0000000000001620
AUTHOR
Serena Riela
ChemInform Abstract: Hydrophobically Directed Aldol Reactions: Polystyrene-Supported L-Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water.
A simple synthetic methodology for the preparation of a polystyrene-supported L-proline material is reported, and this material has been used as catalyst in direct asymmetric aldol reactions between several ketones and arylaldehydes to furnish aldol products in high yields and stereoselectivities. Screening of solvents showed that these reactions take place only in the presence of water or methanol, at lower levels of conversion in the latter case. This solvent effect, coupled with the observed high stereoselectivities, has been explained in terms of the formation of a hydrophobic core in the inner surface of the resin, whereas the hydrophilic proline moiety lies at the resin/water interfac…
L-prolinammide supportata su polistirene come organocatalizzatore altamente enantioselettivo nella reazione aldolica diretta
Host—Guest Interactions Involving Cyclodextrins: Useful Complementary Insights Achieved by Polarimetry.
Abstract By means of simple polarimetry, we studied the binding abilities of native α-, β-, and γ-cyclodextrins toward a group of suitably chosen model guests. We were able to get reliable estimations of the binding constants K, spread over a wide range (from 3.7 to 12,300 M−1), allowing us to carry on interesting comparisons. A comprehensive discussion of polarimetric data, and in particular a detailed analysis of the variations ΔΘ of molar optical activities consequent to inclusion, offered us the opportunity to get useful insights into the structure and dynamic behavior of host–guest complexes.
Study of Uptake Mechanisms of Halloysite Nanotubes in Different Cell Lines
Giuseppa Biddeci,1,2 Gaetano Spinelli,1 Marina Massaro,2 Serena Riela,2 Paola Bonaccorsi,3 Anna Barattucci,3 Francesco Di Blasi1 1Institute for Innovation and Biomedical Research (IRIB), CNR, Palermo, 90146, Italy; 2Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Sect. Chemistry, University of Palermo, Palermo, 90128, Italy; 3Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98158, ItalyCorrespondence: Francesco Di BlasiInstitute for Innovation and Biomedical Research (IRIB), CNR, Via Ugo La Malfa 153, Palermo, 90146, ItalyTel +39 0916809514Email francesco.diblasi@irib.cnr.itPurpose: Hal…
Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts
A thermo-responsive polymer such as poly(N-isopropylacrylamide) (PNIPAAM) was covalently grafted on the external surface of halloysite nanotubes (HNTs) by means of microwave irradiation. This nanomaterial was used as a support and stabilizer for palladium nanoparticles. The obtained HNT–PNIPAAM/PdNPs was characterized by means of TGA, SEM, EDS and TEM analyses. The palladium content of the catalyst was estimated to be 0.4 wt%. The stability of the catalytic material at different temperatures (below and above the PNIPAAM lower critical solution temperature) was tested in the Suzuki reaction under microwave irradiation. In addition, TEM analysis after five consecutive runs was performed. The …
Modification of halloysite lumen with dopamine derivatives as filler for antibiofilm coating
Hypothesis: Development of nanocomposite coating with antibiofilm properties is of fundamental importance to efficient fight biofilm formation preventing infections in biomedical area. In this context, halloysite nanotubes (HNTs), biocompatible and low-cost clay mineral, have been efficiently used as filler for different polymeric matrices affording several nanocomposites with appealing antimicrobial properties. The modification of HNTs surfaces represents a valuable strategy to improve the utilization of the clay for biological purposes. Experiments: Herein, the covalent modification of the HNTs lumen with properly designed dopamine derivatives with different perfluoroalkyl chain length is…
A joint experimental and ab initio study on the reactivity of several hydroxy selenides. Stereoselective synthesis of cis-disubstituted tetrahydrofurans via seleniranium ions
Abstract The reactivity of several hydroxy selenides bearing an ethereal chain with catalytic amounts of perchloric acid in dichloromethane was investigated. Results showed that the position of the oxygen atom with respect to the seleniranium ring was crucial in order to get a good yield of the cyclized product. The factors on which yields of the 5- endo cyclization of the seleniranium ions depend were analysed by ab initio (HF/3-21G ∗ ) studies. An explanation of the different coordinating ability, towards the positively charged selenium atom, of the allylic OMe and homoallylic OH-2 groups was given.
MICROWAVE-ASSISTED FUNCTIONALIZATION OF HALLOYSITE NANOTUBE SURFACE
Halloysite, Al2Si2O5·2H2O, is a naturally occurring two-layered alluminosilicate, chemically similar to kaolin, which has a predominantly high-aspect-ratio hollow tubular structure in the submicrometer range and an internal diameter in the nanometer range. The size of halloysite nanotubes (HNTs), generally varies from 50 to 70 nm in external diameter, ca. 15 nm diameter lumen, and 0.5 to 1 μm in length. Halloysite tubes have aluminol (Al-OH) groups on the internal surface and siloxan groups (Si-O-Si) on the external surface. The very large diameter of the halloysite lumen makes it potentially suitable for the accommodation of a range of guests. In recent reports, for example, the mesoporous…
Co-loaded cardanol/triazole-halloysite system: characterization of the supramolecular complex and evaluation of its antiproliferative activity
Halloysite nanotubes modified with triazolium salts (f-HNT) were found to be promising drug carriers for biological molecules [1 ]. In this work we report data about f-HNT as carrier for cardanol, a molecule with interesting biological activity [2]. The interactio n between cardanol and f- HNT was highlighted by HPLC, FTIR spectroscopy, TGA , water contact angle measurements and SEM investigations. Release of cardanol from the system and cytotoxic e ffect of the complex f- HNT/Card on hepatocarcinoma cell lines were, also, evaluated. The obtained results put forward the use of halloysite as drug c arrier
Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors
Uncontrolled cell proliferation is a hallmark of cancer as a result of rapid and deregulated progression through the cell cycle. The inhibition of cyclin-dependent kinases (CDKs) activities is a promising therapeutic strategy to block cell cycle of tumor cells. In this work we reported a new example of nanocomposites based on halloysite nanotubes (HNTs)/pyrazolo[3,4-d]pyrimidine derivatives (Si306 and Si113) as anticancer agents and CDK inhibitors. HNTs/Si306 and HNTs/Si113 nanocomposites were synthesized and characterized. The release kinetics were also investigated. Antitumoral activity was evaluated on three cancer cell lines (HeLa, MDA-MB-231 and HCT116) and the effects on cell cycle ar…
Diastereoselective synthesis of substituted 2-phenyltetrahydropyrans as useful precursors of aryl C-glycosides via selenoetherification
The cyclization of several substituted 5-phenyl-pent-4-en-1-ols with selenium electrophiles along some mechanistic considerations is discussed. In particular, an efficient diastereoselective synthesis of a 2,3,5,6-tetrasubstitued tetrahydropyran is reported. These findings open an interesting approach: the use of chiral selenium electrophiles for cyclization of chiral substrates. The cyclized products are useful starting material for the synthesis of D- or L-aryl C-glycosides.
Lipase-catalyzed resolution of anti-6-substituted 1,3-dioxepan-5-ols
Abstract Several anti-6-substituted 1,3-dioxepan-5-ols were kinetically resolved using an immobilized lipase (Amano PS–C II) in toluene in the presence of vinyl acetate at 30 °C. This approach provided, in some cases, the alcohol and the acetate in high enantiomeric purity, depending on the nature of the substituent (R = N3, SePh, I, OBn) and the acetal group (unsubstituted or dimethyl). The role of the size of substituents is also discussed. Enantiopure anti-6-substituted 1,3-dioxepan-5-ols are useful building blocks.
Properties and Structural Studies of Multi-Wall Carbon Nanotubes-Phosphate Ester Hybrids
Long chain phosphate esters bearing at least one or two aryl groups have been synthesized and used for the preparation of stable multi-walled carbon nanotube (MWCNT) hybrids. The non-covalent interaction ester/MWCNT has been investigated by several techniques (SEM, UV-vis, 31P-NMR, RAMAN). The used phosphate ester derivatives demonstrated the ability to produce an excellent dispersion of MWCNT in CHCl3. The obtained dispersions showed a great stability from one to at least three weeks in the range of concentration considered. Thermal analysis showed an increase in the decomposition temperature for the hybrids with respect to pristine MWCNT.
Green conditions for the Suzuki reaction using microwave irradiation and a new HNT- supported ionic liquid-like phase (HNT-SILLP) catalyst
A new catalytic system based on modified halloysite nanotubes was employed in the Suzuki reaction under microwave irradi- ation. A set of solvents, times and bases was screened and the best experimental conditions were obtained when the reactions were carried out for 10 min in water–ethanol at 120 °C in presence of K2CO3 as base. Good recyclability was observed. The new catalytic system was employed using either 1 mol% or 0.1 mol%. The palladium catalyst displayed good activity, allowing the synthesis of several biphenyl compounds in high yield working with only 0.1 mol% palladium loading. The application of mi- crowave irradiation decreased the reaction time and also improved conversion wi…
Supported ionic liquid asymmetric cathalysis. A new method for chiral catalyst recycling
A new method for chiral catalysts recycling, based on the supported ionic liquid asymmetric catalysis concept, has been developed. This concept involves the treatment of a monolayer of covalently attached ionic liquid on the surface of silica gel with additional ionic liquid. These layers serve as the reaction phase in which the homogeneous chiral catalyst is dissolved. As first application of this concept the L-proline-catalyzed aldol reaction has been carried out. Good yields and ee values, comparable with those obtained under homogeneous conditions have been obtained. Moreover, this material shows high regenerability.
Ciclodestrine borate. Sintesi, acidità e attività catalitica
Binding properties of mono-(6-deoxy-6-amino)-β-cyclodextrin towards p-nitroaniline derivatives: a polarimetric study
Abstract Polarimetry was used in order to investigate the formation of supramolecular complexes between mono-6-amino-β-cyclodextrin and various p-nitroaniline derivatives at two different pH values. Comparison with the behaviour of native β-cyclodextrin gave us the opportunity to consider the effect exerted by the presence of charged groups, having different solvation requirements, on the binding equilibrium. Data offer some support to the hypothesis of ‘dynamic co-inclusion’ of solvent molecules within the host–guest complex.
ChemInform Abstract: Green Conditions for the Suzuki Reaction Using Microwave Irradiation and a New HNT-Supported Ionic Liquid-Like Phase (HNT-SILLP) Catalyst.
Aryl iodides are coupled with conversions comparable to aryl bromides whereas conversions of aryl chlorides are significantly lower.
Past, Present and Future Perspectives on Halloysite Clay Minerals
Halloysite nanotubes (HNTs), clay minerals belonging to the kaolin groups, are emerging nanomaterials which have attracted the attention of the scientific community due to their interesting features, such as low-cost, availability and biocompatibility. In addition, their large surface area and tubular structure have led to HNTs’ application in different industrial purposes. This review reports a comprehensive overview of the historical background of HNT utilization in the last 20 years. In particular it will focus on the functionalization of the surfaces, both supramolecular and covalent, following applications in several fields, including biomedicine, environmental science and catalysis.
Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules
A dual drug-loaded HNT–CD glycocluster delivery system based on halloysite nanotubes and carbohydrate functionalized cyclodextrin was developed by a green protocol using solvent-free microwave irradiation. The nanohybrid was employed for concurrent load and release of silibinin and curcumin. The new delivery system was characterized by means of TGA, FT-IR spectroscopy, SEM and DLS. These techniques confirm the successful loading of the two drugs in the system. SEM and DLS measurements highlighted that the nanomaterial preserves a tubular structure with an average hydrodynamic radius of ca. 200 nm. The release of the drugs from the HNT glycocluster was investigated by means of UV-vis spectro…
Cyclodextrins: heterocyclic molecules able to perform chiral recognition (Part II)
The present paper collects the most significant advances appeared since late 1998 up to June 2005 in the field of applications of natural and modified cyclodextrins as chiral selectors, with particular regard for pharmaceuticals and natural products.
