
7-Pentafluorophenyl-1H-indole has the potential to be a key compound for the investigation of anion–π interactions in solution. Unfortunately, it was not possible to obtain it by aryl–aryl coupling reaction. Finally, it has been prepared by Bartoli indole synthesis. The key compound as well as analogues were submitted to preliminary studies of anion binding. Single crystals of two key receptors were obtained.
Connecting Electron-Deficient and Electron-Rich Aromatics to Support Intermolecular Interactions in Crystals
Five compounds bearing electron-deficient pentafluorophenyl as well as electron-rich (salicylate or indole) aromatic moieties connected by amide or ester linkages were investigated by X-ray diffraction. In the crystals, various interactions (π–π, lone pair–π) between the different aromatic units are important structure controlling factors in addition to the stronger inter- or intramolecular hydrogen bonds induced by the amide and ester moieties. The hydrogen bonding leads to polymeric and macrocyclic assembly of the molecular building blocks.
Solid state anion–π interactions involving polyhalides
The stabilization of polyhalides in the solid state with the support of electron-deficient pentafluorophenyl groups is described. Furthermore, a synthetic approach towards the sensitive tetraiodide dianion is described and ESI mass spectrometric evidence for its presence in solution is reported.
Connecting Electron-Deficient and Electron-Rich Aromatics to Support Intermolecular Interactions in Crystals (Eur. J. Org. Chem. 15/2015)
Structural Versatility of Anion−π Interactions in Halide Salts with Pentafluorophenyl Substituted Cations
A series of pentafluorophenyl substituted ammonium, iminium, amidinium, and phosphonium halides are presented which show extensive anion-pi interactions. Hereby, the well-known anion-donor-pi-acceptor as well as "eta6" anion-pi-complex type interactions are observed. The latter is supported by fixation of the anion on top of the aromatic system through hydrogen bonding. This arrangement was investigated by theoretical methods showing a highly attractive anion-pi interaction. In addition an eta2-type coordination of the anions to only two C-atoms of the electron-deficient ring system is described.
Synthesis of Polycyclic Indolines by Utilizing a Reduction/Cyclization Cascade Reaction
European journal of organic chemistry 2021(45), 6097-6101 (2021). doi:10.1002/ejoc.202101191
Di-, Tri-, and Tetra(pentafluorophenyl) Derivatives for Oligotopic Anion−π Interactions
The present study describes a series of pentafluorobenzyl ammonium salts with two, three, or four C6F5 units in order to investigate simultaneous interactions of several perfluorinated arenes with anions in the crystalline state. Most of the structures show multiple anion-π contacts. However, only 6·2HI reveals an effective encapsulation of the iodide ion by the aromatic units. For comparison, the structure of 4b is investigated because it offers two π-systems with inverse charge distribution to a bromide anion. Only the electron-deficient π-system of the pentafluorophenyl group interacts with the anion.
Water-Soluble Cuprizone Derivative: Synthesis, Characterization, and in Vitro Studies
The cuprizone mouse model is one of the most accepted model systems for the investigation of oligodendrocyte degeneration, a process critically involved in the pathogenesis of diseases such as multiple sclerosis or schizophrenia. In order to substitute the in vivo experiments by in vitro approaches, the amine derivative BiMPi is introduced as a water-soluble alternative to cuprizone. Regarding superoxide dismutase activity, toxicity for oligodendrocytes, and disturbance of mitochondrial membrane potential, BiMPi shows similar in vitro effects as is observed in vivo for cuprizone. peerReviewed
Zinc(II) complexes of amide- and urea-substituted 8-hydroxyquinolines
Abstract A series of amide- and urea-substituted 8-hydroxyquinoline ligands 1–6-H are used for the formation of zinc(II) complexes. Hereby in general 2:1 complexes are obtained and the X-ray structure of [(3)2Zn] reveals the presence of a coordination polymer in the solid state. Only the derivatives of 7-amino-8-hydroxyquinoline 4-H and 5-H form trinuclear hexa-helical 6:3 complexes which exhibit interesting structural and NMR and fluorescence spectroscopic properties.
