0000000000907275
AUTHOR
Manu Lahtinen
Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles
This article is aimed to extend a simple protocol for preparation of various plant leaves extract and their application to green synthesis of the metallic nanoparticles. Five plant leaves extract showed mild reduction and stabilization ability for silver and gold nanoparticles (AgNPs and AuNPs) at room temperature. The particle size range varied from 25 to 42 nm and 21 to 47 nm for AgNPs and AuNPs, respectively. Plant leaves extract-mediated nanoparticles were characterized to confirm the shape, size, crystallinity, and content using different spectroscopic investigations. Differences in stability of nanoparticles at different pH were also measured by zeta potential.
Methyl 3′,4′,5′-trimethoxybiphenyl-4-carboxylate
In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the molecules are packed in an antiparallel fashion in layers along the a axis. In each layer, very weak C—H...O hydrogen bonds occur between the methoxy and methyl ester groups. Weak C—H...π interactions between the 4′- and 5′-methoxy groups and neighbouring benzene rings [methoxy-C–ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.
2,2′:6′,2″-Terpyridine Trimethylplatinum(IV) Iodide Complexes as Bifunctional Halogen Bond Acceptors
Three new organometallic trimethylplatinum(IV) iodide complexes of 2,2′:6′,2″-terpyridines have been synthesized and characterized by 1H NMR spectroscopy, mass spectrometry, elemental analysis, and single crystal X-ray diffraction analysis. The X-ray crystal structures of PtMe3I(L) complexes 1–3 {L for 1 = 4′-chloro-2,2′:6′,2″-terpyridine, 2 = 4′-(4-cyanophenyl)-2,2′:6′,2″-terpyridine, and 3 = 4′-(4-tolyl)-2,2′:6′,2″-terpyridine} reveal distorted octahedral coordination geometry of the platinum(IV) metal centers with bidentate coordination of the terpyridine ligands. Complexation of 1–3 with iodopentafluorobenzene (IPFB) afforded single-crystal structures of halogen bond (XB) complexes 1a–3…
Sterically controlled self-assembly of tetrahedral M(6)L(4) cages via cationic N-donor ligands.
Tripodal cationic N-donor ligands exhibit sterically controlled self-assembly of tetrahedral M6L4 coordination cages that promote selective anion encapsulation (PF6(-)OTf(-)) in the solid state. The described method is a potential template for stepwise assembly of hetero-ligand coordination cages and polymers.
1-{2-[4-(4-Nitrophenyl)piperazin-1-yl]ethyl}-4-aza-1-azoniabicyclo[2.2.2]octane iodide
The title compound, C18H28N5O2+·I−, was observed as a main product in an intended 1:1 reaction between 4-iodonitrobenzene and 1,4-diazabicyclo[2.2.2]octane (DABCO). In the reaction, DABCO undergoes a ring opening to yield a quaternary salt of DABCO and 1-ethyl-4-(4-nitrophenyl)piperazine with an iodide anion. The crystal structure determination was carried out as no crystal structure had been previously reported in the investigations describing the corresponding reaction with 4-chloronitrobenze. Indeed, the crystal structure of the title compound confirms the molecular composition proposed earlier for the analogous chloride salt. The cation conformation is similar to the …
Synthesis, characterization and thermal properties of small R2R′2N+X−-type quaternary ammonium halides
Twenty-one R {sub 2} R {sup '} {sub 2}N{sup +} X {sup -} -type (R=methyl or ethyl, R {sup '}=alkyl, X=Br or I) quaternary ammonium (QA) halides have been prepared by using a novel one-pot synthetic route in which a formamide (dimethyl-, diethylformamide, etc.) is treated with alkyl halide in the presence of sodium or potassium carbonate. The formation of QA halides was verified with {sup 1}H-NMR, {sup 13}C-NMR, MS and elemental analysis. The crystal structures of four QA halides (two bromide and two iodide) were determined using X-ray single crystal diffraction, and the powder diffraction method was used to study the structural similarities between the single crystal and microcrystalline bu…
Crystal Structures and Thermal Behavior of Bis(dibenzyldimethylammonium) Tetrabromometallates(II) [M = Mn(II), Co(II) and Zn(II)] and Their Solvates
Six new A2MBr4 structures [A = dibenzyldimethylammonium cation,M = Mn(II), Co(II) or Zn(II)] were crystallized with or without solvent molecules from acetonitrile, methanol and/or aqueous solutions. The isomorphous compounds [(Bz2Me2N)2][MnBr4]·CH3CN·H2O (1) and [(Bz2Me2N)2]-[ZnBr4]·CH3CN·H2O (4) crystallize in the triclinic space group P1̄ from acetonitrile solutions. The solvent molecules participate in the hydrogen bonding network inside the crystal structure. [(Bz2Me2N)2][CoBr4]·0.5CH3CN (2) crystallizes from an acetonitrile solution in the monoclinic space group P21/c. The solvent molecules fill the voids of the crystal structure. Compound 2 is isostructural with the previously reporte…
Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study
The nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers. The results showed that the C-C bond lengths of the modified CNFs varied significantly. Chemical functionalization altered the frontier orbitals of the pristine material, and therefore altered the nature of their interactions with ot…
First bisphosphonate hydrogelators: potential composers of biocompatible gels
Recently, investigation of hydrogels has gained ever increasing attention mostly because of their biomedical and pharmaceutical properties, and novel hydrogelators are constantly studied to find functional applications. Bisphosphonates (BPs) are well-known compounds applicable in different fields but are mostly used in clinics as drugs for bone-related diseases. In this study, a novel class of BP-hydrogelators together with a BP-organogelator was found, and the gelating abilities of the compounds were studied. Several techniques to analyze the structure and the properties of the formed gels were used, including solid state 13C and 31P CPMAS and solution state NMR spectroscopy, IR spectrosco…
Cyclic dipeptides: catalyst/promoter-free, rapid and environmentally benign cyclization of free amino acids
“The best catalyst is no catalyst.” With growing public concern over global warming and the amount of greenhouse gases, it is important to reduce the amount of chemicals and eliminate waste, to obtain better results in a simple, selective, safe, and environmentally benign fashion compared to conventional tedious chemical synthesis. Herein, we disclose an environmentally benign, rapid, catalyst/promoter/coupling reagent-free cyclization procedure of free amino acids to furnish exclusively cyclic dipeptides (2,5-diketopiperazines, DKPs) in excellent or even quantitative yield, along with their solid state self-assembling properties. This process is extremely simple and highly efficient with l…
Selective recovery of phosphorus as AlPO4 from silicon-free CFB-derived fly ash leachate
The prospect of phosphorus (P) recovery from siliceous fly ash was investigated. The phosphorus content in the pristine fly ash was 1.21%. Obtaining pure phosphorus products from fly ash is very challenging because of high concentration of other elements, silicon (Si) at 17.3% being the major contaminant. The fly ash was fractionated with sieve size of 125 μm to concentrate the phosphorus in the small-size fraction, which also facilitated the removal of 78% of silica (Si) in the solid phase. The fractionated fly ash was treated with 8 M HCl in order to remove 98% of Si by aging (5 h) of leachate until precipitation of Si-gel, and a phosphorus-rich solution is obtained. Iron (Fe) is also con…
Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa
Abstract Metal nanostructures have unusual physicochemical properties and biological activities compared to their bulk parent materials. Thus in recent years a number of physical, chemical and biological techniques were applied for the development of metal nanoparticles (NP). Here we have synthesized silver and gold nanoparticles (AgNPs and AuNPs) by using leaves extracts of Rosa rugosa . Surface plasmon resonance spectra for silver and gold are obtained at 451 and 578 nm with brown yellow and pink-red color, respectively. AgNPs and AuNPs vary in size according to different leaves extract and metal concentration used for the synthesis. Different instrumental techniques were applied to chara…
Pyrene derived functionalized low molecular weight organic gelators and gels
Pyrene derived binary functionalized low molecular weight organic gelators (FLMOGs) and gels thereof in selected organic solvents were synthesized and characterized. The functionality refers to a functional group that does not take part in formation of the supramolecular gel network, but remains free and available for other purposes, such as to bind nanoparticles or other molecules into the gel structure. Functional groups were observed to disturb gel formation strongly, if they interact with each other within the same supramolecule due to the formation of competitive structures. Preventing such interactions restored the original gel properties. A gel with weaker supramolecular bonding than…
Development of iron oxide / activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution
Iron oxide (Fe3O4) and iron oxide/activated carbon (Fe3O4/AC) were fabricated by co-precipitation method for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution in batch mode. These nanoparticles were characterized by BET, FTIR, XRD, SEM/TEM and VSM. The optimum conditions for the removal of ions were pH = 2 for Cr(VI) and 6 for Cu(II) and Cd(II), initial metal ion concentration = 50 mg L−1, nanoparticle dose = 50 mg/10 mL, temperature = 25 ± 1 °C, shaking speed = 180 rpm and contact time = 3 h. The equilibrium data of ions sorption were well described by Langmuir, Freundlich, Redlich-Peterson and Intraparticle Diffusion model. The R2 values obtained by Langmuir model were h…
Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes
Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copperIJII) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…
Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages
Tripodal N-donor ligands are used to form halogen-bonded assemblies via structurally analogous Ag+-complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N∙∙∙I+∙∙∙N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1-methyl-1-azonia-4-azabicyclo[2.2.2]octane)-mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N∙∙∙Ag+∙∙∙N] → [N∙∙∙I+∙∙∙N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepar…
Hydrogen and Deuterium Incorporation in ZnO Films Grown by Atomic Layer Deposition
Zinc oxide (ZnO) thin films were grown by atomic layer deposition using diethylzinc (DEZ) and water. In addition to depositions with normal water, heavy water (2H2O) was used in order to study the reaction mechanisms and the hydrogen incorporation at different deposition temperatures from 30 to 200 °C. The total hydrogen concentration in the films was found to increase as the deposition temperature decreased. When the deposition temperature decreased close to room temperature, the main source of impurity in hydrogen changed from 1H to 2H. A sufficiently long purging time changed the main hydrogen isotope incorporated in the film back to 1H. A multiple short pulse scheme was used to study th…
Synthesis and thermal behavior of Janus dendrimers, part 2
Abstract The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures ( T d ) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite …
Crystallization, spectral, crystallographical, and thermoanalytical studies of succinobucol polymorphism.
Four different polymorphs, A, C, D, and E, of succinobucol were isolated and characterized by means of solid-state nuclear magnetic resonance spectroscopy, single crystal and powder X-ray diffraction, differential scanning calorimetry, thermogravimetry, and attenuated total reflection–infrared spectroscopy. From a number of experiments, the same polymorphs (C, D, and E) and an equilibrium phase mixture B consisting of polymorphs C and D were repeatedly gained using different solvents or their mixtures. Although polymorph A was obtained directly from recrystallization only on few occasions, polymorphs C, D, and E proved to be metastable kinetic polymorphs, which slowly transform to a thermod…
1,1,4,4-Tetramethylpiperazinediium dibromide
A small quantity of the title compound, C8H20N22+·2Br−, was formed as a by-product in a reaction between a diamine and an alkyl bromide. The asymmetric unit contains half of a centrosymmetric dication and a bromide anion. In the crystal, weak intermolecular C—H...Br hydrogen bonds consolidate the crystal packing.
Spin Switching with Triazolate-Strapped Ferrous Porphyrins
Fe(III) porphyrins bridged with 1,2,3-triazole ligands were synthesized. Upon deprotonation, the triazolate ion coordinates to the Fe(III) ion, forming an overall neutral high-spin Fe(III) porphyrin in which the triazolate serves both as an axial ligand and as the counterion. The second axial coordination site is activated for coordination and binds p-methoxypyridine, forming a six-coordinate low-spin complex. Upon addition of a phenylazopyridine as a photodissociable ligand, the spin state of the complex can be reversibly switched with ultraviolet and visible light. The system provides the basis for the development of switchable catalase- and peroxidase-type catalysts and molecular spin sw…
Properties of new asymmetrically quaternized dicationic ammonium based room-temperature ionic liquids with ether functionality
Eleven asymmetrically quaternized dicationic ammonium-based room-temperature ionic liquids (DRTILs) with bis(trifluoromethanesulfonyl)imide (TFSI) were synthesized and characterized, along with 11 analogous dibromide precursors. Two-step synthesis was used to diquaternize tetramethyl-1,3-propanediamine and 2-(dimethylamino)-ethyl ether amines with a variety of alkyl and ether functionalized side chain groups (R1 ≠ R2). Each salt contain 1 to 3 ether groups located either in a linkage or in a side chain moieties. Structural and thermoanalytical properties, water content, and viscosity have been characterized using, for example, NMR, mass spectrometry (MS), X-ray diffraction, and thermal anal…
N,N-Dimethyl-N-propylpropan-1-aminium chloride monohydrate
The title compound, C8H20N+·Cl−·H2O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water molecules, which interact via O—H...Cl hydrogen bonds [O...Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak intermolecular C—H...Cl and C—H...O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.
A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electrophoresis.