Ecocompatible Halloysite/Cucurbit[8]uril Hybrid as Efficient Nanosponge for Pollutants Removal
Hybrid materials based on halloysite nanotubes (HNT) and cucurbit[8]uril (CB[8]) were prepared with the aim to obtain efficient nanosponges towards hydrocarbons both in liquid and vapor phases. The loading on both HNT surfaces and the hybrid morphology were evidenced by FTIR spectroscopy, thermogravimetric analysis and scanning electron microscopy. In order to highlight the interactions in the hybrid 13C {1H} CP-MAS NMR experiments were performed. The aqueous colloidal stability of HNT/CB[8] was highlighted through ζ potential and dynamic light scattering measurements. The HNT/CB[8] composite was employed as nanosponge to capture aromatic oils in aqueous phase as evidenced by fluorescence e…
Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery
[Image: see text] A novel carrier system based on halloysite nanotubes (HNT), for the potential intraarticular delivery of kartogenin (KGN) by means laponite (Lap) hydrogel (HNT/KGN/Lap), is developed. The drug was first loaded into HNT, and the hybrid composite obtained was used as filler for laponite hydrogel. Both the filler and the hydrogel were thoroughly investigated by several techniques and the hydrogel morphology was imaged by transmission electron microscopy. Furthermore, the gelating ability of laponite in the presence of the filler and the rheological properties of the hybrid hydrogel were also investigated. The kinetic release of kartogenin from HNT and HNT/Lap hybrid hydrogel …
Ecotoxicity of halloysite nanotube-supported palladium nanoparticles inRaphanus sativusL
Halloysite nanotubes (HNTs) are natural nanomaterials that are biocompatible and available in large amounts at low prices. They are emerging nanomaterials with appealing properties for applications like support for metal nanoparticles (NPs). The potential environmental impacts of NPs can be understood in terms of phytotoxicity. Current research has been focusing on HNT applications in cell or animal models, while their use in plants is limited so their ecotoxicological impact is poorly documented. To date there are no studies on the phytotoxic effects of functionalized halloysites (functionalized-HNTs). To develop a quantitative risk assessment model for predicting the potential impact of H…
CLAYS IN COSMETICS AND PERSONAL-CARE PRODUCTS
Clays are used in various cosmetic formulations, such as sunscreens, toothpastes, deodorants, creams, hair cosmetics, makeups, nail polish, facial masks, and shampoos, among others, to improve the organoleptic and physicochemical characteristics, to increase the stability, or to facilitate elaboration. Together with their technological functionalities, clays are cosmetologically active ingredients with cleaning, anti-aging, anti-wrinkling, and sun-care functionalities. Talc, kaolinite, mica, and some smectites are the clay minerals used most frequently in cosmetic products, but several other phyllosilicates as well as modified and synthetic clays are also used. Sometimes, clays are useful i…
SYNTHESIS AND CHARACTERIZATION BY THERMOGRAVIMETRIC ANALYSIS OF A NEW DRUG DELIVERY SYSTEM BASED ON HALLOYSITE NANOTUBES
Synthesis and characterization of nanomaterial based on halloysite and hectorite clay minerals covalently bridged
Halloysite is an aluminosilicate clay with a predominantly hollow tubular structure (HNTs) able to act as a nanocontainer for the encapsulation of several chemicals. However, HNTs possess low affinity for metal ions in their pristine form and they need to be modified for improving their adsorption capabilities. Therefore, to overcome this issue herein we report a straightforward approach for the covalent modification of the external surface of halloysite nanotubes with hectorite clay. Compared to halloysite, hectorite possesses a lamellar structure with higher cation exchange capacity. The covalent linkage between the two clays was verified by several techniques (FTIR spectroscopy, 13C CP-M…
Polarimetric study of binding equilibria between cyclodextrins and some suitable organic guests
Functionalized halloysite nanotubes: Efficient carrier systems for antifungine drugs
Abstract Halloysite-cyclodextrin hybrid was employed as carrier for sustained release of clotrimazole for vaginal or buccal treatment of Candidiasis. The nanocarrier was obtained by functionalization of halloysite surface with cyclodextrin moieties by means of microwave irradiation, with the final goal to obtain a scaffold for the covalent linkage of cysteamine hydrochloride. The interaction between clotrimazole and the pristine components, namely cyclodextrin and halloysite, was thoroughly investigated by several techniques such as DSC, TGA, UV–vis spectroscopy and some adsorption studies were, also, carried out. The release of the antifungine molecule was finally investigated in a medium …
Supported Ionic Liquid Asymmetric Catalysis. A New Method for Chiral Catalysts Recycling. The Case of Proline-Catalyzed Aldol Reaction.
A new method for chiral catalysts recycling, based on the supported ionic liquid asymmetric catalysis concept, has been developed. This concept involves the treatment of a monolayer of covalently attached ionic liquid on the surface of silica gel with additional ionic liquid. These layers serve as the reaction phase in which the homogeneous chiral catalyst is dissolved. As first application of this concept the L-proline-catalyzed aldol reaction has been carried out. Good yields and ee values, comparable with those obtained under homogeneous conditions have been obtained. Moreover, this material shows high regenerability.
Halloysite nanotubes: a green resource for materials and life sciences
Clay minerals are considered one of the materials of the 20th century for their peculiar physico-chemical features. Among them, halloysite nanotubes (HNTs) are an emerging nanomaterial with a particular tubular structure that makes them a low cost and valuable alternative to the most common carbon nanotubes. Due to their tubular morphology, HNTs are employed in several fields acting as nanocontainers for different compounds for applications in drug carrier and delivery fields, catalysis, and as filler for polymeric matrices. The modification of HNTs’ surfaces allows to the synthesis of different nanoarchitectures that can improve the mechanical and thermal performance of polymer as well as …
Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids
The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications. Halloysite nanotubes (HNTs) are emerging materials in drug delivery applications both for their ability to penetrate cell membranes and for enhancing the solubility of drugs in biological media. Herein, we report the first example of the use of a nanocarrier based on halloysite labelled with fluorescent switchable halochromic oxazine molecules, to deliv…
Hydrophobically directed aldol reactions: polystyrene-supported L-proline as a recyclable catalyst for direct asymmetric aldol reactions in the presence of water
A simple synthetic methodology for the preparation of a polystyrene- supported L-proline material is reported, and this material has been used as catalyst in direct asymmetric aldol reactions between several ketones and arylaldehydes to furnish aldol products in high yields and stereoselectivities. Screening of solvents showed that these reactions take place only in the presence of water or methanol, at lower levels of conversion in the latter case. This solvent effect, coupled with the observed high stereoselectivities, has been ex- Introduction In the last decade organocatalysis has became a field of great interest.[1] Organocatalysts are metal-free small organic molecules that are able t…
Ciprofloxacin carrier systems based on hectorite/halloysite hybrid hydrogels for potential wound healing applications
The design of multifunctional nanomaterials which can help the healing processes of skin, preventing the bacterial infections, is crucial for the development of suitable therapy for the treatment of chronic lesions. The use of clay minerals in wound healing applications is well documented since the prehistoric period and offers several advantages due to their intrinsic properties. Herein, we report the development of ciprofloxacin carrier systems based on hectorite/halloysite (Ht/Hal) hybrid hydrogels for potential wound healing applications. To achieve this objective firstly the ciprofloxacin molecules were loaded onto Hal by a supramolecular and covalent approach. The so obtained fillers …
Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems
Halloysite nanotubes were explored as drug carrier for cardanol, which is considered as a promising natural anticancer active species. To this aim, besides the pristine nanoclay, a chemical modification of the nanocarrier was performed by attaching triazolium salts with different hydrophobicity at the outer surface of the hollow nanotubes. The interaction between cardanol and nanotubes was highlighted in solution by HPLC. This method proved the loading of the drug into the nanotubes. The solid dried complexes formed by pristine and modified halloysite with the cardanol were characterized by IR spectroscopy, thermogravimetric analysis as well as water contact angle to evidence the structure,…
Phytochemical composition and antimicrobial activity of essential oil from different parts of Ferulago campestris growing wild in the Natural Park of Madonie (Sicily)
Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities.
In the last years, the use of clay minerals for pharmaceutical purposes has increased due to their interesting properties. Hectorite (Ht) is a clay belonging to the smectite group which has attracted attention for applications in biology, tissue engineering and as drug carrier and delivery system. However, the mechanisms involved in Ht cellular uptake and transport into cells, are still unclear. Herein, we used a labeled Ht (Ht/1Cl) to study both the cellular uptake, by confocal laser scanning microscopy, and internalization pathways involved in the cellular uptake, by various endocytosis-inhibiting studies and fluorescence microscopy. These studies highlighted that Ht can penetrate the cel…
Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation
Abstract Environmental friendly halloysite-dicationic triazolium salts (second generation) obtained by subsequent click reactions of a diyne derivative in the presence of 2-azidopropyl-modified halloysite nanotubes, were used as supports for palladium catalyst. Thanks to the high triazolium loading (25%) these materials were able to support higher amount of the metal than that on the monocationic derivative (first generation). Such materials were characterized by thermogravimetric analysis, FT-IR spectroscopy and SEM investigations. The new catalytic system was employed in the ligand free Suzuki cross-coupling under microwave irradiation. A set of solvent, time and% loading of palladium was…
A competitive reactivity study on the oxidative cyclization of thiosemicarbazones into 1,3,4-thiadiazoles
Abstract In order to obtain useful insights on the mechanism of formation of 2(3H)-imino-1,3,4-thiadiazoles by oxidative cyclization of aldehyde thiosemicarbazones with Cu(II) or Fe(III) salts, a competitive reactivity study was performed on a suitable set of diversely substituted substrates, by means of HPLC techniques. This approach enabled to exploit Hammett’s equation without performing otherwise difficult-to-run kinetic experiments. The results presented herein support the hypothesis that the formation of the thiadiazole ring is induced by the attack of the oxidizing Lewis acid metal cation onto the imine-like nitrogen atom of the thiosemicarbazone substrate. Beyond mechanistic interpr…
Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells
Multicavity halloysite nanotube materials were employed as simultaneous carriers for two different natural drugs, silibinin and quercetin, at 6.1% and 2.2% drug loadings, respectively. The materials were obtained by grafting functionalized amphiphilic cyclodextrin onto the HNT external surface. The new materials were characterized by FT-IR spectroscopy, SEM, thermogravimetry, turbidimetry, dynamic light scattering and ζ-potential techniques. The interaction of the two molecules with the carrier was studied by HPLC measurements and fluorescence spectroscopy, respectively. The release of the drugs from HNT-amphiphilic cyclodextrin, at two different pH values, was also investigated by means of…
Ecotoxicity of halloysite nanotube–supported palladium nanoparticles in Raphanus sativus L
Halloysite nanotubes (HNTs) are natural nanomaterials that are biocompatible and available in large amounts at low prices. They are emerging nanomaterials with appealing properties for applications like support for metal nanoparticles (NPs). The potential environmental impacts of NPs can be understood in terms of phytotoxicity. Current research has been focusing on HNT applications in cell or animal models, while their use in plants is limited so their ecotoxicological impact is poorly documented. To date there are no studies on the phytotoxic effects of functionalized halloysites (functionalized-HNTs). To develop a quantitative risk assessment model for predicting the potential impact of H…
Synthesis and Characterization of Halloysite-Cyclodextrin Nanosponges for Enhanced Dyes Adsorption
Inorganic-organic nanosponge hybrids based on halloysite clay and organic cyclodextrin derivatives (HNT-CDs) were developed by means of microwave irradiations in solvent-free conditions. The HNT-CDs nanomaterials characterized by FT-IR, TGA, BET, TEM, SEM, DLS, and zeta-potential have showed a hyper-reticulated network which possesses both HNT and cyclodextrin peculiarities. The new HNT-CDs nanosponge hybrids were employed as nanoadsorbents, first choosing Rhodamine B as the dye model, and furthermore for the removal of some cationic and anionic dyes, under different pH values (1.0, 4.54, and 7.4). The collected results showed that the pH solution as well as the electrostatic interactions a…
Effect of halloysite nanotubes filler on polydopamine properties
Abstract Hypothesis Polydopamine (PDA) is widely used as hydrophilic coating for several applications. However, most of the methods studied to improve or manipulate PDA properties are multistep and time-consuming, and there is a need for versatile strategies aimed at controlling and modifying the properties of PDA. Experiments PDA-halloysite nanocomposites were produced under different oxidation conditions in alkaline and acidic media and were characterized by UV–visible and attenuated total refraction- Fourier Transform Infrared spectroscopies, thermogravimetric analysis, porosimetry, scanning electron microscopy, X-ray diffraction and contact angle measurements against the reference PDA p…
Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines
The prodrug approach, as well as the development of specific systems able to deliver a chemotherapeutic agent in the target site, decreasing the side effects often associated with its administration, are still a challenging. In this context, both methotrexate drug molecules (MTX) and biotin ligand moieties, whose receptors are overexpressed on the surface of several cancer cells, were loaded on halloysite nanotubes (HNTs) to develop nanomaterial based on multifunctional and "smart" delivery systems. To highlight the crucial role played by biotin, carrier systems based on HNTs and MTX were also synthetized. In detail, several approaches were envisaged: i) a supramolecular interaction between…
GREEN CONDITIONS FOR THE SUZUKI REACTIONS BY USING MICROWAVE IRRADIATION AND MODIFIED HALLOYSITE/Pd CATALYST
Halloysite nanotube (HNT) is an emerging biocompatible material with appealing perspective for technological applications, such as in catalysis1 and in pharmaceutical research.2 Halloysite is a double-layered aluminosilicate mineral that has a predominantly hollow tubular structure. The functionalization of HNTs is a good strategy to introduce an organic moiety onto the external surface and, therefore, to obtain innovative catalyst supports.3 We have modified the external surface of halloysite nanotube with octylimidazolium moieties (HNT-IL) by microwave irradiation in solvent-free conditions and we have have employed this material as support catalyst of Pd nanoparticles. The new HNT/Pd cat…
Indagini fitochimiche sul galbano di Sicilia
Supported ionic liquids. New recyclable materials for L-proline-catalyzed aldol reaction
Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications
Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Ex…
Stereoselective synthesis: from organoselenium to organocatalysis
Studies on the Stereoselective Selenolactonization, Hydroxy and Methoxy Selenenylation of α- and β-Hydroxy Acids and Esters. Synthesis of δ- and γ-Lactones.