Experimental investigation of anion-π interactions : Applications and biochemical relevance
Chemical communications 52(9), 1778 - 1795(2016). doi:10.1039/C5CC09072E
CH-Directed Anion-π Interactions in the Crystals of Pentafluorobenzyl-Substituted Ammonium and Pyridinium Salts
Simple pentafluorobenzyl-substituted ammonium and pyridinium salts with different anions can be easily obtained by treatment of the parent amine or pyridine with the respective pentafluorobenzyl halide. Hexafluorophosphate is introduced as the anion by salt metathesis. In the case of the ammonium salt 4, water co-crystallisation seems to suppress effective anion-pi interactions of bromide with the electron-deficient aromatic system, whereas with salts 5 and 6 such interactions are observed despite the presence of water. However, due to asymmetric hydrogen-bonding interactions with ammonium side chains, the anion of 5 is located close to the rim of the pentafluorophenyl group (eta(1) interac…
CH-Anion versus anion-π interactions in the crystal and in solution of pentafluorobenzyl phosphonium salts
A series of phosphonium salts with pentafluorobenzyl substituents have been synthesized and were investigated in the crystal as well as in solution. The solid state structures of 1a, 1b and 2d reveal the presence of anion-π as well as CH-anion interactions. The two attractive, yet competitive forces seem to act in concert and a directing effect of the CH interaction on the relative position between anion and π-system is observed. The search for anion-π interactions in solution failed. Only CH-anion interactions proved to be important in solution.
Anion Receptors Based on a Quinoline Backbone
2-Amido-8-urea substituted quinoline derivatives are potent receptors for the binding of halide or benzoate anions in chloroform. The selectivity and affinity of the receptors for fluoride can be tuned by variation of the substituents at the receptor side chains. Computational considerations show that the cleft of the receptors provides space for effective binding of F–, but not bigger anions.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
CF3: An Electron-Withdrawing Substituent for Aromatic Anion Acceptors? “Side-On” versus “On-Top” Binding of Halides
The ability of multiple CF3 -substituted arenes to act as acceptors for anions is investigated. The results of quantum-chemical calculations show that a high degree of trifluoromethyl substitution at the aromatic ring results in a positive quadrupole moment. However, depending on the polarizability of the anion and on the substitution at the arene, three different modes of interaction, namely Meisenheimer complex, side-on hydrogen bonding, or anion-π interaction, can occur. Experimentally, the side-on as well as a η(2) -type π-complex are observed in the crystal, whereas in solution only side-on binding is found.
Shedding Light on the Interactions of Hydrocarbon Ester Substituents upon Formation of Dimeric Titanium(IV) Triscatecholates in DMSO Solution
Abstract The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1H NMR dimerization constants for the monomer–dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by…
Anion-π Interactions with Fluoroarenes.
Iron(III) Chloride as a Mild Catalyst for the Dearomatizing Cyclization of N-Acylindoles
A catalytic approach for the preparation of indolines by dearomatizing cyclization is presented. FeCl3 acts as a catalyst to afford tetracyclic 5a,6-dihydro-12H-indolo[2,1-b][1,3]benzoxazin-12-ones in good yields. The cyclization also proceeds with tosylamides forming C-N bonds in 53% yield.
A Supramolecular Chiral Auxiliary Approach: “Remote Control ”of Stereochemistry at a Hierarchically Assembled Dimeric Helicate
Dimeric hierarchically-assembled titanium(IV) helicates are in solvent-dependent equilibrium with the corresponding monomers. Statistically formed mixtures of such complexes bearing chiral stereocontrolling ligands and achiral diene-substituted ligands show high diastereoselectivity and reasonable enantioselectivity in the Diels-Alder reaction with maleimides if the reaction proceeds with the dimer but not with the monomer. Thus, solvent dependent switching between the monomer and dimer enables on/off switching of the enantioselectivity.
Chasing Weak Forces: Hierarchically Assembled Helicates as a Probe for the Evaluation of the Energetics of Weak Interactions.
