0000000001000118

AUTHOR

J. Jussi Toppari

showing 76 related works from this author

High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric

2008

Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO$_{2}$ and T…

NanotubeGate dielectricGeneral Physics and AstronomyFOS: Physical sciencesCarbon nanotubeDielectriclaw.inventionCondensed Matter::Materials ScienceComputer Science::Emerging TechnologieslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular ClustersThin filmCNT FETsPhysicsCondensed Matter - Materials Sciencecarbon nanotubesCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysicsTransistorfield-effect transistorsMaterials Science (cond-mat.mtrl-sci)HysteresishysteresisOptoelectronicsField-effect transistorbusiness
researchProduct

Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materials

2020

Here, we present a highly parallel fabrication method dubbed biotemplated lithography of inorganic nanostructures (BLIN) that enables large-scale versatile substrate patterning of metallic and semi...

NanostructureMaterials scienceFabricationNanotechnology02 engineering and technologySubstrate (printing)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanolithographyDNA nanotechnologyDNA origamiGeneral Materials Science0210 nano-technologyLithographyACS Applied Nano Materials
researchProduct

A hybrid method for calorimetry with subnanoliter samples using Schottky junctions

2007

A μm-scale calorimeter realized by using Schottky junctions as a thermometer is presented. Combined with a hybrid experimental method, it enables simultaneous time-resolved measurements of variations in both the energy and the heat capacity of subnanoliter samples.

Specific heatPhysics::Instrumentation and DetectorsChemistryThermometerAnalytical chemistryGeneral Physics and AstronomySchottky diodeThermodynamicsCalorimetryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectHeat capacityCalorimeterJournal of Applied Physics
researchProduct

Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift

2013

The understanding and control of the dynamics of hybrid modes consisting of strongly coupled surface plasmon polaritons and molecular excitations of dye molecules is of great timely interest, as it allows one to tailor interactions between optical signals as needed for active all-optical devices. Here we utilize dye molecules with an especially large Stokes shift to demonstrate the absence of mutual scatterings among the strongly coupled hybrid modes. We employ a quantum mechanical three-level model and show that the hybrid modes decay via dephasing and internal relaxation of the molecules to a fluorescing state of the dye, which can be used as a measure for the decay. Our results provide e…

Physicsta114Condensed matter physicsScatteringDephasingSurface plasmonRelaxation (NMR)Physics::OpticsCondensed Matter PhysicsMolecular physicsSurface plasmon polaritonElectronic Optical and Magnetic Materialssymbols.namesakeStokes shiftsymbolsPolaritonPhysics::Chemical PhysicsLocalized surface plasmonPhysical Review B
researchProduct

Elongation and plasmonic activity of embedded metal nanoparticles following heavy ion irradiation

2023

Shape modification of embedded nanoparticles by swift heavy ion (SHI) irradiation is an effective way to produce nanostructures with controlled size, shape, and orientation. In this study, randomly oriented gold nanorods embedded in SiO2 are shown to re-orient along the ion beam direction. The degree of orientation depends on the irradiation conditions and the nanorod's initial size. SHI irradiation was also applied to modify spherical metallic nanoparticles embedded in Al2O3. The results showed that they elongate due to the irradiation comparably to those embedded in SiO2. Metallic nanostructures embedded in dielectric matrices can exhibit localized surface plasmon (LSP) modes. The elongat…

nanorakenteetionisoiva säteilyGeneral Chemical EngineeringnanohiukkasetnanotekniikkaGeneral ChemistrypintaplasmonitRSC Advances
researchProduct

Optimizing geometry of low-Q all-metal Fabry-Pérot microcavity for fluorescence spectroscopy

2021

Abstract Fluorescence spectroscopy is commonly employed to study the excited-state photophysics of organic molecules. Planar Fabry-Pérot microcavities play an essential role in such studies and a strategic cavity design is necessary to attain an enhanced light-matter interaction. In this work, we computationally study different geometries for a planar metallic Fabry-Pérot microcavity tuned for the absorption of Sulforhodamine 101, a typical dye for fluorescence spectroscopy. The cavity consists of a polymer layer enclosed between two silver mirrors, where the thicknesses of all the three layers are varied to optimize the cavity. Our transfer-matrix and finite-difference time-domain simulati…

Materials sciencebusiness.industryspektroskopiafluoresenssi02 engineering and technologyoptiset ominaisuudet021001 nanoscience & nanotechnology01 natural sciencesFluorescenceFluorescence spectroscopymikrorakenteetMetalvisual_art0103 physical sciencesvisual_art.visual_art_mediumOptoelectronics010306 general physics0210 nano-technologybusinessFabry–Pérot interferometerIOP SciNotes
researchProduct

Large-Scale Formation of DNA Origami Lattices on Silicon

2023

In recent years, hierarchical nanostructures have found applications in fields like diagnostics, medicine, nano-optics, and nanoelectronics, especially in challenging applications like the creation of metasurfaces with unique optical properties. One of the promising materials to fabricate such nanostructures has been DNA due to its robust self-assembly properties and plethora of different functionalization schemes. Here, we demonstrate the assembly of a two-dimensional fishnet-type lattice on a silicon substrate using cross-shaped DNA origami as the building block, i.e., tile. The effects of different environmental and structural factors are investigated under liquid atomic force microscopy…

liquidspiinanorakenteetlatticesGeneral Chemical EngineeringMaterials ChemistrysiliconGeneral ChemistryDNA origamiDNAatomivoimamikroskopiadeposition
researchProduct

Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties.

2011

We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivi…

StreptavidinMaterials scienceMechanical EngineeringCrossoverElectric ConductivityMolecular electronicsConductanceBioengineeringNanotechnologyGeneral ChemistryDNAConductivityMicroscopy Atomic Forcechemistry.chemical_compoundchemistryNanoelectronicsMechanics of MaterialsDielectric SpectroscopyEquivalent circuitNucleic Acid ConformationGeneral Materials ScienceElectrical and Electronic EngineeringElectronicsPlasmonNanotechnology
researchProduct

One dimensional arrays and solitary tunnel junctions in the weak coulomb blockade regime: CBT thermometry

1997

In this article we review the use of the tunnel junction arrays for primary thermometry. In addition to our basic experimental and theoretical results we stress the insensitivity of this method to the fluctuating background charges, to nonidealities in the array and to magnetic field. Important new results of this article are the low temperature corrections to the half width and depth of the measured conductance dip beyond the linear approximation. We also point ou that short arrays, single tunnel junctions in particular, show interesting deviations from the universal behaviour of the long arrays.

PhysicsCondensed matter physicsConductanceCoulomb blockadeCondensed Matter PhysicsIon beam lithographyAtomic and Molecular Physics and OpticsMagnetic fieldStress (mechanics)Electrical resistance and conductanceTunnel junctionCondensed Matter::SuperconductivityGeneral Materials ScienceLinear approximationJournal of Low Temperature Physics
researchProduct

Dynamics of Strongly Coupled Modes between Surface Plasmon Polaritons and Photoactive Molecules: The Effect of the Stokes Shift

2017

We have investigated the dynamics of strongly coupled modes of surface plasmon polaritons (SPPs) and fluorescent molecules by analyzing their scattered emission polarization. While the scattered emission of SPPs is purely transverse magnetic (TM) polarized, the strong coupling with molecules induces transverse electric (TE) polarized emission via the partial molecular nature of the formed SPP–molecule polariton mode. We observe that the TM/TE ratio of the polariton emission follows the contribution of the molecular excited states in this hybrid mode. By using several types of molecules, we observe that, in addition to the coupling strength, which determines the contribution of the molecular…

dispersion relationPhysics::Optics02 engineering and technology01 natural sciencesMolecular physicssymbols.namesakeStokes shiftStokes shiftDispersion relation0103 physical sciencesstrong couplingPolaritonplexcitonElectrical and Electronic Engineering010306 general physicsta116PhysicspolarizationCondensed matter physicsta114Surface plasmon021001 nanoscience & nanotechnologyPolarization (waves)Surface plasmon polaritonFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssurface plasmon polaritonExcited statesymbols0210 nano-technologyBiotechnologyACS Photonics
researchProduct