Abstract The diastereoselective synthesis of hydroxy substituted γ- and δ-lactones was accomplished following two approaches. A 5- or 6-endo cyclization promoted by electrophilic selenium reagents of α- or β-hydroxy acids and a 5- or 6-exo cyclization of hydroxy esters obtained through a diastereoselective hydroxy selenenylation reaction of α- or β-hydroxy esters. Moreover, the diastereoselective methoxy selenenylation of the above compounds was investigated showing a case in which the compound that was unreactive in the hydroxy selenenylation conditions gave, in the methoxy selenenylation conditions, the deprotected diol. The usefulness of the methoxy selenenylation procedure was proven by…
Synthesis and characterization of new polyamino-cyclodextrin materials.
With the aim of the synthesis of chemically modified cyclodextrins bearing polyamine pendant groups, potentially useful as capping agents for the preparation of nanosized metal systems or as auxiliaries for gene transfection, the reaction between the heptakis-(6-iodo)-(6-deoxy)-b-cyclodextrin and various polyamines has been explored. This synthetic approach allows obtaining materials constituted by mixtures of cyclodextrins, having different degrees of substitution, which were satisfactorily characterized by means of various complementary techniques (ESI-MS, NMR, potentiometric titration). The products obtained were successfully subjected to preliminary tests for their binding abilities tow…
Boosting the properties of a fluorescent dye by encapsulation into halloysite nanotubes
Abstract The synthesis of a new biocompatible bichromophoric system (CURBO) was developed, by connecting the skeleton of the naturally occurring curcumin to a BODIPY derivative. The system exhibited an intense fluorescence band with maximum at about 510 nm in organic solvent, while its emission spectra in aqueous solution were more complicated and slightly red-shifted, due to the effect of aggregation for the poor solubility of the dyad. To overcome these problems, the bichomophoric system has been loaded into the halloysite nanotubes (HNT). The HNT/CURBO nanocomposite, suspended in aqueous solution, showed an intensity of emission in the red region of the spectrum higher than the one exhib…
A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin
We describe the preparation and properties of the first example of a synergic nanoantioxidant, obtained by different functionalizations of the external surface and the inner lumen of halloysite nanotubes (HNTs). Trolox, a mimic of natural α-tocopherol, was selectively grafted on the HNT external surface; while quercetin, a natural polyphenolic antioxidant, was loaded into the inner lumen to afford a bi-functional nanoantioxidant, HNT–Trolox/Que, which was investigated for its reactivity with transient peroxyl radicals and a persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) radical in comparison with the corresponding mono-functional analogues HNT–Trolox and HNT/Que. Both HNT–Trolox and HNT/Q…
The effect of some amines and alcohols on the organized structure of [bmim][BF4] investigated by 1H NMR spectroscopy
The effect exerted by some amines and alcohols on the 1H NMR spectra of 1-butyl-3- methylimidazolium tetrafluoroborate [bmim][BF4] has been studied. This ionic liquid, which is one of the most widely used, is characterized by a high structural order degree, as a consequence of the symmetry and the coordination ability of the anion. In order to have information about the dependence of the detected effects on the alcohol or amine structure, some different primary, secondary and tertiary amines and alcohols have been considered. Furthermore, in the case of amines, their basicity has been also taken into account. Both amines and alcohols induce variation in chemical shifts values and signal mul…
Regioselective Epoxide Ring Opening. Steroselective Synthesis of a Tetrahydropyran Ring
The stereoselective synthesis of a 2-substituted tetrahydropyran with adjacent alkoxy-bearing stereogenic centre is described. The key steps of this synthesis were the stereoselective epoxidation of an allylic alcohol and the regioselective epoxide ring opening by lithium aluminum hydride. The regio and stereoselective synthesis of a trihydroxyselenide and a trihydroxysulfide is also described. The latter compounds are not suitable for cyclization to tetrahydrofuran ring.
Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs
Mixed cyclodextrin–calixarene nanosponges were used to prepare some composites with the well known polyphenolic bioactive compounds quercetin and silibinin. The composites were characterized by means of different techniques (UV-vis, FT-IR, microcalorimetry, thermogravimetry), in order to assess their loading and thermal stability. The kinetics of release of the bioactive molecules into aqueous solution were studied at two different pH values (1.0, 6.4), which mimic typical physiological conditions. Finally the possible antiproliferative effects in vitro were assayed towards three triple negative breast cancer cell lines (SUM 149, SUM 159 and MDA-MB-23). Our results point out the role assume…
Palladium nanoparticles immobilized on halloysite nanotubes covered by a multilayer network for catalytic applications
The synthesis of pure fine chemicals for industrial purposes is one of the most attractive challenges of chemical research. The use of catalytic pathways mediated by palladium nanoparticles (PdNPs) for C-C bond formation is a useful way to obtain these kinds of compounds. To achieve this objective, the PdNPs can be efficiently loaded on a functionalized natural nanostructured support such as halloysite nanotubes (HNTs). Hybrid materials based on thiol functionalized halloysite nanotubes and highly cross-linked imidazolium salts were successfully developed and used for the stabilization of PdNPs. The HNT/Pd hybrids were thoroughly characterized from a physico-chemical point of view and teste…
Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system
Abstract Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, “pin-point”, functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demo…
Cyclodextrin-[60]fullerene conjugates: synthesis, characterization, and electrochemical behavior
Three different functionalized β-cyclodextrins (β-CDs) bearing the C60 moiety linked covalently have been prepared in good yields by reaction between the parent β-CD and [60]fullerene via 1,3-dipolar cycloaddition. These compounds have been fully spectroscopically characterized and their electrochemical behavior has been investigated. Surprisingly, the electrochemical properties of the C60 cage remain unaltered even after chemical functionalization, making these systems very appealing as supramolecular hosts for electron-transfer processes.
Recent Researches on Halloysite Nanotubes a Smart Nanomaterials for Several Applications
Halloysite clay are aluminosilicate nanomaterials (HNTs) with an unique combination of hollow tubular nanostructure, large aspect ratio, suitable mechanical strength, high perspectives in terms of functionality, biocompatibility ecocompatibility and wide availability. Moreover, their low cost makes them attractive alternative to the better known carbon nanotubes. As a consequence, in the last years, HNTs have garnered particular interest in material science. HNTs possess different inner and outer surface composition; in particular most of the aluminol groups are located in the halloysite inner surface, whereas the external portions are mainly composed of siloxanes providing a surface availa…
Functionalized Halloysite for enhanced removal of toxic metal ions from aqueous solutions
During the last years several nanomaterials have been extensively used in the heavy metal ions removal from aqueous solutions. Among them, clay minerals have gathered particular interest owing to their unique features (e.g., high specific surface area, low toxicity and natural availability at low price). Halloysite nanotubes (Hal) are particular clay minerals with a predominantly hollow tubular structure. In this work Hal and their derivatives, Hal-NH2 and Hal-SH, were used as adsorbent materials of lead(II) and mercury(II) ions from aqueous solutions. The adsorption ability of clay nanomaterials towards toxic metal ions has been studied takeing into account important variables of the metal…
1,2,3-Oligotriazoles modified halloysite nanotubes as potential active biological species: synthesis and characterization
In the last years, the development of nano-formulations for cancer treatment represents one of the major challenges of the scientific research. The prodrug strategy, that combines chemotherapeutic agents with nanocarriers such as halloysite nanotubes (HNTs), is a promising strategy both to improve the biological activity of the drug molecules and to reduce the side effects of drugs. Herein we report the synthesis and characterization of a HNTs prodrug based on 1,2,3-triazole units covalently linked to HNTs external surface, bearing different positively charged moieties, which could present interesting pharmacological activities.
Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline.