London dispersion forces are the weakest interactions between molecules. Because of this, their influence on chemical processes is often low, but can definitely not be ignored, and even becomes important in cases of molecules with large contact surfaces. Hierarchically assembled dinuclear titanium(IV) helicates represent a rare example in which the direct observation of London dispersion forces is possible in solution even in the presence of strong cohesive solvent effects. Hereby, the dispersion forces do not unlimitedly support the formation of the dimeric complexes. Although they have some favorable enthalpic contribution to the dimerization of the monomeric complex units, large flexible…
Expansion and Compression of a Helicate with Central Diol-Units as Stereocontrolling Moieties
The dicatechol ester ligand 2-H4 forms the compressed helicate Li4[(2)3Ti2] which upon removal of the internally bound lithium cations expands. In the compressed form, the chiral diol units control the stereochemistry of the complex which is lost upon expansion of the system. peerReviewed
Perfluoro-1,1′-biphenyl and perfluoronaphthalene and their derivatives as π-acceptors for anions
Addition of anions to perfluorinated 1,1′-biphenyl 1 or naphthalene 2 results in a shift of the 19F NMR signals. However, any specific interaction cannot be assigned to this effect. In order to study the interaction in more detail, the salt derivatives 3 and 4 were prepared and studied by single crystal X-ray diffraction revealing weak anion–π interactions in the solid state.
Cooperativity of H-bonding and anion–π interaction in the binding of anions with neutral π-acceptors
A rare anion-π complex between bromide and a neutral receptor is reported and related receptor systems are studied with a series of anions. The interaction is observed in the solid state and in solution, and further evidence for it is obtained by a computational study.
The pentafluorophenyl group as π-acceptor for anions: a case study† †This manuscript is dedicated to Prof. Jean-Marie Lehn on the occasion of his 75th birthday. ‡ ‡Electronic supplementary information (ESI) available. CCDC 967089, 967097, 1005267–1005289. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc02762k Click here for additional data file. Click here for additional data file.
A unique structural study investigates the variability of anion–π bonding in the solid state structures of pentafluorophenyl arenes. The hapticity concept is used as tool to describe the structural differences of various anion–π complexes.
Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media
Coordinatively unsaturated double-stranded helicates [(H2 L)2 Eu2 (NO3 )2 (H2 O)4 ](NO3 )4 , [(H2 L)2 Tb2 (H2 O)6 ](NO3 )6 , and [(H2 L)2 Tb2 (H2 O)6 ]Cl6 (H2 L=butanedioicacid-1,4-bis[2-(2-pyridinylmethylene)hydrazide]) are easily obtained by self-assembly from the ligand and the corresponding lanthanide(III) salts. The complexes are characterized by X-ray crystallography showing the helical arrangement of the ligands. Co-ligands at the metal ions can be easily substituted by appropriate anions. A specific luminescence response of AMP in presence of ADP, ATP, and other anions is observed. Specificity is assigned to the perfect size match of AMP to bridge the two metal centers and to replac…
Expanding the Size of Catecholesters - Modified Ligands for the Hierarchical Assembly of Dinuclear Titanium(IV) Helicates
Five 2,3-dihydroxybenzoic acid derivatives 1 – 5 were used as starting materials to obtain the corresponding methyl and ethyl esters. Those were applied as ligands in the hierarchical self-assembly of lithium-bridged dinuclear titanium(IV) complexes 1a–4a, 1b–3b, and 5b. The equilibria between the mononuclear triscatecholate complexes (monomer) and the dinuclear helicates (dimer) were observed by 1H NMR spectroscopy in [D6]DMSO and [D4]MeOH at room temperature.
Synthesis of Quinoline-Based Anion Receptors and Preliminary Anion Binding Studies with Selected Derivatives
Six quinoline-based anion receptors were designed, prepared, and characterized, among which the crystal structure of an indole derivative was obtained. Selected receptors were tested for the recognition of halide anions in solution and showed some selectivity of chloride over bromide and iodide.
Controlling the position of anions relative to a pentafluorophenyl groupw
The position of an anion above an electron-deficient arene can be controlled by the geometry of appended directing groups. Here a series of ammonium substituted pentafluorophenyl derivatives is investigated. The presented results are one step on the way to find the ideal structural features for an effective and superior receptor for anion–π studies.
Synthesis of N‐Fused Indolines via Copper (II)‐Catalyzed Dearomatizing Cyclization of Indoles
Advanced synthesis & catalysis 363(12), 3121-3126 (2021). doi:10.1002/adsc.202100290
Weak non-covalent interactions control the relative molecular orientation in the crystals of N-pentafluorobenzyl aniline derivatives
The crystal structures of N-pentafluorobenzyl aniline derivatives are controlled by versatile aromatic–aromatic interactions between the electron deficient and electron rich aromatics; the parent compound (1) possesses an L shape while protonation (2–5) induces a conformational change resulting in a planar arrangement of molecules which pack in layer type structures with different molecular orientations.