Theory for the stationary polariton response in the presence of vibrations

2019

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…

DYNAMICSQuantum decoherenceFOS: Physical sciences02 engineering and technology01 natural sciencesplasmonicsvärähtelytQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Polaritonhybrid quantum systemskvanttikemiaMOLECULE010306 general physicskvanttifysiikkaQuantumQuantum opticsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSurface plasmonCoulomb blockade021001 nanoscience & nanotechnologySurface plasmon polaritonSURFACE-PLASMON POLARITONSpintailmiötLight emission0210 nano-technologyQuantum Physics (quant-ph)ENERGY-TRANSFERpolaritonsemissio (fysiikka)
researchProduct

Aluminum Plasmonics: Fabrication and Characterization of Broadly Tunable Plasmonic Surfaces for Plasmon Molecule Strong-Coupling and Fluorescence Enh…

2018

Our work based on previous studies [1, 2] confirms, that simple aluminum nanostructures can be utilized as effective plasmonic resonators over a broad range of frequencies and wavelengths. The nanostructured surfaces, fabricated by electron-beam lithography demonstrated relatively narrow-band resonances and are suitable for various plasmonic applications ranging from metal enhanced fluorescence to strong-coupling [1, 2, 3, 4, 5] experiments. We represent data for molecule-plasmon coupling near the strong coupling limit and demonstrate that these aluminum structures do act as fluorescence increasing substrates. In this work, we used two different types of dyes. We studied the narrow band j-a…

CouplingWavelengthResonatorMaterials scienceFabricationNanostructurebusiness.industryOptoelectronicsbusinessFluorescenceLithographyPlasmon
researchProduct

Collective optical resonances in networks of metallic carbon nanotubes

2013

Abstract We demonstrate that thin films of randomly oriented metallic single-walled carbon nanotubes possess optical resonances with significant dispersion. The resonances are observed in the Kretschmann configuration as minima in reflection spectra close to 400 nm and 700 nm wavelengths. The dispersions are visible only when the material is excited with s -polarized light, and most prominent in layers with thickness near 100 nm. We conclude that magnetic plasmon polaritons arising from intertube interactions are a likely explanation. Closeness of the M 11 and M 22 transition energies to the observed resonances points to a possible coupling with excitons.

Materials scienceta114business.industryExcitonmagnetic plasmonPhysics::OpticsGeneral ChemistryCarbon nanotubeMolecular physicsSpectral linelaw.inventionWavelengthReflection (mathematics)lawSurface plasmonExcited statePolaritonOptoelectronicsGeneral Materials Sciencecarbon nanotubebusinessPlasmonCarbon
researchProduct

About the dynamics of strongly coupled surface plasmon polaritons and Sulforhodamine 101

2014

We investigate the dynamics of strongly coupled surface plasmon polaritons (SPP) and molecular excitations (ME) of Sulforhodamine 101 dye. The SPPs are excited by prism coupling technique on a thin silver film with dye molecules embedded in a polymer layer on top of it. Rabi splittings with energies of 135 and 97 meV are observed in the recorded dispersion relations. Both coupled oscillator model and transfer matrix method are used to fit the experimental results. In addition to the common reflectance measurements, polarization resolved detection of scattered signal from the molecular side is also utilized. Simultaneous detection of the scattered polaritons and molecular fluorescence reveal…

Materials scienceta114business.industryDephasingta221Physics::OpticsPolarization (waves)Sulforhodamine 101Surface plasmon polaritonMolecular physicsFluorescencechemistry.chemical_compoundchemistryExcited stateDispersion relationPolaritonOptoelectronicsbusiness
researchProduct

Trapping and Immobilization of DNA Molecules Between Nanoelectrodes

2011

DNA is one of the most promising molecules for nanoscale bottom-up fabrication. For both scientific studies and fabrication of devices, it is desirable to be able to manipulate DNA molecules, or self--assembled DNA constructions, at the single unit level. Efficient methods are needed for precisely attaching the single unit to the external measurement setup or the device structure. So far, this has often been too cumbersome to achieve, and consequently most of the scientific studies are based on a statistical analysis or measurements done for a sample containing numerous molecules in liquid or in a dry state. Here, we explain a method for trapping and attaching nanoscale double-stranded DNA …

chemistry.chemical_compoundFabricationMaterials scienceNanostructurechemistryMoleculeDNA origamiNanotechnologyTrappingDielectrophoresisNanoscopic scaleDNA
researchProduct

Fabrication of carbon nanotube-based field-effect transistors for studies of their memory effects

2007

Carbon nanotube‐based field‐effect transistors (CNTFETs) have been fabricated using nanometer thin dielectric material as the gate insulator film. The demonstrated fabrication technique is highly suitable for preparing devices with low contact resistances between the electrodes and the carbon nanotube, down to 14 kΩ. Electronic transport measurements of the fabricated devices have been conducted on more than 70 FETs. Hysteretic behavior in the transfer characteristics of some CNTFETs was observed.

Materials scienceFabricationTransistorContact resistanceNanotechnology85.30.TvDielectricCarbon nanotubeCondensed Matter Physics85.35.Kt73.40.SxElectronic Optical and Magnetic Materialslaw.inventionCarbon nanotube field-effect transistorlaw73.63.FgElectrodeField-effect transistor73.23.-bphysica status solidi (b)
researchProduct

Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon

2019

Abstract Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due …

Materials sciencepiiPassivationHydrogenSiliconAnnealing (metallurgy)ta221chemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyAtomic layer depositionnanorakenteetthermal atomic layer depositionThin filmalumiinisurface passivationblack flexible siliconta114Renewable Energy Sustainability and the EnvironmentDangling bondatomikerroskasvatus021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElastic recoil detectionchemistryChemical engineeringaluminum oxynitrideohutkalvot0210 nano-technologySolar Energy Materials and Solar Cells
researchProduct

Identifying yeasts using surface enhanced Raman spectroscopy

2019

Made available in DSpace on 2019-10-06T15:40:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-07-05 Tekes Academy of Finland Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) The molecular fingerprints of yeasts Saccharomyces cerevisiae, Dekkera bruxellensis, and Wickerhamomyces anomalus (former name Pichia anomala) have been examined using surface-enhanced Raman spectroscopy (SERS) and helium ion microscopy (HIM). The SERS spectra obtained from cell cultures (lysate and non-treated cells) distinguish between these very closely related fungal species. Highly SERS active silver nano-particles suitable for detecting complex biomolecules were fabricated using a simple synt…

SilverPichia anomalaWickerhamomyces anomalusSurface PropertiesSaccharomyces cerevisiaeMetal Nanoparticles02 engineering and technologySaccharomyces cerevisiaeheliumyeast010402 general chemistrySpectrum Analysis Raman01 natural sciencesSilver nanoparticlePichiaAnalytical ChemistryBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologysymbols.namesakehiivaYeastsaggregaatitMycological Typing TechniquesInstrumentationSpectroscopychemistry.chemical_classificationChromatographyta114biologyDekkeraChemistrySERSBiomoleculehopeasilver nanoparticleSurface-enhanced Raman spectroscopy021001 nanoscience & nanotechnologybiology.organism_classificationAtomic and Molecular Physics and OpticsYeastYeast0104 chemical sciences3. Good healthaggregatesymbolshelium ion microscopynanohiukkaset0210 nano-technologyRaman spectroscopy
researchProduct

Surface plasmon effects on carbon nanotube field effect transistors

2011

Herein, we experimentally demonstrate surface plasmon polariton (SPP) induced changes in the conductivity of a carbon nanotube field effect transistor (CNT FET). SPP excitation is done via Kretschmann configuration while the measured CNT FET is situated on the opposite side of the metal layer away from the laser, but within reach of the launched SPPs. We observe a shift of 0.4 V in effective gate voltage. SPP-intermediated desorption of physisorbed oxygen from the device is discussed as a likely explanation of the observed effect. This effect is visible even at low SPP intensities and within a near-infrared range. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)transistoriNanotechnologyCarbon nanotubehiilinanoputkiplasmonicslaw.inventionlawfield effect transistorspolaritonitPlasmonta114carbon nanotubesbusiness.industryhiilinanoputketSurface plasmonNanofysiikkananoscienceSurface plasmon polaritonCarbon nanotube field-effect transistorpintaplasmonitCarbon nanotube quantum dotplasmoniOptoelectronicsField-effect transistorbusinessnanotube devicesLocalized surface plasmon
researchProduct

Field-induced nanolithography for high-throughput pattern transfer.