Aims: To investigate the petroleum hydrocarbon (HC)-degrading potential of indigenous micro-organisms in a sandy Mediterranean coast, accidentally contaminated with petroleum-derived HCs. Methods and Results: Using culturable methods, a population of Gram-positive n-alkane degraders was detected in the contaminated soil. Five isolates, identified as one Nocardia, two Rhodococcus and two Gordonia strains, were able to degrade medium- and long-chain n-alkanes up to C36 as assessed by growth assays and gas chromatography-mass spectrometry analysis. Diverging alkane hydroxylase-encoding genes (alkB) were detected by PCR, using degenerated primers, in all the strains; multiple sequences were obt…
New recyclable materials for L-proline-catalyzed aldol reactions
SYNTHESIS AND EVALUATION OF CATALYTIC ACTIVITY IN WATER AND MICROWAVE IRRADIATION OF A NEW SUPPORT BASED ON HNT TRIAZOLIUM SALTS
In the last years SILLP (supported ionic liquid-like phase)-based materials prepared by covalent attachment have been synthesized [1]. Recently, we have synthesized a palladium-based catalytic system using halloysite nanotubes modified with octylimidazolium moieties and we have tested it in the Suzuki cross-coupling reaction under traditional heating, microwave irradiation and a very small amount of Pd catalyst [2,3]. It is known that support based on triazole motif showed superior activity to the analogous imidazole molecules [4] so, we have focused our attention to develop a new SILLP system with triazolium moiety. Herein we report the synthesis of an original Pd-dicationic triazolium sup…
A spectrofluorimetric study of binary fluorophore-cyclodextrin complexes used as chiral selectors
Abstract Six binary complexes between three fluorophores (pyrene, xanthone and anthraquinone) and β-cyclodextrin (β-CD) or heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin (am-β-CD) were tested at two pH values (8.0 and 9.0) as chiral selectors for three α-amino acids chosen as model. The conditional constant (β2T) values for ternary complexes (fluorophore-CD-amino acid), determined by means of fluorescence spectroscopy, showed that the binary complexes are suitable receptors for chiral recognition. The effect of α-amino acids on stability and stoichiometric ratio of the binary complexes has also been studied. The binary complexes were in most cases stabilized by adding the ternary agent. The tr…
Supramolecular Association of Halochromic Switches and Halloysite Nanotubes in Fluorescent Nanoprobes for Tumor Detection
Fluorescence imaging has become an indispensable tool in the biomedical laboratory to elucidate the fundamental dynamic and structural factors regulating cellular processes. The development of fluorescent nanoprobes represents a challenge to detect any cellular process under a microscope. Herein, a fluorescent nanomaterial was synthesized by exploiting the supramolecular interaction between a halochromic switch (1Cl) and halloysite nanotubes (HNTs). The successful synthesis of a HNTs/1Cl nanomaterial was confirmed by thermogravimetric analysis and Fourier transform infrared. The aqueous mobility was investigated by dynamic light scattering and ζ-potential measurements as well. Furthermore, …
Spectrophotometric study on the thermodynamics of binding of α- and β-cyclodextrin towards some p-nitrobenzene derivatives
Binding properties of native alpha- and beta-cyclodextrin towards some nitrobenzene derivatives have been studied by means of UV-vis spectrophotometry. The former host is able to form complexes having 1 : 1 and 1 : 2 stoichiometric ratios with these guests, while only 1 : 1 complexes are detected with the latter host. A careful analysis of the thermodynamic parameters for complexation equilibria, under the perspective of the enthalpy-entropy compensation effect, reveals that binding abilities of the two different hosts are subject to different features.
Polarimetry as a useful tool for the determination of binding constants between cyclodextrins and organic guest molecules
Binding constants for cyclodextrin inclusion complexes can be easily estimated by means of simple polarimetric measurements. Determinations are as reliable and accurate as those obtained by means of other more sophisticated techniques, and take advantage by the limited waste of material required. Our results are briefly compared with literature values obtained by means of different techniques.
Complexation equilibria between beta-cyclodextrin and p-nitroaniline derivatives in mixed solvent media: a polarimetric study
ChemInform Abstract: Sequential Suzuki/Asymmetric Aldol and Suzuki/Knoevenagel Reactions under Aqueous Conditions.
Here we describe for the first time a sequential Suzuki/asymmetric aldol reaction. Such sequential approach was achieved through the combined use of an ionic liquid supported palladium catalyst and the organocatalyst trans-4-(2,2-diphenylacetoxy)proline. Suzuki and asymmetric aldol reactions were performed under aqueous conditions. The use of a palladium catalyst under basic conditions allowed also the first example of sequential Suzuki/Knoevenagel reaction. Reactions were carried out under aqueous conditions and products were isolated in good to high yields and, in the case of the Suzuki/aldol reaction, with diastereoselectivities up to 91:9 and enantioselectivities up to at least 99 %.
Microwave applications in the synthesis of nanostructured materials and in organic extractions
Photoluminescent hybrid nanomaterials from modified halloysite nanotubes
The synthesis of photoluminescent nanomaterials based on halloysite nanotubes is described. The obtained hybrid was characterized by means of TGA, FT-IR, DLS and XPS measurements; in addition its morphology was imaged by TEM and HR-TEM. The HNT hybrid also exhibited photoluminescent properties, both in solution and in the solid state, and white-light emission (0.24, 0.36; CIE coordinates) was observed. This work could be pioneering as a new strategy for manufacturing both LEDs and fluorescent tags based on HNT nanomaterials. © 2018 The Royal Society of Chemistry.
GLYCOCLUSTER A BASE DI NANOTUBI DI ALLOSITE COME DRUG DELIVERY SYSTEM
Le interazioni carboidrati–lectine giocano un ruolo fondamentale in diversi processi biologici come ad esempio nelle infiammazioni, embriogenesi, sviluppo cellulare, etc..1 Sebbene l’interazione tra lectine e carboidrati sia un’interazione debole, la possibilità di instaurare contemporaneamente interazioni multiple tra differenti unità di lectine e differenti unità di carboidrati ne aumenta l’efficienza e la selettività.2 Nella presente comunicazione si riporta la sintesi di nuovi glicocluster basati su nanotubi di allosite, a cui sono state chimicamente legate unità ciclodestriniche che presentano sul bordo largo unità zuccherine quali galattosio, mannosio e lattosio. I materiali ottenuti …
Polarimetry as a useful tool for the study of binding equilibria between cyclodextrins and some suitably sized and structured organic molecules
Nanocomposite based on Multi-Macrocyclic Receptors and Halloysite for Volatile Organic Compounds Capture
Volatile organic compounds (VOCs) are chemicals released to the atmosphere by natural and anthropogenic sources. VOCs are hazardous air pollutants and promote formation of photochemical smog. Variety of chemicals released from pharmaceutical industry includes priority pollutants like benzene, toluene, and dichloromethane. The aim of this work was at designing, preparing and characterizing from the physico-chemical view-point a pseudo nano-sponge with low environmental impact for pollutant removal. As adsorbent material, a nanocomposite based on nanoclay and cucurbiturils, which are biocompatible materials, were investigated. Clay minerals (e.g. montmorillonite and kaolin) are important comp…
SYNTHESIS AND CHARACTERIZATION OF POSITIVELY CHARGED FUNCTIONALIZED HALLOYSITE/CURCUMIN SYSTEMS AND EVALUATION OF THEIR ANTICANCER ACTIVITY
Phenolic compound originated from one of the main class of secondary metabolites, as curcumin and its derivatives have been studied and their biological and pharmacological activities have been evaluated, too [1,2]. Unfortunately, curcumin exhibits poor bioavailability after oral or topic administration [3]. Therefore a carefully designed carrier could significantly facilitate curcumin delivery and broaden the range of its possible pharmaceutical applications. Halloysite was found to be a viable and inexpensive nanoscale container for the encapsulation of biological active molecules [4]. In this communication we report data about a new potential curcumin carrier based on positively charged …
Synthesis, characterization and study of covalently modified triazole LAPONITE® edges
Abstract LAPONITE® (Lap) clay mineral was successful functionalized by triazole groups in a two steps procedure. First, the Lap edges were modified with 3-azidopropyltrimethoxysilane by traditional heating and microwave irradiation. Microwave irradiation allowed us to obtain high loading onto the Lap edges in lower times compared to those obtained through conventional method. Afterwards, the triazole moieties were obtained by reaction between azido functionalized Lap and propargyl alcohol. The successful functionalization of Lap was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and ζ-potential measurements. Finally, the effects of the surface modificatio…
Micellization properties of cardanol as a renewable co-surfactant
With the aim to improve the features of surfactant solutions in terms of sustainability and renewability we propose the use of hydrogenated natural and sustainable plant-derived cardanol as an additive to com- mercial surfactants. In the present study we demonstrated that its addition, in amounts as high as 10%, to commercial surfactants of different charge does not significantly affect surfactant properties. Conversely, the presence of hydrogenated cardanol can strongly affect spectrophotometric determination of CMC if preferential interactions with the dyes used take place. This latter evidence may be profitably exploited in surfactant manufacturing by considering that the concurrent pres…
Functionalized halloysite nanotubes for enhanced removal of lead(II) ions from aqueous solutions
In this study, environmental friendly halloysite nanotubes and their amino derivatives were used as adsorbent materials for lead(II) ions. The adsorption ability of both nanomaterials towards Pb2+ ions has been studied in NaClaq, at I = 0.1 mol L−1, in the pH range 3–6. Moreover, the effect of ionic strength on the adsorption process was evaluated at the pH of maximum efficiency of the adsorbent materials. Kinetic and equilibrium experiments were carried out by using the Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique to check the metal ion concentration in solution after contact with the two adsorbents. Different isotherm and kinetic equations were used to fit the experi…
Nanoclays for Conservation
Within the conservation of artworks materials, this chapter describes innovative strategies based on clay nanoparticles that are promising for protective coating, surface cleaning, and consolidation. We present the preparation of polymer/montmorillonite nanocomposites, which are revealed as efficient protective coatings for highly porous stones, marbles, and bread-made artifacts. Anticorrosive films for metal substrates have been obtained by polymer filling with laponite and halloysite nanotubes (HNTs) containing corrosion inhibitors into their lumen. The dispersion of hydrophobically modified HNTs into chitosan matrix drives to fabricate biofilms with surface cleaning capacity. Rust stains…
Stability and stoichiometry of some binary fluorophore-cyclodextrin complexes
The stability and stoichiometric ratio of binary complexes among five fluorophores and β-cyclodextrin (β-CD) or heptakis-(6-amino-6-deoxy)-β-cyclodextrin (am-β-CD) were determined by means of fluorescence measurements in borate buffer at pH=8.0 and 9.0. Structure of both host and guest affected the characteristics of the binary complexes. Pyrene and anthraquinone formed a 1:2 (fluorophore: cyclodextrin) complex with both cyclodextrins. Xanthone formed 1:1 complex with β-CD and 1:2 complex with am-β-CD. A more defined behaviour was observed for crysene. In fact, both stoichiometric different complexes were detected with both hosts. Only 1:1 complexes were observed for antracene. The complex …
ChemInform Abstract: First Evidence of Proline Acting as a Bifunctional Catalyst in the Baylis-Hillman Reaction Between Alkyl Vinyl Ketones and Aryl Aldehydes.
Proline in the presence of sodium hydrogen carbonate has been found to be an effective catalyst for the Baylis–Hillman reaction between methyl or ethyl vinyl ketone and aryl aldehydes. Screening of several amine catalysts showed that an ionizable carboxylic function directly linked to the secondary amine catalyst plays an important role in the synthesis of the desired product in good yield. The data obtained has allowed us to suggest, for the first time, that proline, sarcosine, pipecolinic acid and homoproline may act as bifunctional catalysts via a bicyclic enaminolactone species as intermediate. Quantum-mechanical calculations (PM3/COSMO and ab initio 3-21G/COSMO) support this mechanism …
Diastereoselective Synthesis of 2-Phenylselenenyl-1,3-anti-Diols and 2-Phenylselenenyl-1,3-anti-Azido-Alcohols via Hydroxy- and Azido-Selenenylation Reactions
A method to synthesize 2-phenylselenenyl-1,3-anti-diols and 2-phenyl- selenenyl-1,3-anti-azidoalcohols via hydroxy- or azido-selenenylation of trans-allylic alcohols is reported. Moreover, the first example of hydroxyl-selenenylation of an allylic azide is presented. Yields ranging from moderate to good and diastereomeric ratios up to 95:5 are achieved.
The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications
The goal of modern research is to use environmentally preferable materials. In this context, clay minerals are emerging candidates for their bio- and ecocompatibility, low cost and natural availability. Clay minerals present different morphologies according to their layer arrangements. The use of clay minerals, especially in biomedical applications is known from ancient times and they are regaining attention in recent years. The most representative clay minerals are kaolinit, montmorillonite, sepiolites and halloysite. This review summarizes some clay minerals and their derivatives for application as nanocontainer for biologically active species.