Synthesis of Polycyclic Indolines utilizing a reduction/cyclization cascade reaction
Subsequent reduction and dearomatizing cyclization reactions open up an entry into the synthesis of novel N-fused polycyclic indolines. The dearomatizing cyclization as key step of the sequence proceeds well with Cu(OTf)2 or TfOH as catalyst. At elevated temperature reduction of nitro-substituted precursors with iron under acidic conditions affords a broad variety of polycyclic indolines directly in a two-step cascade reaction in good to excellent yields. Using the developed protocol, the alkaloids Tryptanthrin and Phaitanthrin C have been prepared. peerReviewed
The Halide Binding Behavior of 2-Carbamoyl-7-ureido-1H-indoles: Conformational Aspects
Indole-based anion receptors with an carboxamide unit in 2- and an urea in 7-position were prepared and found to bind halides (as well as acetate and nitrate) in chloroform solutions at room temperature. Investigations of the binding behaviour show that the receptor is selective for chloride. Surprisingly, the truncated receptor 3 without the 2-carbamoyl substituent shows the highest affinity for Cl–. Thorough 1H, 13C and 15N NMR investigations indicate different binding modes for acetate, nitrate and halides to the receptor 2. The observation of a major conformational change of this receptor during the binding of the halide ions leads to an understanding of the relative binding affinities …
Cover Feature: Synthesis of Polycyclic Indolines by Utilizing a Reduction/Cyclization Cascade Reaction (Eur. J. Org. Chem. 45/2021)
Anion-π Interaction: An Influential Force in Solid State Molecular Microstructures
The crystal structures of simple triphenyl(pentafluorobenzyl)phosphonium salts provide crucial data on the influence of anion size on the molecular structure of bis(pentafluorobenzyl)phosphonium cations containing two adjacent electron-deficient moieties. Whereas the bromide anions interact by anion-π interaction in a 1:1 mode with the pentafluorobenzene unit Z-configured, the bulkier anions iodide, tetrafluoroborate, and hexafluorophosphate result in a 1:2 tweezer-like anti-configuration in which one anion interacts simultaneously with two pentafluorobenzene units. When spatial separation of the two electron-deficient rings match the size of the anion, anion-π interactions induce a conform…
Geometrically diverse anions in anion–π interactions
The role of different anion geometries in anion–π interactions is discussed. The chemistry described herein is different to the interaction of spherical cations with aromatics. The influence of different geometries makes selective anion recognition more complicated than respective cation sensing. The present structural study reveals attractive interactions between pentafluorophenyl units and geometrically diverse anions (linear, trigonal planar, tetrahedral and octahedral). Due to the electrostatic nature of anion–π interactions, the anion geometry seems to be irrelevant. The size of the anion controls the relative orientation of the anion and the π system (e.g. in compounds 1–3). The dimer…
Formation of Triple‐Stranded Dinuclear Helicates with Dicatecholimine Ligands: The Influence of Steric Hindrance at the Spacer
A series of new imine-bridged dicatechol ligands 3a–f-H4 with sterically demanding groups at the spacers are used for the formation of titanium(IV) complexes M4[(3)3Ti2]. All three ligands 3a–c-H4 form triple-stranded dinuclear helicates. When the bulky ligands 3a-H4 or 3c-H4 are used with potassium as the countercation, oligomeric or polymeric side products are also observed. The imine-bridged ligand 3e-H4 quantitatively forms helicates M4[(3e)3Ti2] and not a M4L6 tetrahedron as observed with Raymond’s analogous amide-bridged dicatechol ligand 3i-H4. NMR spectroscopic investigations at variable temperature show that ligand 3f-H4, which possesses a spiro fluorenyl group at the central unit …
Cation-translocation based isomerism offers a tool for the expansion of compressed helicates.
A series of compressed M[Li313Ti2] (M = Li, Na, K, Rb, Cs) and expanded helicates M4[13Ti2] has been obtained. The helicates Li3[M13Ti2] or M4[13Ti2] with M = Na+, K+, Rb+, or Cs+ adopt the expanded structure in solution. By crystallization the compressed structures M[Li313Ti2] (M = Na, Rb) are obtained. This represents an example of cation-translocation based isomerism.