2009

Electromagnetic fieldMaterials scienceField (physics)NanotechnologyGeneral ChemistryDielectrophoresisNanostructuresBiomaterialsNanolithographyElectromagnetic FieldsQuantum dotQuantum DotsNanotechnologyGeneral Materials ScienceThroughput (business)BiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Method for finding the critical temperature of the island in a SET structure

2008

We present a method to measure the critical temperature of the island of a superconducting single electron transistor. The method is based on a sharp change in the slope of the zero-bias conductance as a function of temperature. We have used this method to determine the superconducting phase transition temperature of the Nb island of an superconducting single electron transistor with Al leads. We obtain $T_\mathrm{c}^\mathrm{Nb}$ as high as 8.5 K and gap energies up to $\Delta_\mathrm{Nb}\simeq 1.45$ meV. By looking at the zero bias conductance as a function of magnetic field instead of temperature, also the critical field of the island can be determined. Using the orthodox theory, we have …

SuperconductivityHistoryPhysics - Instrumentation and DetectorsMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsBand gapTransition temperatureFOS: Physical sciencesCoulomb blockadeInstrumentation and Detectors (physics.ins-det)ElectronAtmospheric temperature rangeComputer Science ApplicationsEducationMagnetic fieldMesoscale and Nanoscale Physics (cond-mat.mes-hall)Critical fieldJournal of Physics: Conference Series
researchProduct

Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers

2019

Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment …

Materials sciencePhysics::Optics02 engineering and technologyFano planeresonanssioptiset ominaisuudet01 natural sciencesLight scattering010309 opticsRhodamine 6Gchemistry.chemical_compoundsymbols.namesakeOptics0103 physical sciencessirontaPlasmonQuantitative Biology::Biomoleculesbusiness.industryScatteringfood and beveragesFano resonance021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsoligomeerichemistrysymbolsOptoelectronicsplasmonic oligomersvalokemia0210 nano-technologybusinessRaman spectroscopyExcitationOptics Express
researchProduct

Dielectrophoretic trapping of DNA origami.

2008

In this thesis three-dimensional tube-shaped DNA-origamis were dielectrophoretically trapped within lithographically fabricated nanoelectrodes. The origamis had been premade while the electrodes were fabricated specifically for these experiments with two different gapsizes, 150 nm and 400 nm. The aim of the work was to capture individual nanotubes in the gap between the electrodes by utilizing the dielectrophoretic forces present in the structure when a solution containing the origamis was put onto the electrodes and a voltage was applied. It was observed during the experiments that the success of the dielectrophoretic trapping depended strongly on the trapping conditions. This caused the t…

ElectrophoresisMaterials scienceMacromolecular SubstancesSurface PropertiesMolecular ConformationNanotechnologyGeneral ChemistryTrappingMaterials testingDNADielectrophoresisMolecular conformationNanostructuresBiomaterialsElectromagnetic FieldsElectrodeMaterials TestingDNA origamiNanotechnologyGeneral Materials ScienceParticle SizeCrystallizationBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Effect of molecular Stokes shift on polariton dynamics

2021

When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …

010304 chemical physicsScatteringRelaxation (NMR)Physics::OpticsGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciencesMolecular physics0104 chemical sciencessymbols.namesakeMolecular dynamicsMolecular vibrationStokes shift0103 physical sciencesPolaritonsymbolsRadiative transferPhysical and Theoretical ChemistryExcitationThe Journal of Chemical Physics
researchProduct

Numerical study on the limit of quasi-static approximation for plasmonic nanosphere

2019

Plasmonic nanospheres are often employed as resonant substrates in many nanophotonic applications, like in enhanced spectroscopy, near-field microscopy, photovoltaics, and sensing. Accurate calculation and tuning of optical responses of such nanospheres are essential to achieve optimal performance. Mie theory is widely used to calculate optical properties of spherical particles. Although, an approximated version of Mie approach, the quasi-static approximation (QSA) can also be used to determine the very same properties of those spheres with a lot simpler formulations. In this work, we report our numerical study on the limit and accuracy of QSA with respect to the rigorous Mie approach. We c…

PhysicsScatteringMie scatteringNanophotonicsPhysics::Opticsoptiset ominaisuudetResonance (particle physics)Computational physicstiiviin aineen fysiikkaplasmonitError functionQuasistatic approximationcondensed matter physicsSPHERESnanohiukkasetPlasmon
researchProduct

Characterisation of Cooper pair boxes for quantum computing

2001

We have measured and characterised superconducting single Cooper pair boxes (SCB) using superconducting single electron transistor (SET) fabricated on the same chip as an electrometer. The electrometer is sensitive to the potential changes of the SCB island and thus measures the number of excess Cooper pairs on the island. The boxes were of the Al/AlOx/Al Josephson junction type. The SCB and SET were characterised separately and the box storage performance for Cooper pairs was analysed by observing the changes in the SCB island potential while sweeping the gate voltage.

SuperconductivityJosephson effectPhysicsCondensed matter physicsEnergy Engineering and Power TechnologyCoulomb blockadeElectrometerCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum dotElectrical and Electronic EngineeringCooper pairQuantum tunnellingQuantum computerPhysica C: Superconductivity
researchProduct

Modeling optical constants from the absorption of organic thin films using a modified Lorentz oscillator model

2022

Optical constants of organic thin films can be evaluated using the Lorentz oscillator model (LOM) which fails to fit inhomogeneously broadened absorption of highly concentrated molecular films. In modified LOM (MLOM), the inhomogeneous broadening is implemented through a frequency-dependent adjustable broadening function. In this work, we evaluate the optical constants of rhodamine 6G doped poly-vinyl alcohol thin films with varying doping concentration (including also extensively high concentrations) using MLOM, which outperforms LOM by showing a better agreement with the experimental results. Our proposed method provides a way to accurately determine optical constants of isotropic organic…

mallintaminenLIMITATIONSväriaineetDIELECTRIC FUNCTIONdouppaus (puolijohdetekniikka)116 Chemical sciencesDIANHYDRIDEohutkalvotoptiset ominaisuudetpolymeeritElectronic Optical and Magnetic Materials
researchProduct

Measuring optical anisotropy in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films with added graphene

2015

Abstract Graphene is a 2D nanomaterial having a great potential for applications in electronics and optoelectronics. Composites of graphene with conducting polymers have shown high performance in practical devices and their solution-processability enables low-cost and high-throughput mass manufacturing using printing techniques. Here we measure the effect of incorporation of graphene into poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to the optical anisotropy, absorbance and conductivity of the film. Uniaxial anisotropy in PEDOT:PSS films has been thought to be caused by the spin-coating process used in fabrication. We have characterized spray- and spin-coated films …

spectroscopyMaterials scienceFabricationspektroskopiananomateriaalitNanotechnologyanisotropyNanomaterialslaw.inventionBiomaterialsPSS [PEDOT]PEDOT:PSSEllipsometrylawMaterials ChemistrygrafeeniPEDOT:PSSconducting polymerElectrical and Electronic EngineeringAnisotropyConductive polymerta114kalvot (tekniikka)business.industryGraphenegraphene222 Other engineering and technologiesGeneral ChemistryoptoelektroniikkaCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhotonicsbusiness
researchProduct

Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations

2019

When photoactive molecules interact strongly with confined light modes in optical cavities, new hybrid light–matter states form. They are known as polaritons and correspond to coherent superpositions of excitations of the molecules and of the cavity photon. The polariton energies and thus potential energy surfaces are changed with respect to the bare molecules, such that polariton formation is considered a promising paradigm for controlling photochemical reactions. To effectively manipulate photochemistry with confined light, the molecules need to remain in the polaritonic state long enough for the reaction on the modified potential energy surface to take place. To understand what determine…

LetterPhotonPhysics::Optics02 engineering and technologyMolecular dynamics01 natural sciencesMolecular physicsSpectral lineMolecular dynamics0103 physical sciencesPolaritonmolekyylidynamiikkaMultiscale modelingGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicspolaritonitRelaxation (NMR)Físicamolecular dynamics simulations021001 nanoscience & nanotechnologyPotential energyPotential energy surfacevalokemiaPolariton Relaxation0210 nano-technologyExcitationpolaritonsThe Journal of Physical Chemistry Letters
researchProduct

Metallic Nanostructures Based on DNA Nanoshapes

2016

Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbit…

NanostructureMaterials scienceFabricationGeneral Chemical EngineeringeducationNanotechnologyReview02 engineering and technology010402 general chemistry01 natural sciencesmetallizationplasmonicslcsh:ChemistrynanoelectronicsDNA nanotechnologyDNA origamiGeneral Materials ScienceDNA nanotechnologyLithographyPlasmonnanoelektroniikkaPhysicsnanoparticleself-assembly021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesChemistrylcsh:QD1-999NanoelectronicsSelf-assemblyDNA origami0210 nano-technologyBiotechnology
researchProduct

Self-Assembled DNA-Based Structures for Nanoelectronics

2023

Recent developments in structural DNA nanotechnology have made com-plex and spatially exactly controlled self-assembled DNA nanoarchitectureswidely accessible. The available methods enable large variety of differ-ent possible shapes combined with the possibility of using DNA structuresas templates for high-resolution patterning of nano-objects, thus openingup various opportunities for diverse nanotechnological applications. TheseDNA motifs possess enormous possibilities to be exploited in realization ofmolecular scale sensors and electronic devices, and thus, could enable fur-ther miniaturization of electronics. However, there are arguably two mainissues on making use of DNA-based electroni…

chemistry.chemical_compoundMaterials scienceDna nanostructureschemistryNanoelectronicslawNanoparticleNanotechnologyCarbon nanotubeSelf-assemblyDNASelf assembledlaw.inventionJournal of Self Assembly and Molecular Electronics
researchProduct

Trapping of 27 bp–8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis

2006

Dielectrophoretic trapping of six different DNA fragments, sizes varying from the 27 to 8416 bp, has been studied using confocal microscopy. The effect of the DNA length and the size of the constriction between nanoscale fingertip electrodes on the trapping efficiency have been investigated. Using finite element method simulations in conjunction with the analysis of the experimental data, the polarizabilities of the different size DNA fragments have been calculated for different frequencies. Also the immobilization of trapped hexanethiol- and DTPA-modified 140 nm long DNA to the end of gold nanoelectrodes was experimentally quantified and the observations were supported by density functiona…

Materials scienceFOS: Physical sciencesBioengineeringTrappingCondensed Matter - Soft Condensed Matterlaw.inventionchemistry.chemical_compoundConfocal microscopylawGeneral Materials SciencePhysics - Biological PhysicsElectrical and Electronic EngineeringNanoscopic scalechemistry.chemical_classificationMechanical EngineeringBiomolecules (q-bio.BM)General ChemistryDielectrophoresisCondensed Matter - Other Condensed MatterQuantitative Biology - BiomoleculeschemistryBiological Physics (physics.bio-ph)Mechanics of MaterialsFOS: Biological sciencesElectrodeThiolBiophysicsSoft Condensed Matter (cond-mat.soft)Density functional theoryDNAOther Condensed Matter (cond-mat.other)Nanotechnology
researchProduct

Cooper-pair resonances and subgap Coulomb blockade in a superconducting single-electron transistor

2003

We have fabricated and measured superconducting single-electron transistors with Al leads and Nb islands. At bias voltages below the gap of Nb we observe clear signatures of resonant tunneling of Cooper pairs, and of Coulomb blockade of the subgap currents due to linewidth broadening of the energy levels in the superconducting density of states of Nb. The experimental results are in good agreement with numerical simulations.

PhysicsSuperconductivityCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityTransistorFOS: Physical sciencesCoulomb blockadeCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic Materialslaw.inventionSuperconductivity (cond-mat.supr-con)Laser linewidthlawCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Density of statesCooper pairQuantum tunnellingVoltage
researchProduct

Molecular coupling of light with plasmonic waveguides.

2007

We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the d…

DiffractionMaterials scienceFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciences7. Clean energyMicrometreOpticsPhysics - Chemical Physics0103 physical sciencesPolaritonPhysics::Chemical Physics010306 general physicsPlasmonChemical Physics (physics.chem-ph)business.industrySurface plasmonMolecular electronics021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and Optics0210 nano-technologybusinessExcitationOptics (physics.optics)Physics - OpticsOptics express
researchProduct

Turnstile behaviour of the Cooper-pair pump

2003

We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the ga…

PhysicsJosephson effectCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityPhase (waves)FOS: Physical sciencesBiasingCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsSuperconductivity (cond-mat.supr-con)TurnstileNode (physics)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)QuasiparticleGeneral Materials ScienceCooper pairDegeneracy (mathematics)
researchProduct

Connecting Berry's phase and the pumped charge in a Cooper pair pump

2003

The properties of the tunnelling-charging Hamiltonian of a Cooper pair pump are well understood in the regime of weak and intermediate Josephson coupling, i.e. when $E_{\mathrm{J}}\lesssim E_{\mathrm{C}}$. It is also known that Berry's phase is related to the pumped charge induced by the adiabatical variation of the eigenstates. We show explicitly that pumped charge in Cooper pair pump can be understood as a partial derivative of Berry's phase with respect to the phase difference $\phi$ across the array. The phase fluctuations always present in real experiments can also be taken into account, although only approximately. Thus the measurement of the pumped current gives reliable, yet indirec…

Phase differencePhysicsSuperconductivityCondensed Matter - SuperconductivityFOS: Physical sciencesObservableSuperconductivity (cond-mat.supr-con)symbols.namesakeQuantum mechanicssymbolsPartial derivativeCooper pairHamiltonian (quantum mechanics)Eigenvalues and eigenvectors
researchProduct

Decoherence in circuits of small Josephson junctions

2001

We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time $\tau_\phi$.

PhysicsJosephson effectQuantum decoherenceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingCondensed Matter - SuperconductivityFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQubitQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairQuantum computer
researchProduct

Vacuum Rabi splitting for surface plasmon polaritons and Rhodamine 6G molecules

2011

We report on strong coupling between surface-plasmon polaritons and Rhodamine 6G molecules at room temperature. As a reference to compare with, we first determine the dispersion curve of (uncoupled) surface plasmon polaritons on a 50 nm thick film of silver. Consequently, we determine the dispersion curve of surface plasmon polaritons strongly coupled to Rhodamine 6G molecules, which exhibits vacuum Rabi splitting. Depending on the Rhodamine 6G concentration, we find splitting energies between 0.05 eV and 0.13 eV.