The interaction of native DNA with Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine
The interaction of native calf thymus DNA with the Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine (ZnL(2+) and CuL(2+)), in 1 mM Tris-HCl aqueous solutions at neutral pH, has been monitored as a function of the metal complex-DNA molar ratio by UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results support for an intercalative interaction of both ZnL(2+) and CuL(2+) with DNA, showing CuL(2+) an affinity of approximately 10 times higher than ZnL(2+). In particular, the values of the binding constant, determined by UV spectrophotometric titration, equal to 7.3x10(4) and 1.3x10(6)M(-1), for ZnL(2+) and CuL…
ChemInform Abstract: Stereoselective Synthesis of Substituted Tetrahydropyran Rings via 6-exo and 6-endo Selenoetherification.
Eight unsaturated alcohols were cyclized by selenoetherification in 6-exo or 6-endo manner to give substituted tetrahydropyran rings. Yields, regio- and stereoselectivities were discussed in terms of steric and electroniceffects such as Se-O interaction. For the first time examples of the use of silica gel in selenoetherification and the effect of the X - counter ion of PhSe + on the reaction course are discussed. These effects are related to the occurrence of Se-O interaction.
Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film
Abstract The purpose of this paper is to show how a functional bionanocomposite film with both antioxidant and antimicrobial activities was successfully prepared by the filling of a pectin matrix with modified Halloysite nanotubes (HNT) containing the essential peppermint oil (PO). Firstly, HNT surfaces were functionalized with cucurbit[6]uril (CB[6]) molecules with the aim to enhance the affinity of the nanofiller towards PO, which was estimated by means of HPLC experiments. The HNT/CB[6] hybrid was characterized by several methods (thermogravimetry, FT-IR spectroscopy and scanning electron microscopy) highlighting the influence of the supramolecular interactions on the composition, therma…
Sintesi efficiente mediata da microonde di derivati di fullerene per dispositivi fotovoltaici organici
ChemInform Abstract: Eco-Friendly Functionalization of Natural Halloysite Clay Nanotube with Ionic Liquids by Microwave Irradiation for Suzuki Coupling Reaction.
Abstract Microwave assisted halloysite (HNT) external surface functionalization with ionic liquids is described. HNTs modification was achieved in two steps: a) grafting of 3-mercaptopropyl trimethoxysilane on the external surface of HNT by a microwave irradiation; b) anchorage of vinylimidazolium ionic liquids by a thiol-ene reaction. MW irradiation allowed us to obtain high loading onto the HNT surface compared to those obtained through conventional synthesis. Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the grafting has occurred only on the external surface of HNT. Turbidimetric and dynamic light scattering analyses showed that the introduction of…
Supported ionic liquids. New recyclable materials for the L-proline-catalyzed aldol reaction
New materials for L-proline recycling have been developed. These materials have been applied to the L-proline-catalyzed aldol reaction between acetone and several aldehydes. The L-proline has been supported on the surface of modified silica gels with a monolayer of covalently attached ionic liquid with or without additional adsorbed ionic liquid. Good yields and ee values, comparable with those obtained under homogeneous conditions, have been obtained especially with imidazolinium-modified and 4-methylpyridinium-modified silica gels. Moreover, these materials have been easily recovered by simple filtration and studies about their reuse have been carried out. These studies showed that these …
Halloysite nanotubes as support for metal-based catalysts
Halloysite nanotubes (HNTs) are clay minerals with a hollow nanotubular structure. There is growing interest in these nanomaterials, due to their biocompatibility, potential applications and availability. The surface chemistry of HNTs is versatile for the targeted chemical modification of the inner lumen and outer surface. Functionalized halloysite constitutes a valuable support for metal nanoparticles, promoting catalytic applications with tunable properties. The peculiar tubular shape of HNTs favors the dispersion and surface availability of the supported metal nanoparticles that are active in the catalytic path. Moreover, the presence of an empty lumen opens new perspectives for the prod…
Materiali ibridi a base di nanotubi di allosite per la rimozione d’inquinanti
L’allosite (HNT) è un interessante materiale argilloso allumino-silicato naturale, non tossico e biocompatibile, con la caratteristica forma tubolare cava dotata di parziale carica positiva interna e negativa esterna.Combinando le peculiarità di un composto organico con le proprietà di un materiale inorganico, è possibile ottenere sistemi ibridi organici–inorganici con interessanti proprietà e vasti campi di applicazione. Sono un esempio delle “nanospugne” capaci di adsorbire efficacemente potenziali inquinanti. In questo contesto sono stati preparati, dei materiali ibridi “spugna” costituiti da unità ciclodestriniche e allosite e ancora un sistema ibrido HNT-Cucurbit[8]uril. Il primo possi…
HALLOYSITE NANOTUBES AS SUPPORT FOR METAL NANOPARTICLES FOR CATALYTIC APPLICATION
Halloysite (HNT) is a natural clay that, in the last years, has shown an important increasing on various applications in different field of interesting. Chemically similar to kaolin, it shows the predominately rolled shape, to form multilayers tubes of nanometric dimensions. The different chemical composition of the inside lumen (Al-OH) surface and outside (Si-O) give to the tubes a partial negative charge outside and positive inside. In this way, it is possible to get different interactions of different molecules or systems selectivity on one or another surface. The selective functionalization, covalent or not, of the HNT lumen or outer surface, gives the possibility to the nanotubes to fu…
Spectrophotometric determinations of binding constants between cyclodextrins and aromatic nitrogen substrates at various pH values
The inclusion capacity of native β-cyclodextrin (1) and mono-(6-amino-6-deoxy)-β-cyclodextrin (2) versus aromatic compounds having a nitro or an amino group or both has been investigated at three different pH values. Molecular interactions in inclusion complexes have also been investigated by means of molecular mechanics (MM2/QD) models. Electrostatic and van der Waals interactions and the formation of a hydrogen bond between the donor amino group and the oxygen atom of the secondary hydroxyl group seem to be the more important contributions in determining complex stability. The inclusion capacity of two different cyclodextrins versus aromatic compounds has been investigated at three differ…
Halloysite Nanotubes: Smart Nanomaterials in Catalysis
The use of clay minerals as catalyst is renowned since ancient times. Among the different clays used for catalytic purposes, halloysite nanotubes (HNTs) represent valuable resources for industrial applications. This special tubular clay possesses high stability and biocompatibility, resistance against organic solvents, and most importantly be available in large amounts at a low cost. Therefore, HNTs can be efficiently used as catalysts themselves or supports for metal nanoparticles in several catalytic processes. This review reports a comprehensive overview of the relevant advances in the use of halloysite in catalysis, focusing the attention on the last five years.
Synthesis of 2,4,6-trisubstituted tetrahydropyrans via 6-exo selenoetherification of unsaturated alcohols
Stereoselectivity, regioselectivity and yields in the 6-exo selenoetherification of four unsaturated diols were found to depend on the stereochemistry of the diols and on the presence of an oxygen atom close to the intermediate seleniranium ring. Silica gel was useful in order to obtain good yields. Reactions performed both under kinetic and thermodynamic control led to the same products. Stereoselectivity, regioselectivity and yields in the 6-exo selenoetherification of four unsaturated diols were found to depend on several factors such as the stereochemistry of the diols, the nature of the R group, the nature of the counter anion of the PhSe+ species and the presence of silica gel.
Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films
Selective modification of the inner surface of halloysite nanotubes (HNTs) by the cycloaddition of azides and alkynes (click reaction) was successfully achieved. Fourier transform infrared spectroscopy and thermogravimetry confirmed that the modification involved only the HNT cavity. Morphological investigations evidenced that the functionalized nanotubes formed microfibers and clusters in the micrometer range. By means of the casting method, these nanomaterials were dispersed into biopolymeric matrixes (chitosan and hydroxypropyl cellulose) with the aim of obtaining nanocomposite films with tunable properties from the physicochemical viewpoint. For comparison purposes, we also characterize…
Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications
Halloysite (HNT) is a promising natural nanosized tubular clay mineral that has many important uses in different industrial fields. It is naturally occurring, biocompatible, and available in thousands of tons at low cost. As a consequence of a hollow cavity, HNT is mainly used as nanocontainer for the controlled release of several chemicals. Chemical modification of both surfaces (inner lumen and outer surface) is a strategy to tune the nanotube's properties. Specifically, chemical modification of HNT surfaces generates a nanoarchitecture with targeted affinity through outer surface functionalization and drug transport ability from functionalization of the nanotube lumen. The primary focus …
As the change in ternary agent structure influence the chiral recognition ability of pyrene/heptakis-(6-amino)-(6-deoxy)-b-cyclodextrin
Covalently modified nanoclays: synthesis, properties and applications
Abstract Clay minerals are phyllosilicates of nanoscale dimensions. According to their ability to entrap and release organic moieties, they have found applications in several fields, such as drug carrier and delivery, support for catalyst, environmental remediation and filler for polymeric matrices. The possibility to modify, by covalent linkage, their surfaces gives the possibility to form new nanomaterials with improved properties respect to the pristine clay minerals. In this chapter, the modifications of the siloxane surfaces of the most representative clay minerals, namely montmorillonite, sepiolites, laponite and halloysite were reviewed and discussed.
Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin
Hypothesis: Oral insulin administration is not actually effective due to insulin rapid degradation, inactivation and digestion by proteolytic enzymes which results in low bioavailability. Moreover insulin is poorly permeable and lack of lipophilicity. These limits can be overcome by the loading of protein in some nanostructured carrier such as halloysite nanotubes (HNTs). Experiments: Herein we propose an easy strategy to obtain HNT hybrid materials for the delivery of insulin. We report a detailed description on the thermal behavior and stability of insulin loaded and released from the HNTs hybrid by the combination of several techniques. Findings: Release experiments of insulin from the H…
Cyclodextrin-[60]fullerene conjugates: Synthesis, characterization and electrochemical behavior
Chiral recognition of protected amino acids by means of fluorescent binary complex pyrene/heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin
The ability of the binary complex pyrene (Py)/heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin (am-β-CD) to act as a chiral selector was tested at two pH values (8.0 and 9.0). Phenylalanine (Phe), methionine (Met) and histidine (His) were used as chiral model molecules. The stability of ternary complexes Py/am-β-CD/amino acid was determined by means of spectrofluorimetric measurements. The data collected showed an increase in stability going from the binary to ternary complex and above all the possibility to use the binary complex as a chiral selector. Finally, data collected at two pH values showed that the binary complex is a better chiral selector when charged rather than in its neutral form.