Anion–π Interactions in Salts with Polyhalide Anions: Trapping of I 4 2−
The directionality of interaction of electron-deficient π systems with spherical anions (e.g,. halides) can be controlled by secondary effects like NH or CH hydrogen bonding. In this study a series of pentafluorophenyl-substituted salts with polyhalide anions is investigated. The compounds are obtained by aerobic oxidation of the corresponding halide upon crystallization. Solid-state structures reveal that in bromide 2, directing NH-anion interactions position the bromide ion in an η(1)-type fashion over but not in the center of the aromatic ring. The same directing forces are effective in corresponding tribromide salt 3. In the crystal, the bromide ion is paneled by four electron-deficient…
CCDC 967090: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 1950786: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 915608: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 1977489: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1005283: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967091: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 955438: Experimental Crystal Structure Determination
Related Article: Zhan-Hu Sun, Markus Albrecht, Michael Giese, Fangfang Pan, Kari Rissanen|2014|Synlett|25|2075|doi:10.1055/s-0034-1378449
CCDC 1040204: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 1005269: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 2067949: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1919187: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1846187: Experimental Crystal Structure Determination
Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523
CCDC 1453996: Experimental Crystal Structure Determination
Related Article: Jashobanta Sahoo, Rajendran Arunachalam, Palani S. Subramanian, Eringathodi Suresh, Arto Valkonen, Kari Rissanen, Markus Albrecht|2016|Angew.Chem.,Int.Ed.|55|9625|doi:10.1002/anie.201604093
CCDC 1005280: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1005278: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 936269: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Tatjana Repenko, Johannes Sackmann, Arto Valkonen, Kari Rissanen|2014|Eur.J.Org.Chem.|2014|2435|doi:10.1002/ejoc.201301336
CCDC 1995537: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 936267: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Tatjana Repenko, Johannes Sackmann, Arto Valkonen, Kari Rissanen|2014|Eur.J.Org.Chem.|2014|2435|doi:10.1002/ejoc.201301336
CCDC 1005287: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1014201: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|New J.Chem.|39|746|doi:10.1039/C4NJ01654H
CCDC 915600: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 915601: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 2069786: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, David Sommer, Sabarina Vasanthakumar, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2021|Dalton Trans.|50|9372|doi:10.1039/D1DT01707A
CCDC 1846185: Experimental Crystal Structure Determination
Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523
CCDC 1539540: Experimental Crystal Structure Determination
Related Article: David Van Craen, Wolfgang H. Rath, Marina Huth, Laura Kemp, Christoph Räuber, Jan M. Wollschläger, Christoph A. Schalley, Arto Valkonen, Kari Rissanen, Markus Albrecht|2017|J.Am.Chem.Soc.|139|16959|doi:10.1021/jacs.7b10098
CCDC 1917460: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 915607: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 1040206: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 1977492: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1407855: Experimental Crystal Structure Determination
Related Article: David Van Craen, Marita de Groot, Markus Albrecht, Fanfang Pan and Kari Rissanen|2015|Z.Anorg.Allg.Chem.|641|2222|doi:10.1002/zaac.201500543
CCDC 1977495: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1977494: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1040201: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 2067947: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1005272: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1995533: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 1995536: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 1995534: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 2067946: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1977488: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1005277: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 2067943: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1539541: Experimental Crystal Structure Determination
Related Article: David Van Craen, Wolfgang H. Rath, Marina Huth, Laura Kemp, Christoph Räuber, Jan M. Wollschläger, Christoph A. Schalley, Arto Valkonen, Kari Rissanen, Markus Albrecht|2017|J.Am.Chem.Soc.|139|16959|doi:10.1021/jacs.7b10098