Materials scienceta214Condensed matter physicsta114Surface plasmonta221educationtechnology industry and agriculturevacuum Rabi splittingdispersion curveMolecular physicsSurface plasmon polaritonRhodamine 6Gchemistry.chemical_compoundchemistrysurface plasmon polaritonDispersion (optics)strong couplingStrong couplingPolaritonMoleculeta218Localized surface plasmon
researchProduct

Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems

2022

The strong light–matter coupling regime, in which excitations of materials hybridize with excitations of confined light modes into polaritons, holds great promise in various areas of science and technology. A key aspect for all applications of polaritonic chemistry is the relaxation into the lower polaritonic states. Polariton relaxation is speculated to involve two separate processes: vibrationally assisted scattering (VAS) and radiative pumping (RP), but the driving forces underlying these two mechanisms are not fully understood. To provide mechanistic insights, we performed multiscale molecular dynamics simulations of tetracene molecules strongly coupled to the confined light modes of an…

kytkentäenergiavärähtelytcavitiesGeneral Materials SciencemoleculesmolekyylitPhysical and Theoretical Chemistryoscillationnonadiabatic couplingenergy
researchProduct

Characterization of Emergence of the Coulomb Blockade in a Pearl-Like DNA-AuNP Assembly

2023

Due to its superior self-assembly properties and vast functionalization pos-sibilities DNA has long been one of the most promising candidates forfabrication of nanoscale electrical components using molecular buildingblocks. There exist already many demonstrations on optical devices based onorganizing metallic nanoparticles (NP) via DNA self-assembly, but despite thepromises only few DNA based electrical devices or studies have been realizedso far. Here we study the gold NP conjugated and metallized DNA TX-tile-structure, which we recently showed to exhibit the room temperature Coulombblockade, the pre-requisition for a single electron transistor. The properties ofthe obtained Coulomb blocka…

Differential conductancechemistry.chemical_compoundMaterials sciencechemistryColloidal goldengineeringCoulomb blockadeNanotechnologyengineering.materialPearlDNACharacterization (materials science)Journal of Self Assembly and Molecular Electronics
researchProduct

Polariton response in the presence of Brownian dissipation from molecular vibrations

2020

We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed "zero-detuning" point. Using a rather generi…

Field (physics)ExcitonGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics010402 general chemistry01 natural sciencesMolecular physicsLaser linewidthmolecular vibrations0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PolaritonPhysical and Theoretical ChemistrykvanttifysiikkapolaritonitBrownian motionPhysicsQuantum Physics010304 chemical physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDissipationkvasihiukkaset0104 chemical sciences3. Good healthVibrationmolekyylifysiikkaMolecular vibrationQuantum Physics (quant-ph)
researchProduct

Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure

2016

DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However…

NanostructureMaterials scienceTransistors Electronicta221Metal NanoparticlesElectronsBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesnanoelectronicsNanobiotechnologyGeneral Materials ScienceA-DNAParticle Sizeta114Mechanical EngineeringTemperatureCoulomb blockadeDNA structureDNAGeneral ChemistryDielectrophoresis021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCharacterization (materials science)NanoelectronicsColloidal goldGold0210 nano-technologyDimerizationNano Letters
researchProduct

Arrays of Josephson junctions in an environment with vanishing impedance

1999

The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.

PhysicsJosephson effectCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySupercurrentFOS: Physical sciencesCoulomb blockadeHardware_PERFORMANCEANDRELIABILITYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionCondensed Matter::SuperconductivityQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITSCooper pairElectrical impedanceQuantum tunnellingHardware_LOGICDESIGNVoltagePhysical Review B
researchProduct

Constructing Large 2D Lattices Out of DNA-Tiles.

2021

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precis…

Process (engineering)Computer sciencePharmaceutical ScienceNanotechnologynanotekniikkaReviewhierarchyAnalytical Chemistrylcsh:QD241-441DNA self-assemblychemistry.chemical_compoundlcsh:Organic chemistryDna nanostructuresnanorakenteetLattice (order)Drug DiscoveryDNA nanotechnologyDNA origamiNanotechnologyDNA nanotechnologyPhysical and Theoretical ChemistrylatticeScale (chemistry)Organic ChemistryDNANanostructureschemistryChemistry (miscellaneous)visual_artvisual_art.visual_art_mediumMolecular MedicinelithographyTileDNA origamicomplexityDNAMolecules (Basel, Switzerland)
researchProduct

Coulomb blockade-based nanothermometry in strong magnetic fields

1998

We have performed experiments to test for the susceptibility to strong magnetic fields of electron tunneling in normal metal -based nanostructures for Coulomb blockade primary thermometry. We have confirmed that, to within our accuracy of about ±1%, the single electron charging -induced zero bias differential resistance maximum is unaffected by the field up to 23 T at temperatures of 0.4–4.2 K. We discuss the simple theoretical basis of this immunity. We also report on the practical limitation at low temperatures imposed by superconductivity of aluminium in small magnetic fields.

PhysicsSuperconductivitychemistryField (physics)Condensed matter physicsAluminiumGeneral Physics and AstronomyCoulomb blockadechemistry.chemical_elementCryogenicsTemperature measurementQuantum tunnellingMagnetic field
researchProduct

Dielectrophoresis as a tool for nanoscale DNA manipulation

2005

The use of the dielectrophoresis as a tool for DNA manipulation is demonstrated experimentally, using both unmodified 48,500 base pairs long bacteriophage lambda dsDNA (λ-DNA), ∼16 μm in length and 414 base pairs long thiol modified natural dsDNA (avDNA), ∼140 nm in length. We show that both the dsDNA types used, are effectively directed between the planar gold electrodes by the positive dielectrophoresis while applying an AC voltage at frequencies between 500 kHz and 1 MHz. With high concentrations of dsDNA in buffer the attached dsDNA molecules are shown to form bundles or clumps (both λ-DNA and avDNA). Furthermore, we demonstrate the attaching of a single avDNA molecule to an electrode v…

chemistry.chemical_classificationNanostructurebusiness.industryBase pairBiomoleculeAnalytical chemistryBioengineeringDielectrophoresisCondensed Matter PhysicschemistryOptical tweezersElectric fieldElectrodeMaterials ChemistryOptoelectronicsElectrical and Electronic EngineeringbusinessNanoscopic scale
researchProduct

Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide

2015

DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…

ElectrophoresisMaterials scienceNanostructureSilicon dioxideta221educationClinical BiochemistryImmobilized Nucleic AcidsNanotechnology02 engineering and technologyDNA nanostructuresSubstrate (electronics)Microscopy Atomic Force01 natural sciencesBiochemistryAnalytical Chemistrychemistry.chemical_compoundHoneycombNanotechnologyDNA origamiDNA nanotechnologynanomanipulationElectrical measurementsSulfhydryl CompoundsElectrodesta218dielectrophoresista214ta114Physics010401 analytical chemistryElectric ConductivityDNAEquipment DesignDielectrophoresis021001 nanoscience & nanotechnologySilicon Dioxide0104 chemical sciencesNanostructuresChemistryNanolithographychemistryElectrical engineeringelectrical propertiesnanofabricationGold0210 nano-technologyBiotechnologyELECTROPHORESIS
researchProduct

Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system.

2013

In this article we experimentally demonstrate the strong coupling between surface plasmon polaritons (SPP) and the S(2) state of β-carotene. The SPPs are excited by prism coupling technique on a thin silver film with β-carotene embedded in a polymer layer on top of that. Rabi splittings with energies 80 and 130 meV are observed in the recorded dispersion relations. Both coupled oscillator model and transfer matrix method are used to fit the experimental results. The scattered radiation of the propagating strongly coupled SPP-S(2) hybrids is collected and an increase of the low energy splitting to 120 meV is observed compared to the reflectivity data. In addition, we performed molecule excit…

Materials scienceta114Surface plasmonta1182Analytical chemistryPhysics::OpticsGeneral Physics and AstronomySurface Plasmon Resonancebeta CaroteneMolecular physicsSurface plasmon polaritonNanostructuressymbols.namesakeCoupling (physics)Excited statesymbolsPolaritonNanotechnologyPhysical and Theoretical ChemistryRaman spectroscopyRaman scatteringLocalized surface plasmonThe Journal of chemical physics
researchProduct

Adiabatic transport of Cooper pairs in arrays of Josephson junctions

1999

We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurrent flow through the array. Both corrections decrease exponentially with the number N of junctions in the array, but give a serious limitation of accuracy for any practical array. The supercurrent at resonant gate voltages decreases with N only as sin(v/N)/N, where v is the Josephson phase difference across the array.