IBRIDI FORMATI DA NANOTUBI DI CARBONIO A PARETE MULTIPLA E ESTERI FOSFORICI: PROPRIETA’ E STUDI STRUTTURALI
Nel corso degli ultimi anni i nanotubi di carbonio in virtù delle loro proprietà fisiche, chimiche e meccaniche sono diventati tra i più promettenti materiali per la realizzazione di congegni a livello nanometrico. I CNT trovano numerose applicazioni nel campo, della nanoelettronica, nella costruzione di materiali ad elevata conducibilità elettrica ed elevata resistenza meccanica,2 e vengono, anche, impiegati come agenti di rinforzo dispersi in una matrice polimerica.3 Problema principale di questi materiali è che essi risultano scarsamente solubili in ambiente acquoso e in solventi organici, a causa delle forti forze attrattive di van der Waals che esistono tra le superfici dei CNT, che li…
The Daily Consumption of Cola Can Determine Hypocalcemia: A Case Report of Postsurgical Hypoparathyroidism-Related Hypocalcemia Refractory to Supplemental Therapy with High Doses of Oral Calcium
The consumption of soft drinks is a crucial factor in determining persistent hypocalcemia. The aim of the study was to evaluate the biochemical mechanisms inducing hypocalcemia in a female patient with usual high consumption of cola drink and persistent hypocalcemia, who failed to respond to high doses of calcium and calcitriol supplementation. At baseline and after pentagastrin injection, gastric and duodenal secretion samples were collected and calcium and total phosphorus concentrations were evaluated. At the same time, blood calcium, total phosphorus, sodium, potassium, chloride, magnesium concentrations and vitamin D were sampled. After intake of cola (1 L) over 180 min, gastric and du…
Sequential Suzuki/Asymmetric Aldol and Suzuki/Knoevenagel Reactions Under Aqueous Conditions
Here we describe for the first time a sequential Suzuki/asymmetric aldol reaction. Such sequential approach was achieved through the combined use of an ionic liquid supported palladium catalyst and the organocatalyst trans-4-(2,2-diphenylacetoxy)proline. Suzuki and asymmetric aldol reactions were performed under aqueous conditions. The use of a palladium catalyst under basic conditions allowed also the first example of sequential Suzuki/Knoevenagel reaction. Reactions were carried out under aqueous conditions and products were isolated in good to high yields and, in the case of the Suzuki/aldol reaction, with diastereoselectivities up to 91:9 and enantioselectivities up to at least 99 %.
Effects of solvent-free microwave extraction on the chemical composition of essential oil of Calamintha nepeta (L.) Savi compared with the conventional production method
The essential oil of Calamintha nepeta has been obtained by solvent-free microwave extraction (SFME) and by classical hydrodistillation (HD). A comparative qualitative-quantitative study on the composition of the oils was carried out. A total of 38 compounds, constituting 97.6% of the oil, were identified in the oil obtained by SFME, whereas 46 compounds, representing 95.4% of the oil, were characterized in the HD oil. SFME-distilled oil is richer in lightly oxygenated monoterpenes (LOM) than HD oil. It also has a higher amount of sesquiterpenes and a lower quantity of hydrocarbon monoterpenes. HD oil seems to be affected by chemical changes more than SFME oil.
Short and efficient chemoenzymatic synthesis of goniothalamin
Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds
Abstract Silver nanoparticles stabilized by means of poly -(6- N , N -dimethyl-propylenediamino)-(6-deoxy)-β-cyclodextrin were synthesized, characterized by different techniques (UV–vis spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy, Fourier-transform IR Spectroscopy) and used as catalysts for the reduction of various nitrobenzene derivatives with sodium borohydride. The nanocomposites obtained appear to have an organized structure, with a metal core surrounded by a layer-structured coating shell. Kinetic data, rationalized in terms of a modified Langmuir–Hinshelwood model, evidenced a non-linear dependence of the reaction rate on the concentration …
FUNZIONALIZZAZIONE E CARATTERIZZAZIONE DI NANOTUBI DI ALLOSITE UTILIZZATI PER LO STUDIO DELL’INCAPSULAMENTO DI DERIVATI FENOLICI
I composti fenolici fanno parte dei metaboliti secondari delle piante e tra questi la curcumina è stata ampiamente studiata per le sue intrinseche proprietà farmacologiche.1-4 La curcumina [bis(4-idrossi-3-metossi-fenil)-1,6-eptadiene-3,5-dione] isolata sotto forma di pigmento giallo dal rizoma secco della curcuma longa è stata utilizzata in presenza di sistemi delivery per applicazioni farmaceutiche.5 Uno degli svantaggi della curcumina è la sua scarsa biodisponibilità in ambiente acquoso;6 problema che può essere risolto incapsulandola in nanocontenitori. Tra i sistemi nanodelivery naturali che non presentano citotossicità vi sono i nanotubi di allosite. I nanotubi di allosite sono…
Binding properties of polyaminocyclodextrin materials towards polyanions and p-nitroaniline derivatives
Halloysite Nanotubes as Support for Metal-Based Catalysts
Halloysite nanotubes (HNTs) are a natural, biocompatible, environmental friendly and cheap double-layered aluminosilicate mineral that has a predominantly hollow tubular structure. The general stoichiometry of halloysite is Al2Si2O5·4(H2O). The layer units consist of a tetrahedral SiOH sheet stacked with an edge shared octahedral AlO6 sheet with an internal aluminol group AlOH. A water layer exists between the adjacent two layers. Thanks to their structural features, HNTs are suitable for a potential application as support for catalytic composites. Recently, we reported the synthesis of novel palladium-based catalytic systems using halloysite nanotubes modified with imidazolium or triazoliu…
New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption
A straightforward and economic procedure has been developed for the synthesis of a new polydopamine-like silica-based material that has been obtained by oxidation of catechol with KIO4 followed by reaction with 3-aminopropyltrimethoxysilane. All techniques adopted for characterization showed that the obtained material is rich in different functional groups and the morphological analyses revealed dimensions in the nanometric range. The hybrid material has been characterized by several techniques showing its polydopamine-like nature, and preliminary observations for dye adsorption have been reported.
Green conditions for the Suzuki reaction using microwave irradiation and a new HNT-supported ionic liquid-like phase (HNT-SILLP) catalyst
A new catalytic system based on modified halloysite nanotubes was employed in the Suzuki reaction under microwave irradiation. A set of solvents, times and bases was screened and the best experimental conditions were obtained when the reactions were carried out for 10 min in water–ethanol at 120 °C in presence of K2CO3 as base. Good recyclability was observed. The new catalytic system was employed using either 1 mol% or 0.1 mol%. The palladium catalyst displayed good activity, allowing the synthesis of several biphenyl compounds in high yield working with only 0.1 mol% palladium loading. The application of microwave irradiation decreased the reaction time and also improved conversion with r…
Binding properties of mono-6-amino-beta-cyclodextrin towards p-nitroaniline derivatives: a polarimetric study
Halloysite-Based Bionanocomposites
Scientific research has been invigorated by a new class of biodegradable materials as alternatives to polymers derived from fossils. Such biomaterials can also offer economic advantages because they are derived from renewable resources. Several biopolymers (gelatin, chitin, chitosan, starch, pectin, cellulose and its modified versions, etc.) have been exploited to produce films and formulations. Their use is limited because of fast degradation, predominant hydrophilic character, and, in some cases, unsatisfactory mechanical properties. However, the properties of these polymers can be improved by using inorganic fillers such as additives. Halloysite nanotube is a promising green filler for t…
Current Status of Nanoclay Phytotoxicity
The use of nanotechnology in several fields has created a great interest and its rapid development with application in material science, nanomedicine, medical diagnosis, computer chips, catalysis and so on. The use of nanomaterials represents various advantages, including size, highly active surfaces, unique physico-chemical properties, and in some cases a controlled release of chemicals. In this context phyto-nanotechnology is growing and has promising application in agricultural aspects, such as use of soil remediation, antioxidants, adsorbents, nano-sensor for detection of soil quality, delivery of fertilizers and many others. Plants are very important components of the terrestrial eco-s…
Clay-based drug-delivery systems: what does the future hold?
Clays for drug delivery have been used from ancient time due to the large availability of clay minerals and their unprecedented properties. The empirical use of nanoclays from the past is converted in a stimulating scientific task aimed at building up nanoarchitectonic vehicles for drug delivery in a targeted and stimuli-responsive fashion. Here the historical aspects are discussed; next the modern examples of applications of different clay-based materials are discussed. A special focus is given to halloysite clay nanotubes, which are an emerging and very promising nanomaterial for drug-delivery purposes due to its special morphology and unique chemical properties. Advantages and limitatio…
Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications
Interazioni non covalenti tra esteri fosforici e nanotubi di carbonio a parete multipla
Fin dal 1991, quando Iijima li osservò per la prima volta, i nanotubi di carbonio (CNT) sono diventati oggetto d'interesse scientifico, in virtù delle loro proprietà fisiche, chimiche e meccaniche. Un impiego molto interessante riguarda l'aumento di stabilità di matrici polimeriche. I nanocompositi polimerici, in cui sono presenti percentuali molto basse di CNT (2.5%), presentano enormi miglioramenti nelle caratteristiche termomeccaniche, nella resistenza al calore e nella conduttività elettrica. C'è, però, un impedimento fondamentale a tutte le applicazioni che riguarda l'insolubilità intrinseca dei CNT nei solventi. La funzionalizzazione sia essa covalente che non è un espediente per ovvi…
Host−Guest Interactions between β-Cyclodextrin and the (Z)-Phenylhydrazone of 3-Benzoyl-5-phenyl-1,2,4-oxadiazole: The First Kinetic Study of a Ring−Ring Interconversion in a “Confined Environment”
The effect of beta-cyclodextrin (beta-CD) on the mononuclear heterocyclic rearrangement of the (Z)-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole (1) in aqueous borate buffer at pH = 9.6 has been analyzed at temperatures ranging from 293.15 to 313.15 K. The trend of the absorption spectra of 1 as a function of time has been accounted for with the formation of two different 1:1 complexes between beta-CD and 1, the first, "unreactive" complex being formed faster than the "reactive" one. The occurrence of negative activation enthalpy values for the studied interconversion evidences the kinetic relevance of inclusion processes. Computational models elaborated using the MM2 molecular mec…
Spectrophotometric determination of binding constants between some aminocyclodextrins and nitrobenzene derivatives at various pH values
Abstract The inclusion capacity of three modified cyclodextrins—namely mono-(6- N , N -dimethylamino-6-deoxy)- ( 3 ), mono-6-(2-aminoethyl)-amino-6-deoxy- ( 4 ) and mono-6-(2- N , N -dimethylaminoethyl)-amino-6-deoxy- ( 5 ) β-cyclodextrin, with six para -substituted nitrobenzenes ( A – F ) has been investigated at three different pH values. Molecular interactions in inclusion complexes have also been investigated by means of molecular mechanics (MM2/QD) models. The desolvation of the cyclodextrin is the most important factor in determining the binding ability of the various hosts. However, for a given host, electrostatic and van der Waals interactions and the formation of a hydrogen bond be…
The Daily Consumption of Cola Can Determine Hypocalcemia: A Case Report of Postsurgical Hypoparathyroidism-Related Hypocalcemia Refractory to Supplemental Therapy with High Doses of Oral Calcium
The consumption of soft drinks is a crucial factor in determining persistent hypocalcemia. The aim of the study is to evaluate the biochemical mechanisms inducing hypocalcemia in a female patient with usual high consumption of cola drink and persistent hypocalcemia, who failed to respond to high doses of calcium and calcitriol supplementation. At baseline and after pentagastrin injection, gastric secretion (Gs) and duodenal secretion (Ds) samples were collected and calcium and total phosphorus (Ptot) concentrations were evaluated. At the same time, blood calcium, Ptot, sodium, potassium, chloride, magnesium concentrations, and vitamin D were sampled. After intake of cola (1 L) over 180 min,…
PHYTOTOXICITY OF HALLOYSITE SUPPORTED IONIC LIQUID-LIKE PHASE (HNT-SILLP) CATALYST ON RAPHANUS SATIVUS L.