CCDC 967092: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 915606: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 915603: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 2067948: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 967128: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Christian Bohnen, Tatjana Repenko, Arto Valkonen, Kari Rissanen|2014|Dalton Trans.|43|1873|doi:10.1039/C3DT52960F
CCDC 1453997: Experimental Crystal Structure Determination
Related Article: Jashobanta Sahoo, Rajendran Arunachalam, Palani S. Subramanian, Eringathodi Suresh, Arto Valkonen, Kari Rissanen, Markus Albrecht|2016|Angew.Chem.,Int.Ed.|55|9625|doi:10.1002/anie.201604093
CCDC 1040203: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 1977487: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 967093: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 1036897: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Hai Yi, Fangfang Pan, Arto Valkonen and Kari Rissanen|2015|Eur.J.Org.Chem.|2015|3235|doi:10.1002/ejoc.201500175
CCDC 915605: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 2069787: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, David Sommer, Sabarina Vasanthakumar, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2021|Dalton Trans.|50|9372|doi:10.1039/D1DT01707A
CCDC 1013128: Experimental Crystal Structure Determination
Related Article: Zhanhu Sun, Markus Albrecht, Fangfang Pan, Michel Waringo|2015|Synthesis|47|861|doi:10.1055/s-0034-1379605
CCDC 967129: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Christian Bohnen, Tatjana Repenko, Arto Valkonen, Kari Rissanen|2014|Dalton Trans.|43|1873|doi:10.1039/C3DT52960F
CCDC 1995535: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 936265: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Tatjana Repenko, Johannes Sackmann, Arto Valkonen, Kari Rissanen|2014|Eur.J.Org.Chem.|2014|2435|doi:10.1002/ejoc.201301336
CCDC 1005267: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1036896: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Hai Yi, Fangfang Pan, Arto Valkonen and Kari Rissanen|2015|Eur.J.Org.Chem.|2015|3235|doi:10.1002/ejoc.201500175
CCDC 1438663: Experimental Crystal Structure Determination
Related Article: David Van Craen, Markus Albrecht, Gerhard Raabe, Fangfang Pan, Kari Rissanen|2016|Chem.-Eur.J.|22|3255|doi:10.1002/chem.201600158
CCDC 936268: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Tatjana Repenko, Johannes Sackmann, Arto Valkonen, Kari Rissanen|2014|Eur.J.Org.Chem.|2014|2435|doi:10.1002/ejoc.201301336
CCDC 1036893: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Hai Yi, Fangfang Pan, Arto Valkonen and Kari Rissanen|2015|Eur.J.Org.Chem.|2015|3235|doi:10.1002/ejoc.201500175
CCDC 1040202: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 967097: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967088: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 1005275: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967089: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967095: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 1995532: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Fangfang Pan, Arto Valkonen, Kari Rissanen|2020|Eur.J.Org.Chem.||6073|doi:10.1002/ejoc.202001008
CCDC 1458068: Experimental Crystal Structure Determination
Related Article: Jashobanta Sahoo, Rajendran Arunachalam, Palani S. Subramanian, Eringathodi Suresh, Arto Valkonen, Kari Rissanen, Markus Albrecht|2016|Angew.Chem.,Int.Ed.|55|9625|doi:10.1002/anie.201604093
CCDC 1005268: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1997037: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, Carel Kwamen, Leonard Himmel, Xiaofei Chen, Matthias Brückner, Saskia Huda, Christian Göb, Judith Jenniches, Iris Oppel, James Ward, Kari Rissanen, Markus Albrecht|2020|Eur.J.Org.Chem.|2020|5161|doi:10.1002/ejoc.202000843
CCDC 1005281: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1040207: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 1977491: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1014200: Experimental Crystal Structure Determination
Related Article: Hai Yi, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|New J.Chem.|39|746|doi:10.1039/C4NJ01654H
CCDC 2080687: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Meilin Qu, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Eur.J.Org.Chem.|2021|6097|doi:10.1002/ejoc.202101191
CCDC 1977486: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1036895: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Hai Yi, Fangfang Pan, Arto Valkonen and Kari Rissanen|2015|Eur.J.Org.Chem.|2015|3235|doi:10.1002/ejoc.201500175
CCDC 1005286: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967096: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 936266: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Tatjana Repenko, Johannes Sackmann, Arto Valkonen, Kari Rissanen|2014|Eur.J.Org.Chem.|2014|2435|doi:10.1002/ejoc.201301336