Josephson effectPhysicsCondensed Matter::Quantum GasesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySupercurrentFOS: Physical sciencesCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairAdiabatic processQuantum tunnelling
researchProduct

Carbon nanotubes as electrodes for dielectrophoresis of DNA

2006

Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube electrodes and lithographically fabricated metallic electrodes, in the case of trapping nanoscale DNA molecules. The results are analyzed using finite element method simulations and reveal information abou…

ElectrophoresisMaterials scienceFabricationFOS: Physical sciencesBioengineeringNanotechnologyCarbon nanotubeTrappingCondensed Matter - Soft Condensed MatterMicroscopy Atomic Forcelaw.inventionPolarizabilitylawMoleculeGeneral Materials SciencePhysics - Biological PhysicsNanoscopic scaleNanotubes CarbonMechanical EngineeringBiomolecules (q-bio.BM)General ChemistryDNADielectrophoresisCondensed Matter PhysicsQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)FOS: Biological sciencesElectrodeMicroscopy Electron ScanningSoft Condensed Matter (cond-mat.soft)Microelectrodes
researchProduct

Synergistic enhancement via plasmonic nanoplate-bacteria-nanorod supercrystals for highly efficient SERS sensing of food-borne bacteria

2017

Bio-sensing techniques utilizing metallic nanoparticles as a probe have gained more and more attention and play today an important role in the detection of bacteria. To date, although several sensing materials have been tested, there is still a long way to go to achieve a fast, low-cost, ultrasensitive and multifunctional substrate suitable for a universal biosensor for detection of bacterial cells. Here, we report a novel probe design based on anisotropic plasmonic nanoparticles organized to a biocompatible 3D bio-inorganic scaffold, i.e., nanoplate-bacteria-nanorod supercrystals (NBNS) with extremely high surface-enhanced Raman spectroscopic (SERS) activity as a model of synergistic plasm…

assemblyMaterials scienceta221NanoparticleNanotechnology02 engineering and technologyrecognition of microbes010402 general chemistry01 natural sciencesBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologybakteeritsymbols.namesakeNanoteknologia - NanotechnologyMaterials ChemistryKemia - Chemical sciencesElectrical and Electronic EngineeringbacteriaInstrumentationPlasmonPlasmonic nanoparticlesmikrobien tunnistaminenta114SERSMetals and AlloysSubstrate (chemistry)021001 nanoscience & nanotechnologyCondensed Matter Physicschemometrics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsasymmetric nanoparticlessymbolsnanoparticlesNanorodnanopartikkelit0210 nano-technologyRaman spectroscopyBiosensorRaman scattering
researchProduct

One-step large-scale deposition of salt-free DNA origami nanostructures

2015

AbstractDNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be …

FabricationMaterials scienceNanostructureta221educationNanotechnologySubstrate (electronics)DNA nanostructuresArticleDeposition (phase transition)DNA origamiDNA nanotechnologyBiochipNanoscopic scaleMultidisciplinaryta114PhysicsDNAself-assembly113 Computer and information sciencesMaterials scienceNanostructuresChemistryspray-coatingNanolithographySaltsDNA origamiDNA origamisBiotechnology
researchProduct

A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field.

2018

Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spect…

Materials scienceta221Immobilized Nucleic AcidsPhysics::OpticsNanoparticleDNA Single-StrandedMetal NanoparticlesNanotechnology02 engineering and technology010402 general chemistrySpectrum Analysis Raman01 natural sciencesnanobiotechnologyBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologyNanoteknologia - NanotechnologyElectricityElectric fieldGeneral Materials ScienceBiotinylationSurface plasmon resonanceSpectroscopyQuantitative Biology::Biomoleculesta114Optical ImagingnanobiotekniikkaDNASurface Plasmon Resonance021001 nanoscience & nanotechnologyAvidin0104 chemical sciencesNanostructuresColloidal goldNucleic Acid ConformationnanohiukkasetnanoparticlesGold0210 nano-technologyActuatorBiosensorVoltageNanoscale
researchProduct

Custom-shaped metal nanostructures based on DNA origami silhouettes.

2015

The DNA origami technique provides an intriguing possibility to develop customized nanostructures for various bionanotechnological purposes. One target is to create tailored bottom-up-based plasmonic devices and metamaterials based on DNA metallization or controlled attachment of nanoparticles to the DNA designs. In this article, we demonstrate an alternative approach: DNA origami nanoshapes can be utilized in creating accurate, uniform and entirely metallic (e.g. gold, silver and copper) nanostructures on silicon substrates. The technique is based on developing silhouettes of the origamis in the grown silicon dioxide layer, and subsequently using this layer as a mask for further patterning…

NanostructureMaterials scienceFabricationSilverSiliconmetallic nanostructuresSilicon dioxideeducationta221ta220chemistry.chemical_elementMetal NanoparticlesNanotechnologymetallizationplasmonicschemistry.chemical_compoundDNA origamiDNA nanotechnologyGeneral Materials Scienceta216ta215PlasmonPhysicsMetamaterialself-assemblyDNASilicon DioxideMaterials scienceChemistrychemistryDNA origamiGoldLayer (electronics)CopperBiotechnologyNanoscale
researchProduct

Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

2012

Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the inte…

Materials scienceta221FOS: Physical sciencesPhysics::OpticsWaveguide (optics)Electric Power SuppliesSolar EnergyTransmittanceScattering RadiationComputer SimulationPlasmonic nanoparticlesta114business.industryHigh-refractive-index polymertechnology industry and agricultureMembranes ArtificialEquipment DesignSurface Plasmon ResonanceAtomic and Molecular Physics and OpticsCoupling (electronics)RefractometryComputer-Aided DesignNanoparticlesOptoelectronicsQuantum efficiencybusinessRefractive indexPhysics - OpticsOptics (physics.optics)Localized surface plasmonOptics Express
researchProduct

Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy.

2009

Materials scienceSpectrum AnalysisConductanceMolecular electronicsNanotechnologyGeneral ChemistryDNADielectrophoresisMicroscopy Atomic ForceCharacterization (materials science)Dielectric spectroscopyBiomaterialsMicroscopyDNA origamiGeneral Materials ScienceSelf-assemblyBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

DNA-Assisted Molecular Lithography

2018

During the past decade, DNA origami has become a popular method to build custom two- (2D) and three-dimensional (3D) DNA nanostructures. These programmable structures could further serve as templates for accurate nanoscale patterning, and therefore they could find uses in various biotechnological applications. However, to transfer the spatial information of DNA origami to metal nanostructures has been limited to either direct nanoparticle-based patterning or chemical growth of metallic seed particles that are attached to the DNA objects. Here, we present an alternative way by combining DNA origami with conventional lithography techniques. With this DNA-assisted lithography (DALI) method, we…

Materials scienceNanoparticleNanotechnology02 engineering and technologySubstrate (printing)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesTemplateDNA nanotechnologyDNA origamiSelf-assembly0210 nano-technologyLithographyPlasmon
researchProduct

Plasmonic nanostructures through DNA-assisted lithography

2018

DALI combines DNA origami with conventional top-down fabrication for creating designer high-resolution plasmonic nanostructures.