Nanotechnologies and nanomaterials are increasingly involved in the production of fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronic components and drug carriers with improved properties. Nevertheless, the production, use and disposal of nanomaterials, will inevitably lead to their release into the soil, with potential phytotoxicity on plants and negative impacts on economy, society and environment (1). In the last years halloysite nanotubes (HNT) emerged as promising materials with appealing perspective for technological applications. We have recently reported the generation of HNT derivatives carrying octylimidazolium moieties on the external surface (HNT supported…
Binary complexes heptakis-(6-amino)-(6-deoxy)-beta-cyclodextrin/fluorophore: structural investigation and chiral recognition
Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: Systems for sustained release of camptothecin
Supramolecular gel hybrids obtained by self-assembly of Fmoc-L-phenylalanine (Fmoc-F) in the presence of functionalized halloysite nanotubes (f-HNT) were obtained in biocompatible solvents and employed as carriers for the delivery of camptothecin (CPT) molecules. The synthesis of the new f-HNT material as well as its characterization are described. The properties of the hybrid hydrogels and organogels were analyzed by several techniques. The presence of small amounts of f-HNT allows good dispersion of the tubes and the subsequent formation of homogeneous gels. The experimental results show that f-HNT functions only as an additive in the hybrid gels and does not demonstrate gelator behavior.…
ChemInform Abstract: New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium.
New 4-substituted acyloxyproline derivatives with different hydrophobic properties of the acyl group were easily synthesized and used as catalysts in the direct asymmetric aldol reaction between cyclic ketones (cyclohexanone and cyclopentanone) and several substituted benzaldehydes. Reactions were carried out using water, this being the best reaction medium examined. Screening of these catalysts showed that compounds bearing the most hydrophobic acyl chains [4-phenylbutanoate and 4-(pyren-1-yl)butanoate] provided better results. The latter catalysts were successfully used in only 2 mol% at room temperature without additives to give aldol products in excellent stereoselectivities. These resu…
FUNZIONALIZZAZIONE DELLA SUPERFICIE DELL’ALLOSITE MEDIANTE RISCALDAMENTO A MICROONDE
L’allosite (Al2Si2O5•2H2O), è un alluminosilicato naturale, chimicamente simile al caolino; essa ha una struttura tubolare cava dell’ordine dei micrometri (0.5-1 μm ) e un diametro interno dell’ordine dei nanometri (15 nm ). I nanotubi di allosite (HNT) presentano sulla superficie esterna gruppi SiO2 mentre su quella interna gruppi AlOH. Viste le caratteristiche strutturali, HNT trovano applicazioni come Host, fungendo in alcuni casi da nanoreattori. Tali applicazioni sono però limitate dall’idrofilia della superficie, sia interna che esterna. In questo lavoro è stata sviluppata una nuova metodologia sintetica che prevede l’ultilizzo delle microonde per ancorare organosilani come precursori…
The interaction of native calf thymus DNA with Zn(II)-N,N'-bis(5,5'-triethylammoniomethyl-salicylidene)phenylendiimine
The interaction between native calf thymus deoxyribonucleic acid (DNA) and Fe-III-N,N'-ethylene-bis (salicylideneiminato)chloride, Fe(Salen)Cl, was investigated in aqueous solutions by UV-visible (UV-vis) absorption, circular clichroisin (CD), thermal denaturation and viscosity measurements. The results obtained from CD, UV-vis and viscosity measurements exclude DNA intercalation and can be interpreted in terms of an electrostatic binding between the Fe(Salen)(+) cation and the phosphate groups of DNA. The trend of the UV-vis absorption band of the Fe(Salen)Cl complex at different ratios [DNA(phosphate)]/[Fe(Salen)Cl] and the large increase of the melting temperature of DNA in the presence …
Lipase-catalyzed resolution of β-hydroxy selenides
Abstract Eleven β-hydroxy selenides were kinetically resolved using an immobilized lipase (Amano PS-C II) in toluene in the presence of vinyl acetate at 30 °C. This approach provided, in several cases, both enantiomers in high enantiomeric excess. The role of the size of substituents and the behaviour of cyclic β-hydroxy selenides is also discussed. Enantiopure β-hydroxy selenides are useful building blocks. As an application of this chemistry, enantiopure (1 S ,2 R )-indene oxide was obtained in one step from the proper enantiopure β-hydroxy selenide.
Chemical modification of halloysite nanotubes for controlled loading and release.
Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug…
Caratterizzazione e valutazione dell’attività anti proliferativa di nuovi sistemi per il drug carrier Allosite-sali triazolici/cardanolo
Da precedenti studi è stato valutato che i nanotubi di allosite modificati con sali triazolici (f-HNT), sono dei promettenti sistemi carrier per molecole biologiche1. In questo lavoro si riportano i risultati ottenuti studiando gli f-HNT come carrier per il cardanolo, molecola con interessanti attività biologiche. L’interazione fra il cardanolo e gli f-HNT è stata valutata tramite HPLC, spettroscopia FTIR, analisi termogravimentrica, misure di angolo di contatto e microscopia a scansione elettronica. Infine sono stati studiati sia il rilascio del cardanolo dal sistema che gli effetti citotossici del complesso f-HNT/Cardanolo verso linee cellulari di epatocarcinoma. I dati sperimentali otten…
Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity.
Abstract Positively charged halloysite nanotubes functionalized with triazolium salts (f-HNT) were employed as a carrier for curcumin molecules delivery. The synthesis of these f-HNT new materials is described. Their interaction with curcumin was evaluated by means dynamic light scattering (DLS) and UV–vis spectroscopy in comparison with pristine unmodified HNT (p-HNT). The curcumin load into HNT was estimated by thermogravimetric analysis (TGA) measurements, while the morphology was investigated by scanning electron microscopy (SEM) techniques. Release of curcumin from f-HNT, at three different pH values, by means of UV–vis spectroscopy was also studied. Furthermore, different cancer cell …
Microwave-assisted synthesis of novel cyclodextrin–cucurbituril complexes
Microwave irradiation was successfully used in order to obtain stable supramolecular aggregates between cyclodextrins and cucurbiturils, without the participation of any long-chain common ‘molecular thread’ guest. These aggregates were characterised by means of various different techniques, namely NMR, thermogravimetry, polarimetry and ESI-MS. Cross-analysis of experimental data allowed us to obtain insights on the stoichiometries of the composites and their thermal stabilities. The possible structures of the composites are briefly discussed, as well as the actual nature of their intrinsic stability.
A study on the essential oil of Ferulago campestris : How much does extraction method influence the oil composition?
The essential oil of different parts of Ferulago campestris (Bess.) collected in Sicily has been extracted by microwave-assisted hydrodistillation (MAHD) and by classic hydrodistillation (HD). A comparative qualitative-quantitative study on the composition of the oils was carried out. A total of 100 compounds were identified in the oils obtained by MAHD, whereas 88 compounds characterized the HD oils. The most prominent components were, in all different parts of F. campestris and in both extraction methods, 2,4,5-trimethylbenzaldehyde and 2,4,6-trimethylbenzaldehyde isomers; the latter was not previously found. The attempt to evaluate where the oil components are located in all parts of the…
Chemical and biological evaluation of cross-linked halloysite-curcumin derivatives
Abstract Well designed and safe nano drug carrier systems are an important tool in biomedical applications. The combination of two or more drugs has been used in medicine both to enhance the therapeutic effect and to decrease the side effects of drugs. Biocompatible halloysite nanotubes, that possess two different surfaces, are a suitable nanomaterial for a simultaneous carrier and release of two drugs that can exert a synergistic effect against cancer cells. In this study, three curcumin derivatives and doxorubicin were loaded by supramolecular and covalent linkage at the lumen and external surface of the halloysite nanotubes. The obtained multifunctional systems were characterized by seve…
Organo-Clay Nanomaterials Based on Halloysite and Cyclodextrin as Carriers for Polyphenolic Compounds
Hybrid material based on halloysite covalently linked to a hyper-reticulated cyclodextrin network was investigated as a potential carrier for polyphenolic compounds. The absorption ability of the hybrid system was studied in different pH conditions as well as the kinetic release of curcumin, chosen as a drug model. A preliminary study was performed to assess the antioxidant capacity of the obtained carrier. The obtained results highlighted that the curcumin molecule can have sustained release from the carrier over the time, retaining its antioxidant properties due to the combination of two different host systems that give rise to an hyper-reticulated structure, allowing an increase in the d…
Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy
Abstract Hypothesis The use of non-viral vectors for gene therapy is hindered by their lower transfection efficiency and their lacking of self-track ability. Experiments This study aims to investigate the biological properties of halloysite nanotubes-carbon dots hybrid and its potential use as non-viral vector for oral gene therapy. The morphology and the chemical composition of the halloysite hybrid were investigated by means of high angle annular dark field scanning TEM and electron energy loss spectroscopy techniques, respectively. The cytotoxicity and the antioxidant activity were investigated by standard methods (MTS, DPPH and H2O2, respectively) using human cervical cancer HeLa cells …
Colloidal stability and self-assembling behavior of nanoclays
Abstract Currently, nanoclays are attracting the attention of a wide part of the scientific community, due to some of their most peculiar features that make them good candidates for applications in different fields. In light of this, some strategies can be pursued in order to obtain stable colloidal dispersions of nanoclays with the aim to improve their features and to expand their use. Hence, this chapter presents an overview on the structural and morphological characteristics, the physico-chemical properties and the main approaches that are taken into account for the preparation of homogeneous suspensions of Halloysite, Imogolite and Laponite in both aqueous and apolar solvent media. In p…
Functionalized halloysite multivalent glycocluster as a new drug delivery system.
A new design for halloysite nanotube materials was obtained by grafting chemically modified cyclodextrin units onto the nanotube surface. In particular, grafted cyclodextrins were decorated with thiosaccharide pendants, in order to mimic the well-known binding of sugars to proteins and the glyco-cluster effect occurring during cellular recognition events. The obtained materials were characterized by using a combination of varied techniques (FT-IR spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, turbidimetry), and their potential drug-delivery abilities were tested by studying their interactions with the common naturally occurring anticancer a…
FUNCTIONALIZED HALLOYSITE NANOTUBES FOR ENHANCED REMOVAL OF Hg2+ IONS FROM AQUEOUS SOLUTIONS
AbstractWater is essential for humans, animals, and plants; pollutants, usually derived from anthropogenic activities, can have a serious effect on its quality. Heavy metals are significant pollutants and are often highly toxic to living organisms, even at very low concentrations. Among the numerous removal techniques proposed, adsorption onto suitable adsorbent materials is considered to be one of the most promising. The objective of the current study was to determine the effectiveness of halloysite nanotubes (HNT) functionalized with organic amino or thiol groups as adsorbent materials to decontaminate polluted waters, using the removal of Hg2+ ions, one of the most dangerous heavy metals…
Enantioselective recognition of alfa-amino acids by binary complexes fluorophore/cyclodextrin
IL CONSUMO DI BEVANDE RICCHE DI ACIDO ORTOFOSFORICO COME FATTORE DI RISCHIO PER LO SVILUPPO DI IPOCALCEMIA: IL CASO DI UNA DONNA CON IPOPARATIROIDISMO POST-CHIRURGICO
Studio polarimetrico degli equilibri di inclusione tra ciclodestrine native ed opportuni guest modello alifatici e aromatici
Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics
Two different processes, namely the Bamford–Stevens and [4 + 2] Diels Alder reactions, have been optimized under microwave irradiation for the functionalization of fullerenes. In this manner, all the main C60- and C70-based acceptor derivatives for organic solar cells such as PCBM, DPM, BHN and ICBA, have been prepared in higher yields and shorter reaction times with respect to the reported data. These findings represent a step forward toward the wide production of cheaper organic solar cells as a consequence of the cost abatement of the acceptors given by higher yields, lower waste production, and reduced reaction time which means a strong energy saving.