CCDC 2067945: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1919188: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 2080689: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Meilin Qu, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Eur.J.Org.Chem.|2021|6097|doi:10.1002/ejoc.202101191
CCDC 1005273: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1040205: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249
CCDC 1005276: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 2067944: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Adv.Synth.Catal.|363|3121|doi:10.1002/adsc.202100290
CCDC 1001536: Experimental Crystal Structure Determination
Related Article: Zhan-Hu Sun, Markus Albrecht, Michael Giese, Fangfang Pan, Kari Rissanen|2014|Synlett|25|2075|doi:10.1055/s-0034-1378449
CCDC 967094: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Simon Steike, Anton Ackermann, Arto Valkonen, and Kari Rissanen|2013|Inorg.Chem.|52|7666|doi:10.1021/ic4008087
CCDC 1919186: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1036894: Experimental Crystal Structure Determination
Related Article: Markus Albrecht, Hai Yi, Fangfang Pan, Arto Valkonen and Kari Rissanen|2015|Eur.J.Org.Chem.|2015|3235|doi:10.1002/ejoc.201500175
CCDC 1005289: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1005270: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1005279: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 915602: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 1846186: Experimental Crystal Structure Determination
Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523
CCDC 915604: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 1977490: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 1005285: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1005284: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1005282: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1539539: Experimental Crystal Structure Determination
Related Article: David Van Craen, Wolfgang H. Rath, Marina Huth, Laura Kemp, Christoph Räuber, Jan M. Wollschläger, Christoph A. Schalley, Arto Valkonen, Kari Rissanen, Markus Albrecht|2017|J.Am.Chem.Soc.|139|16959|doi:10.1021/jacs.7b10098
CCDC 1575105: Experimental Crystal Structure Determination
Related Article: Jan M. Hartmann, Marita de Groot, Katja Schäringer, Kira Henke, Kari Rissanen and Markus Albrecht|2018|Eur.J.Org.Chem.|2018|901|doi:10.1002/ejoc.201701630
CCDC 1005271: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 1917415: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 2080691: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Meilin Qu, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Eur.J.Org.Chem.|2021|6097|doi:10.1002/ejoc.202101191
CCDC 1997473: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, Carel Kwamen, Leonard Himmel, Xiaofei Chen, Matthias Brückner, Saskia Huda, Christian Göb, Judith Jenniches, Iris Oppel, James Ward, Kari Rissanen, Markus Albrecht|2020|Eur.J.Org.Chem.|2020|5161|doi:10.1002/ejoc.202000843
CCDC 1977493: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Jing Li, Jas S. Ward, Khai-Nghi Truong, Kari Rissanen, Markus Albrecht|2020|J.Org.Chem.|85|12160|doi:10.1021/acs.joc.0c01373
CCDC 967127: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Christian Bohnen, Tatjana Repenko, Arto Valkonen, Kari Rissanen|2014|Dalton Trans.|43|1873|doi:10.1039/C3DT52960F
CCDC 1005288: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K
CCDC 967130: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Christian Bohnen, Tatjana Repenko, Arto Valkonen, Kari Rissanen|2014|Dalton Trans.|43|1873|doi:10.1039/C3DT52960F
CCDC 915599: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2013|Eur.J.Org.Chem.|2013|3247|doi:10.1002/ejoc.201201704
CCDC 2080688: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Meilin Qu, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Eur.J.Org.Chem.|2021|6097|doi:10.1002/ejoc.202101191
CCDC 1994564: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, Carel Kwamen, Leonard Himmel, Xiaofei Chen, Matthias Brückner, Saskia Huda, Christian Göb, Judith Jenniches, Iris Oppel, James Ward, Kari Rissanen, Markus Albrecht|2020|Eur.J.Org.Chem.|2020|5161|doi:10.1002/ejoc.202000843
CCDC 1997036: Experimental Crystal Structure Determination
Related Article: Christian Mevissen, Carel Kwamen, Leonard Himmel, Xiaofei Chen, Matthias Brückner, Saskia Huda, Christian Göb, Judith Jenniches, Iris Oppel, James Ward, Kari Rissanen, Markus Albrecht|2020|Eur.J.Org.Chem.|2020|5161|doi:10.1002/ejoc.202000843
CCDC 2080690: Experimental Crystal Structure Determination
Related Article: Jingyu Zhang, Wei Xia, Meilin Qu, Saskia Huda, Jas S. Ward, Kari Rissanen, Markus Albrecht|2021|Eur.J.Org.Chem.|2021|6097|doi:10.1002/ejoc.202101191
CCDC 1005274: Experimental Crystal Structure Determination
Related Article: Michael Giese, Markus Albrecht, Arto Valkonen, Kari Rissanen|2015|Chemical Science|6|354|doi:10.1039/C4SC02762K