TechnologyMaterials scienceFabricationmaterials scienceta221ta220Nanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencesplasmonicssymbols.namesakenanorakenteetnanostructuresDNA origamiDNA nanotechnologyComputer SimulationnanolithographyLithographyNanoscopic scaleResearch ArticlesPlasmonMultidisciplinaryta114PhysicsSciAdv r-articlesMetamaterialself-assemblyDNA021001 nanoscience & nanotechnologyoptics0104 chemical sciencesChemistryTemplateApplied Sciences and EngineeringsymbolsNucleic Acid ConformationPrintingDNA origami0210 nano-technologyRaman spectroscopyBiotechnologyResearch Article
researchProduct

Characterisation of Cooper Pair Boxes for Quantum Bits

2001

We have fabricated and measured single Cooper pair boxes (SCB) using superconducting single electron transistors (SET) as electrometers. The box storage performance for Cooper pairs was measured by observing the changes in the SCB island potential. We are also fabricating niobium structures, which are expected to have less problems with quasiparticle contamination than similar aluminium based devices because of the high critical temperature. The use of niobium may also reduce decoherence and thereby increase the time available for quantum logic operations.

PhysicsSuperconductivityQuantum decoherenceCondensed matter physicsTransistorNiobiumchemistry.chemical_elementCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum logiclaw.inventionchemistrylawCondensed Matter::SuperconductivityQubitQuasiparticleCooper pair
researchProduct

Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry.

2017

When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model wi…

PhotonPhysics::Optics02 engineering and technology01 natural sciencesQM/MMquantum chemistryMolecular dynamicsQuantum mechanics0103 physical sciencesPolaritonkvanttikemiaMoleculemolekyylidynamiikkaPhysical and Theoretical Chemistrycavity QEDQuantumta116Plasmonexcited states010304 chemical physicsta114ChemistrySurface plasmon021001 nanoscience & nanotechnologymolecular dynamicsComputer Science ApplicationsCoupling (physics)Chemical physicsstrong light-matter couplingpolariton0210 nano-technologyJournal of chemical theory and computation
researchProduct

Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye

2011

We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilaye…

Materials scienceNanochemistryPhysics::Opticsdispersion curve02 engineering and technology01 natural sciencesMolecular physicschemistry.chemical_compoundOpticsMaterials Science(all)Dispersion relationstrong coupling0103 physical sciencesDispersion (optics)General Materials Science010306 general physicsReflectometryRabi splittingNano Expressbusiness.industrySulforhodamine 101Surface plasmon021001 nanoscience & nanotechnologySulforhodamine 101Condensed Matter PhysicsSurface plasmon polariton3. Good healthchemistrysurface plasmon polariton0210 nano-technologybusinessLocalized surface plasmonNanoscale Research Letters
researchProduct

Surface Characteristics Control the Attachment and Functionality of (Chimeric) Avidin

2018

The physical adsorption (physisorption) of proteins to surfaces is an important but incompletely understood factor in many biological processes and is of increasing significance in bionanotechnology as well. Avidin is an important protein because of strong avidin–biotin binding, which has been exploited in numerous applications. We have undertaken thorough experimentation on the physisorption of avidin, to chemically different flat surfaces of Si and graphite and also to the curved version of the latter, on multiwalled carbon nanotubes (MWNTs) of different diameters. The difference in the behavior of avidin on Si versus graphite is drastic; on Si, avidin deposits as single globular tetramer…

Surface (mathematics)kolloidit02 engineering and technologyemulsions010402 general chemistry01 natural sciencessurfactantsinterface componentsAdsorptionPhysisorptioncolloidsElectrochemistryKemia - Chemical sciencesGeneral Materials SciencepolymeeritpolymersemulsiotSpectroscopyta114biologyChemistrySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter Physicsproteins0104 chemical sciencesbiology.proteinBiophysicsnanoparticlesnanohiukkasetproteiinit0210 nano-technologyAvidinLangmuir
researchProduct

SERS detection of cell surface and intracellular components of microorganisms using nano-aggregated Ag substrate

2016

Abstract The intracellular and cell surface composition and structural features of gram-positive and gram-negative bacteria were identified using near-infrared surface-enhanced Raman scattering (SERS). The structural differences of components that reside in the cell envelope are manifested by their SERS spectra, e.g. gram-negative vs. gram-positive. Silver particles were used as a SERS substrate by exploiting the existence of strong local electromagnetic fields (hot spots) within nanoscale aggregates of the particles. The aggregation of silver nanoparticles was induced by magnesium ions. These hot spots reduce the screening length of the double layer. The obtained SERS spectra showed excell…

ta221Analytical chemistry02 engineering and technology01 natural sciencesSilver nanoparticleBacterial cell structuresymbols.namesaken-acetyl-D-glucosamine (NAG)bacteriaMagnesium ionSpectroscopyn-acetylmuramic acid (NAM)Double layer (biology)ChemistrySERS010401 analytical chemistrySubstrate (chemistry)silver nano-aggregates021001 nanoscience & nanotechnology0104 chemical sciencessymbolsBiophysicsCell envelope0210 nano-technologyRaman scatteringIntracellularVibrational Spectroscopy
researchProduct

Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection

2019

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…

AnalyteMaterials scienceta221Molecular bindingMetal NanoparticlesNanoparticleBioengineering02 engineering and technologybiosensorit01 natural sciencesSensor arrayLimit of DetectionNanosensorplasmonic arrayNanotechnologyLSPR sensingSurface plasmon resonanceDNA FungalInstrumentationPlasmonCandidaDNA detectionFluid Flow and Transfer ProcessesPlasmonic nanoparticlesBase Sequenceta114business.industryProcess Chemistry and Technology010401 analytical chemistryta1182Fourier-transform-imaging spectroscopynanobiotekniikkaDNASurface Plasmon Resonance021001 nanoscience & nanotechnologyplasmonic nanoparticles0104 chemical sciencesAspergillusOptoelectronicsnanohiukkasetGoldDNA Probes0210 nano-technologybusinessACS Sensors
researchProduct

Nanolithography: Small 23/2009

2009

BiomaterialsNanolithographyMaterials scienceGeneral Materials ScienceNanotechnologyGeneral ChemistryBiotechnologySmall
researchProduct

DNA-Based Enzyme Reactors and Systems

2016

During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular…

DNA sensorsGeneral Chemical EngineeringeducationNanotechnologyDNA nanodevice02 engineering and technologyReviewBiology010402 general chemistry01 natural scienceslcsh:Chemistrychemistry.chemical_compoundDna nanostructuresDNA nanotechnologyDNA origamiGeneral Materials ScienceDNA nanotechnologychemistry.chemical_classificationPhysicsfood and beveragesself-assemblycascade reactions021001 nanoscience & nanotechnologyBiocompatible materialnanolääketiedenanomedicineDrug-deliveryMaterials science0104 chemical sciencesdrug-deliveryChemistryenzymeEnzymechemistrylcsh:QD1-999drug deliveryNanomedicineDNA origami0210 nano-technologyDNABiotechnologyNanomaterials
researchProduct

Frequency conversion of propagating surface plasmon polaritons by organic molecules

2008

We demonstrate frequency conversion of surface plasmon polaritons (SPP) by utilizing the coupling between organic dye molecules and SPP. Launching of SPPs into a plasmonic waveguide is done in two ways: by optically excited molecules and by quantum dots (QDs). QDs are demonstrated to overcome the major problem of bleaching occurring with molecules. The SPP propagates tens of micrometers and clear frequency conversion is observed in the SPP spectrum after passing an area of converter molecules. The use of molecules and QDs as elements of all-plasmonic devices has the potential for high integration and use of self-assembly in fabrication. Peer reviewed

CouplingFabricationMaterials sciencePhysics and Astronomy (miscellaneous)business.industryoptical frequency conversionsurface plasmonsSurface plasmontechnology industry and agriculturePhysics::Opticsequipment and suppliesoptical waveguidesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectdyesSurface plasmon polaritonintegrated opticsQuantum dotExcited statePolaritonMoleculeOptoelectronicsPhysics::Chemical Physicsbusinessoptical saturable absorptionpolaritonsApplied Physics Letters
researchProduct

Influence of Nitrogen Doping on Device Operation for TiO 2 -Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

2016

International audience; Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO 2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal o…