New proline derivatives as recyclable catalysts for aldol reaction
MODIFICAZIONI COVALENTI DI NANOTUBI DI ALLOSITE PER APPLICAZIONE NEL DRUG DELIVERY
Nell'ampio scenario dei nanomateriali, i sistemi nanotubolari godono di un consolidato e crescente interesse sia nell'ambito scientifico che industriale. Fra la miriade di sistemi tubolari, recentemente i nanotubi allosite (HNT) hanno attirato l’attenzione della comunità scientifica.1 Grazie alla presenza di una cavità vuota, gli HNT trovano, principalmente, applicazione come nanocontainer per il rilascio controllato di composti chimici, in particolare, farmaci. L’introduzione di modificazioni covalenti su entrambe le superfici permette di modulare le proprietà dell’allosite, aumentando così i suoi campi di applicazione. In questa comunicazione verranno presentati recenti risultati ottenuti…
Biocompatible Poly(N-isopropylacrylamide)-halloysite Nanotubes for Thermoresponsive Curcumin Release
The grafting of poly(N-isopropylacrylamide) (PNIPAAM) onto the halloysite external surface is proposed in order to obtain a novel thermoresponsive drug carrier for curcumin delivery. The new nanomaterial is characterized by means of FT-IR spectroscopy, thermogravimetric analysis, and SEM investigations. A high density of polymer chain was achieved at the nanoparticle surface. The PNIPAAM dehydration phenomenon was observed in water above 32 °C that is nearly coincident with the lower critical solution temperature for the polymer. The colloidal stability as well as the wettability of the obtained nanomaterial may be triggered by temperature stimuli. In vitro tests simulating the gastro-intes…
Binding equilibria between beta-cyclodextrin and p-nitro-aniline derivatives: the first systematic study in mixed water-methanol solvent systems.
Abstract Complexation equilibria, in mixed water–methanol solvent media, between native β-cyclodextrin and a set of suitably selected p -nitro-aniline derivatives were studied by means of polarimetry. The effects exerted by the organic co-solvent on the conditional inclusion free energies Δ G cond 0 and the differential molar optical rotations Δ Θ were thoroughly analyzed under the perspective of the enthalpy–entropy compensation effect. Experimental data suggest an intimate participation (‘dynamic co-inclusion’) of solvent molecules in the formation and in the conformational dynamics of the host–guest inclusion complex.
First Evidence of Proline Acting as a Bifunctional Catalyst in the Baylis–Hillman Reaction Between Alkyl Vinyl Ketones and Aryl Aldehydes
Proline in the presence of sodium hydrogen carbonate has been found to be an effective catalyst for the Baylis–Hillman reaction between methyl or ethyl vinyl ketone and aryl aldehydes. Screening of several amine catalysts showed that an ionizable carboxylic function directly linked to the secondary amine catalyst plays an important role in the synthesis of the desired product in good yield. The data obtained has allowed us to suggest, for the first time, that proline, sarcosine, pipecolinic acid and homoproline may act as bifunctional catalysts via a bicyclic enaminolactone species as intermediate. Quantum-mechanical calculations (PM3/COSMO and ab initio 3-21G/COSMO) support this mechanism …
The binary pyrene/heptakis-(6-amino-6-deoxy)-β-cyclodextrin complex: A suitable chiral discriminator. Spectrofluorimetric study of the effect of some α-amino acids and esters on the stability of the binary complex
The effect of some α-amino acids and their esters on the stability of the binary pyrene/heptakis-(6-amino-6-deoxy)-β-cyclodextrin (py/am-β-CD) complex has been studied by means of fluorescence spectroscopy at two pH values (8.0 and 9.0). The binary complex was generally stabilized by adding the ternary agent at pH 8.0. A more varied substrate effect is observed at pH 9.0 where am-β-CD is present in the uncharged form. The conditional constant (β2) values determined by L/D α-amino acids show that the binary complex is a suitable receptor for chiral recognition. The enantiomer selectivity values obtained, ranging from 1.2 up to 7.4, are generally higher than those reported for α-amino acids a…
New simple hydrophobic proline derivatives as highly active and stereoselective catalysts for the direct asymmetric aldol reaction in aqueous medium
New 4-substituted acyloxyproline derivatives with different hydrophobic properties of the acyl group were easily synthesized and used as catalysts in the direct asymmetric aldol reaction between cyclic ketones (cyclohexanone and cyclopentanone) and several substituted benzaldehydes. Reactions were carried out using water, this being the best reaction medium examined. Screening of these catalysts showed that compounds bearing the most hydrophobic acyl chains [4-phenylbutanoate and 4-(pyren-1-yl)butanoate] provided better results. The latter catalysts were successfully used in only 2 mol% at room temperature without additives to give aldol products in excellent stereoselectivities. These resu…
One-pot synthesis of ZnO nanoparticles supported on halloysite nanotubes for catalytic applications
Abstract A versatile catalyst based on halloysite and zinc oxide (HNT@ZnO) was prepared, for the first time, starting from ZnO commercial bulk form as Zn precursor source, in a one-pot procedure. This strategy gives the possibility to obtain small ZnO nanoparticles loaded on the HNT surface without the use of inorganic salts which envisage the removal of undesired anions and therefore a calcination process at high temperature. It was found that the presence of halloysite improved the UV–vis spectral absorption ability of ZnO. The hybrid was successful used as photocatalyst for the methylorange and rhodamine B degradation. In addition, after eight consecutive cycles for the methylorange phot…
Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β-cyclodextrin: a polarimetric study
The binding constants for the inclusion complexes formed between heptakis-(2,6-di-O-methyl)-β-cyclodextrin (MβCD) and mono-(3,6-anhydro)-β-cyclodextrin (AβCD) with a set of suitably selected organic guests, were measured by means of polarimetry. Measurements were carried out at various pH values in order to ensure the correct protonation state for ionizable guests. Experimental data suggest that the binding properties of MβCD may be rationalized considering the less polar and more hydrophobic character of the cavity, although similar variations in conformational/dynamic behaviour occur as for native βCD. On the other hand, AβCD shows some similarities with αCD, due to the significant distor…
Stereoselective synthesis of substituted tetrahydropyran rings via 6-exo and 6-endo selenoetherification
Eight unsaturated alcohols were cyclized by selenoetherification in 6-exo or 6-endo manner to give substituted tetrahydropyran rings. Yields, regio- and stereoselectivities were discussed in terms of steric and electroniceffects such as Se-O interaction. For the first time examples of the use of silica gel in selenoetherification and the effect of the X - counter ion of PhSe + on the reaction course are discussed. These effects are related to the occurrence of Se-O interaction.
Binding porperties of hetpakis-(2,6-di-O-methyl)-beta-cyclodextrin and mono-(3,6-anydro)-beta-cyclodextrin
Thermodynamics of binding between α- and β-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy–entropy compensation effect
Abstract The thermodynamics of binding between native α- and β-cyclodextrin towards several p -nitro-aniline derivatives was examined, in order to gain further insights about the occurrence of different interaction modes for the two hosts. Valuable information was achieved regarding the ‘expanded hydrophobic sphere’ of α-cyclodextrin. Furthermore, very interesting and unexpected aspects of the behavior of β-cyclodextrin were enlightened, such as the crucial role played by hydrogen bond interactions. Experimental data were examined under the perspective of the ‘enthalpy–entropy compensation effect’, and some ideas about this topic are discussed.
Cyclodextrin–calixarene co-polymers as a new class of nanosponges
Hyper-reticulated co-polymers jointly formed by cyclodextrin and calixarene units, which can be considered as a new class of nanosponges, were easily obtained by means of a click chemistry approach. In particular, we succeeded in preparing our materials by exploiting the copper-catalyzed 1,3-dipolar cycloaddition (CuAAC) reaction between heptakis-(6-deoxy)-(6-azido)-beta-cyclodextrin and (5,11,17,23-tetra-tert-butyl)-(25,26,27,28-tetra-propargyloxy)-calix-[4]-arene, mixed in different proportions. These materials were fully characterized by means of combined FT-IR, thermogravimetric, C-13 {H-1} CP-MAS NMR and nitrogen adsorption/desorption techniques. In particular, C-13 {H-1} CP-MAS spectr…
Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction
Abstract Microwave assisted halloysite (HNT) external surface functionalization with ionic liquids is described. HNTs modification was achieved in two steps: a) grafting of 3-mercaptopropyl trimethoxysilane on the external surface of HNT by a microwave irradiation; b) anchorage of vinylimidazolium ionic liquids by a thiol-ene reaction. MW irradiation allowed us to obtain high loading onto the HNT surface compared to those obtained through conventional synthesis. Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the grafting has occurred only on the external surface of HNT. Turbidimetric and dynamic light scattering analyses showed that the introduction of…
Polystyrene supported L-proline: a recyclable organocatalyst for the asymmetric aldol reaction in the presence of water
Spectrophotometric study on the thermodynamics of binding of α- and β-cyclodextrin towards some p-nitrobenzene derivativesElectronic supplementary information (ESI) available: Values of inclusion constants at different temperatures. See http://www.rsc.org/suppdata/ob/b3/b300330b/
Binding properties of native α- and β-cyclodextrin towards some nitrobenzene derivatives have been studied by means of UV-vis spectrophotometry. The former host is able to form complexes having 1 : 1 and 1 : 2 stoichiometric ratios with these guests, while only 1 : 1 complexes are detected with the latter host. A careful analysis of the thermodynamic parameters for complexation equilibria, under the perspective of the enthalpy–entropy compensation effect, reveals that binding abilities of the two different hosts are subject to different features.
CHEMICAL MODIFICATIONS OF HALLOYSITE NANOTUBES FOR THE DEVELOPMENT OF SMART NANOMATERIALS
Halloysite nanoclays (HNTs) are promising nanomaterials because of their versatile properties, such as hollow tubular morphology and tunable surface chemistry. HNTs are biocompatible, no toxic and abundantly available at low cost. Due to these characteristics HNTs are suitable for development of hybrid sustainable materials, which are perspective for wastewater remediation, green packaging and drug delivery. HNTs are quite polydisperse in size with a length of ca. 1 m, while the external diameter and the lumen range between 50-80 nm and 10-15 nm, respectively. Chemically, halloysite is composed of gibbsite octahedral sheet (Al-OH) groups on the inner surface and siloxane (Si−O−Si) groups o…
Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays.
Three polyaminocyclodextrin materials, obtained by direct reaction between heptakis(6-deoxy-6-iodo)-β-cyclodextrin and the proper linear polyamines, were investigated for their binding properties, in order to assess their potential applications in biological systems, such as vectors for simultaneous drug and gene cellular uptake or alternatively for the protection of macromolecules. In particular, we exploited polarimetry to test their interaction with some model p-nitroaniline derivatives, chosen as probe guests. The data obtained indicate that binding inside the host cavity is mainly affected by interplay between Coulomb interactions and conformational restraints. Moreover, simultaneous i…
Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications
A highly sustainable prototype of a flow system based on gold nanoparticles (4.2 nm) supported on thiol-functionalized halloysite nanotubes (HNTs) was developed for catalytic applications. The catalytic performances were evaluated using the reduction of 4-nitrophenol to 4-aminophenol as a model system. Under the best experimental conditions (0.0001 mol%, 1.97 × 10−8 mg of Au nanoparticles), an impressive apparent turnover frequency value up to 2 204 530 h−1 was achieved and the halloysite-based catalyst showed full recyclability even after ten cycles. The high catalytic activity confirms the importance of the use of HNTs as support for Au nanoparticles that can exert a synergistic effect bo…
Hydrophobically Directed Aldol Reactions: Polystyrene-SupportedL-Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water (Eur. J. Org. Chem. 28/2007)
The cover picture shows the aldol reaction between ketones and arylaldehydes carried out by using a polystyrene-supported L-proline catalyst. This material furnishes aldol products in high yields and stereoselectivities. Screening of solvents showed that these reactions take place only in the presence of water. This solvent effect, coupled with the high stereoselectivities observed, has been explained by the formation of a hydrophobic core in the inner surface of the resin with the hydrophilic proline moiety in the resin/water interface. Such a microenvironment promotes the aldol reaction and increases the stereoselectivity. Recycling investigations have shown that this material can be reus…