Materials scienceGeneral Chemical EngineeringKineticsta221Oxide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylcsh:Chemistrychemistry.chemical_compoundX-ray photoelectron spectroscopyphoto-responseTiO2General Materials Sciencespiro-OMeTADDopantta114business.industryDopingsolid-state dye-sensitized solar cells; TiO<sub>2</sub>; nitrogen doping; photo-physics; photo-response; spiro-OMeTADnitrogen doping[CHIM.MATE]Chemical Sciences/Material chemistrysolid-state dye-sensitized solar cells021001 nanoscience & nanotechnology0104 chemical sciencesDye-sensitized solar celllcsh:QD1-999chemistrySpiro-OMeTADElectrodeOptoelectronicsCharge carrier0210 nano-technologybusinessphoto-physicsTiO 2
researchProduct

Coherent Light Harvesting through Strong Coupling to Confined Light

2018

When photoactive molecules interact strongly with confined light modes, new hybrid light–matter states may form: the polaritons. These polaritons are coherent superpositions of excitations of the molecules and of the cavity photon. Recently, polaritons were shown to mediate energy transfer between chromophores at distances beyond the Forster limit. Here we explore the potential of strong coupling for light-harvesting applications by means of atomistic molecular dynamics simulations of mixtures of photoreactive and non-photo-reactive molecules strongly coupled to a single confined light mode. These molecules are spatially separated and present at different concentrations. Our simulations sug…

Physicsconfined lightPhotonLetterta114010405 organic chemistryChromophore010402 general chemistry7. Clean energy01 natural sciences0104 chemical sciencesDelocalized electronMolecular dynamicscoherent light harvestingChemical physicsstrong couplingPolaritonStrong couplingMoleculeGeneral Materials SciencevalokemiaPhysical and Theoretical ChemistryPhysics::Chemical Physicsta116ExcitationJournal of Physical Chemistry Letters
researchProduct

Core–Shell Nanorod Columnar Array Combined with Gold Nanoplate–Nanosphere Assemblies Enable Powerful In Situ SERS Detection of Bacteria

2016

Development of a label-free ultrasensitive nanosensor for detection of bacteria is presented. Sensitive assay for Gram-positive bacteria was achieved via electrostatic attraction-guided plasmonic bifacial superstructure/bacteria/columnar array assembled in one step. Dynamic optical hotspots were formed in the hybridized nanoassembly under wet-dry critical state amplifying efficiently the weak vibrational modes of three representative food-borne Gram-positive bacteria, that is, Staphylococcus xylosus, Listeria monocytogenes, and Enterococcus faecium. These three bacteria with highly analogous Raman spectra can be effectively differentiated through droplet wet-dry critical SERS approach combi…

In situMaterials scienceGram-positive bacteriata221Nanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencessymbols.namesakeNanosensorGeneral Materials Scienceta318PlasmonNanotubesbiology3D PCASERSStaphylococcus xylosusGram-positive bacteria021001 nanoscience & nanotechnologybiology.organism_classificationListeria monocytogenesnanoarray0104 chemical sciencessymbolsNanorodGoldsuperstructure0210 nano-technologyRaman spectroscopyNanospheresBacteriaACS Applied Materials and Interfaces
researchProduct

Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules

2009

We report on strong coupling between surface plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lith…

Waveguide (electromagnetism)Rabi cyclesurface plasmonFOS: Physical sciencesPhysics::OpticsGeneral Physics and Astronomy02 engineering and technology01 natural sciencesMolecular physicsRhodamine 6Gchemistry.chemical_compoundstrong coupling0103 physical sciencesPolariton010306 general physicsReflectometryCondensed Matter::Quantum GasesPhysicsCondensed matter physicsSurface plasmonCavity quantum electrodynamicsdynamics021001 nanoscience & nanotechnologySurface plasmon polariton3. Good healthchemistrypolariton0210 nano-technologyPhysics - OpticsOptics (physics.optics)Physical Review Letters
researchProduct

Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules.

2011

We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.

Bridging (networking)Sensing applicationsFOS: Physical sciencesNanotechnology02 engineering and technologyDNA-Directed DNA PolymeraseCondensed Matter - Soft Condensed Matter03 medical and health sciencesMoleculeNanotechnologyGeneral Materials SciencePhysics - Biological PhysicsElectrodesPolymerase030304 developmental biologyDNA PrimersFluorescent Dyes0303 health sciencesbiologyImmobilized DNAta114OligonucleotideChemistryta1182Molecular electronicsDNA021001 nanoscience & nanotechnologyCondensed Matter - Other Condensed MatterBiological Physics (physics.bio-ph)Electrodebiology.proteinSoft Condensed Matter (cond-mat.soft)Gold0210 nano-technologyNucleic Acid Amplification TechniquesOther Condensed Matter (cond-mat.other)Nanoscale
researchProduct

Creation of ordered 3D tubes out of DNA origami lattices

2023

Funding Information: Funding from the Jane and Aatos Erkko Foundation (J.J.T. and A.K./M.V.-R.) and the Academy of Finland (#330584 and #350797 J.J.T./#308992 A.K. and A.K.N./#330896 M.V.-R.) is gratefully acknowledged. The authors also acknowledge the provision of facilities and technical support by Aalto University at OtaNano - Nanomicroscopy Center (Aalto-NMC). Publisher Copyright: © 2023 The Royal Society of Chemistry. Hierarchical self-assembly of nanostructures with addressable complexity has been a promising route for realizing novel functional materials. Traditionally, the fabrication of such structures on a large scale has been achievable using top-down methods but with the cost of…

nanorakenteetGeneral Materials ScienceDNAtoiminnalliset materiaalitNanoscale
researchProduct

Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol over…

2016

AbstractA straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E…

Immobilized enzymeBiofoulingSurface PropertiesBiotin02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesBacterial AdhesionArticleOverlayerPolyethylene GlycolsBiofoulingchemistry.chemical_compoundLääketieteen bioteknologia - Medical biotechnologybiofunctionalitystainless steelMultidisciplinarySilanesbiologyta114Fysiikka - Physical sciences221 Nanotechnologytechnology industry and agriculture217 Medical engineeringSilanes021001 nanoscience & nanotechnologyAvidinSilane0104 chemical scienceschemistryChemical engineering216 Materials engineeringBiotinylationbiology.proteinruostumaton teräs3111 Biomedicine0210 nano-technologyHydrophobic and Hydrophilic InteractionsAvidinProtein BindingScientific Reports
researchProduct

Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode

2020

Carbon nanotubes can be utilized in several ways to enhance the performance of silicon-based anodes. In the present work, thermally carbonized mesoporous silicon (TCPSi) microparticles and single-walled carbon nanotubes (CNTs) are conjugated to create a hybrid material that performs as the Li-ion battery anode better than the physical mixture of TCPSi and CNTs. It is found out that the way the conjugation is done has an essential role in the performance of the anode. The conjugation should be made between negatively charged TCPSi and positively charged CNTs. Based on the electrochemical experiments it is concluded that the positive charges, i.e., excess amine groups of the hybrid material i…

energy science and technologyEnergy storageElectronic properties and materialspiibatteriesenergy storageEnergy science and technologyelektroditlcsh:RlitiumioniakutCarbon nanotubes and fullereneslcsh:MedicineArticleBatteriescarbon nanotubes and fullereneslcsh:Qelectronic properties and materialsnanoputketlcsh:SciencekomposiititScientific Reports
researchProduct

Fabrication-friendly polarization-sensitive plasmonic grating for optimal surface-enhanced Raman spectroscopy

2020

Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We des…

lcsh:Applied optics. Photonicssurface-enhanced Raman scatteringplasmonic gratingPhysics::OpticsPlasmonic gratinglcsh:TA1501-1820fill factorpintaplasmonitnanorakenteetFill factorplasmoniikkalcsh:QC350-467Surface-enhanced Raman scatteringPhysics::Atomic Physicslcsh:Optics. LightJournal of the European Optical Society-Rapid Publications
researchProduct