Two new methods of capillary zone electrophoresis based on aqueous phosphate running buffers with UV spectrophotometric detection were developed and optimized for the determination of eight carboxylates as copper complexes. Metalcomplexes are negatively charged, so measurements were made as anion analyses with flow reversal in the capillary. Two flow modifiers were used: a common tetradecyltrimethylammonium bromide (TTAB) and a new ionic liquid dimethyldinonylammonium bromide (DMDNAB). The methods were compared to each other. Better separation was achieved with DMDNAB as the flow modifier. Method development was done using a fused silica capillary (61 cm x 50 microm i.d.). Optimization was …
Amide functionalized aminobisphenolato MoO2 and WO2 complexes: Synthesis, characterization, and alkene epoxidation catalysis
The use of dioxidomolybdenum(vi) and -tungsten(vi) complexes supported by a variety of structurally different tri- and tetradentate aminobisphenolato ligands as pre-catalysts in the epoxidation of alkenes is well established. However, under the widely used standard 1 mol-% catalyst loadings these types of complexes generally show modest activity only. Recently, amide functionalities in the ligand design of various aminomonophenolato MoO2 complexes have been shown to lead to heightened catalytic activity in alkene epoxidation. In this paper we show that similar ligand amide functionalization can lead to significant enhancement in the alkene epoxidation activity of aminobisphenolato MoO2 comp…
Synthesis, NMR spectral and single crystal X-ray structural studies on Ni(II) dithiocarbamates. Fabrication of nickel sulfide nanospheres by the solvothermal method
Abstract Three dithiocarbamatonickel(II) complexes, [Ni(bzbudtc)2] (1), [Ni(bzbudtc)(PPh3)(NCS)] (2) and [Ni(bzbudtc)(PPh3)(CN)] (3) (where, bzbudtc = the N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine), were prepared. All three complexes were analyzed by UV–Vis, IR and NMR (1H, 13C and 31P) spectra. The 13C NMR spectra of complexes 1–3 show the most crucial thioureide signal at around 200 ppm. A significant deshielding observed for the 31P signals in 2 and 3 reveals the effective bonding of phosphorus to the metal center. Single crystal X-ray analysis of crystals of 1–3 show that all the described complexes exhibit a distorted square planar coordination geometry in the…
Series of Near-IR-Absorbing Transition Metal Complexes with Redox Active Ligands
New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N&rsquo
Self-assembly properties of bile acid derivatives of L-cysteine, L-valine and L-serine alkyl esters
Comprehensive self-assembly studies for nine bile acid amides of amino acid esters are reported. The number of the hydroxyl groups attached to the steroidal skeleton and the character of the amino acid ester moiety were used as variables when examining the self-assembly properties of the compounds. Two of the compounds were shown to undergo self-assembly leading to organogelation. In addition, preliminary self-assembly studies in aqueous mixtures of polar organic solvents were conducted. Microscopic methods (optical microscopy and scanning electron microscopy) were utilised in order to gain a deeper insight into the self-assembled structures. Furthermore, single-crystal X-ray structures for…
Phase selective synthesis of ZnS nanoparticles from structurally new dithiocarbamate precursor
Abstract A phase selective solvothermal synthesis of ZnS (wurzite) nanoparticles with a flower-like morphology using a dithiocarbamate precursor, [Zn(4-dpmpzdtc)2(dpmpz)] (1) (where, dpmpz=(diphenylmethyl)piperazine), is described. The nanoparticles were identified as ZnS (wurzite) with the particle size of about 3 to 10 nm by scanning and transmission electron microscopy as well as powder X-ray diffraction (XRD). In addition, the precursor complex 1 was characterized using single crystal X-ray diffraction.
Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…
Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition
ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). T…
Synthesis and structural studies on Ni(II) dithiocarbamates : Exploring intramolecular Ni···H-C interactions
Five new Ni(II) dithiocarbamates with NiS4, NiS2PN and NiS2PCl coordination spheres, viz. [Ni(bupmbzdtc)2] (1), [Ni(bupmbzdtc)(PPh3)(NCS)] (2), [Ni(bupmbzdtc)(PPh3)Cl] (3), [Ni(4-dpmpzdtc)(PPh3)Cl] (4) and [Ni(pbbzbudtc)(PPh3)(NCS)] (5), where bupmbzdtc = N-butyl(p-methylbenzyl)dithiocarbamato anion, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, pbbzbudtc = N-(p-bromobenzyl)butyl-dithiocarbamato anion and PPh3 = triphenylphosphine, were synthesized and characterized by UV, IR, NMR and single crystal X-ray diffraction methods. Spectral results suggest a square planar geometry around the Ni(II) metal center for all the synthesized complexes. Single crystal X-ray structural an…
Fabrication of superconducting tantalum nitride thin films using infra-red pulsed laser deposition
We report the successful fabrication of superconducting tantalum nitride (TaN) thin films using a pulsed laser deposition technique with 1064 nm radiation. Films with thickness $ \sim $ 100 nm deposited on MgO (100) single crystals and on oxidized silicon (SiO$_{2} $) substrates exhibited a superconducting transition temperature of $\sim $ 8 K and 6 K, respectively. The topography of these films were investigated using atomic force and scanning electron microscopy, revealing fairly large area particulate free and smooth surfaces, while the structure of the films were investigated using standard $ \theta -2 \theta $ and glancing angle X-ray diffraction techniques. For films grown on MgO a fa…
Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers
The syntheses and thermal and X-ray powder diffraction analyses of three sets of aliphatic polyester dendrimers based on 2,2-bis(hydroxymethyl)propionic acid as a repeating unit and 2,2-dimethyl-1,3-propanediol, 1,5-pentanediol, and 1,1,1-tris(hydroxymethyl)ethane as core molecules are reported. These dendritic polyesters were prepared in high yields with the divergent method. The thermal properties of these biodendrimers were evaluated with thermogravimetric analysis and differential scanning calorimetry. The thermal decomposition of the compounds occurred around 250 °C for the hydroxyl-ended dendrimers and around 150 °C for the acetonide-protected dendrimers. In addition, the crystallinit…
Methyl 3′,5′-dimethoxybiphenyl-4-carboxylate
In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, molecules are packed in layers parallel to the b axis in which they are connected via weak intermolecular C—H...O contacts. Face-to-face π–π interactions also exist between the benzene rings of adjacent molecules, with centroid–centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.
A linear Fe-O-Fe unit in bis(dibenzyldimethylammonium)-oxo-di[tribromoferrate(III)]
The title compound, (C16H20N)2[Fe2Br6O], crystallizes with one dibenzyldimethylammonium cation and one half of a [mu]-oxo-bis[tribromoferrate(III)] anion in the asymmetric unit. The bridging oxo group is situated on an inversion centre, resulting in a linear conformation for the Fe-O-Fe unit. The iron(III) cations have tetrahedral geometry, with bond angles in the range 106.8 (1)-112.2 (1)°. The ion pairs are held together by Coulombic forces and C-H...Br hydrogen bonds. Each Br- anion forms one hydrogen bond. No C-H...O hydrogen bonds are found between the O atom in the Fe-O-Fe unit and surrounding counter-cations, consistent with the linear configuration of the Fe-O-Fe unit. peerRevie…
Inorganic Anion-Mediated Supramolecular Entities of 4-Amino-3,5-Bis(4-Pyridyl)-1,2,4-Triazole Salts Assisted by the Interplay of Noncovalent Interactions
The development of new families of synthetic molecular systems projecting neutral, bi-, or multi-H-bonding donor units is significant to acquire the desired selectivity within the fascinating area of anion recognition. Here, we illustrate the reaction between a neutral 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole ligand (L) with acidic solutions containing either chloride, bromide, nitrate, phosphate, iodide, sulfate, hexafluorosilicate, fluoride, tetrafluoroborate or perchlorate anions, yielding 16 new anion-mediated supramolecular entities, H2LCl2 (1), H2LBr2 (2), H2L(NO3)2 (3), HL(H2PO4) (4), H2L(H2PO4)2 (5), [H2L]2I4 (6), H2L(NO3)2 (7), H2L(SO4)·H2O (8), H2LSiF6 (9), H2LSiF6·2H2O (10), H2L…
Improved Reactivity and Derivatization of Cellulose after Pre-Hydrolysis with Commercial Enzymes
Reactivity is an important parameter when considering the chemical modification or dissolution of cellulose. Different pretreatment methods affect cellulose reactivity by decreasing its degree of polymerization (DP) and crystallinity. In this study, the molar mass of cellulose was decreased via enzymatic pretreatment. Three commercial endoglucanase-rich products were tested. The target was to reduce the viscosity of the pulp to below 200 mL/g and, thus, increase the reactivity of the cellulose. For comparison, cellulose was also pretreated with ozone, and the effects of each pretreatment method on crystallinity and monosaccharide composition of the resulting pulps were investigated. Both en…
Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells
Abstract Four new quaternary ammonium iodides, (Me 2 Pe 2 N)I, (Me 2 Hex 2 N)I, (Et 2 Pe 2 N)I and (Et 2 Hex 2 N)I, were synthesized and studied as electrolytes in dye-sensitized solar cells. All compounds were solids at room temperature. Influence of varying amounts of elemental iodine and the effect of tert -butylpyridine (TBP) on the performance of the cell was also studied. Addition of iodine lowered the melting points of the resulting polyiodides. From the ammonium iodides only (Me 2 Hex 2 N)I:I 2 (10:1) was liquid at the room temperature and the others were soft solids. Under illumination from a halogen lamp source at 10 mW cm −2 intensity, the highest power conversion efficiency of 2…
Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]-: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn–S(C) and Zn–S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(II) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S′,S′′) mode to the Ni(II) centre with three distinctl…
Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption
Abstract In this study we developed a novel chitosan/Al 2 O 3 /magnetic iron oxide nanoparticle composite acting as an adsorbent for removing Methyl Orange (MO), a model anionic dye, from aqueous solution. The new adsorbent was characterized by Scanning Electron Microscope (SEM), Thermo Gravimetric Analysis (TGA), Brunauer–Emmett–Teller (BET) specific surface area, Energy Dispersive spectrometer (EDAX), powder X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The MO removal by the developed adsorbent was investigated using batch adsorption technique and all parameters influencing the removal efficiency such as: dose of adsorbent, pH and initial MO concentr…
Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties
This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied. peerR…
Synthesis, NMR spectral and structural studies on mixed ligand complexes of Pd(II) dithiocarbamates: First structural report on palladium(II) dithiocarbamate with SCN-ligand
Abstract Three new mixed ligand complexes of palladium(II) dithiocarbamates; [Pd(4-dpmpzdtc)(PPh3)(SCN)] (1), [Pd(4-dpmpzdtc)(PPh3)Cl] (2) and [Pd(bzbudtc)(PPh3)Cl] (3), (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bzbudtc = N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine) have been synthesized from their respective parent dithiocarbamates by ligand exchange reactions and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. IR and NMR spectral data support the isobidentate coordination of the dithiocarbamate ligands in all complexes (1–3) in solid and in solution, respectively. Single crystal diffraction analysis of complexes 1–3 evidence…
Thermal, spectroscopic and crystallographic analysis of mannose-derived linear polyols
The major diastereomer formed in the Barbier-type metal-mediated allylation of D-mannose has previously been shown to adopt a perfectly linear conformation, both in solid state and in solution, resulting in the formation of hydrogen-bonded networks and subsequent aggregation from aqueous solution upon stirring. Here, a comprehensive study of the solid state structure of both the allylated D-mannose and its racemic form has been conducted. The binary melting point diagram of the system was determined by differential scanning calorimetry analysis, and the obtained results, along with structure determination by single crystal X-ray diffraction, confirmed that allylated mannose forms a true rac…
Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality
Abstract Eighteen new and three previously known but insufficiently characterized RR´3N+A− and R2R´2N+A− type (R = 2-ethoxyethyl or 4-methoxybenzyl, R´ = methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl, A = Br, BF4 or PF6) quaternary ammonium (QA) salts were synthesized and characterized by using 1H and 13C NMR techniques, mass spectroscopy and elemental analysis. The bromide salts were synthesized either by treating dimethyl formamide with an ether functionalized alkyl bromide in the presence of potassium carbonate or by treating a tertiary amine with an ether functionalized alkyl bromide. The QA tetrafluoroborates and hexafluorophosphates were synthesized by metathesis reaction betw…
The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study
Abstract The slurry-mercerization (SM) processes in 2-propanol–water and 2-propanol–ethanol–water and wet-mass-mercerization (WMM) process in ethanol–water solvents are investigated. Based on X-ray diffraction measurements in the earlier reports, we have derived a mathematical method to evaluate more exactly the conversion of cellulose I (CI) to cellulose II (CII) and used it to survey the effects of different alkali treatments on cellulose crystals. This method is very useful when the crystal system changes in a certain set of experiments are compared with each other. The optimal alcohol concentration in SM processes was found to be 80–92 w/w-% in 2-propanol–water solution, 85–90 w/w-% in …
Gold Nanoparticles on 3D-Printed Filters : From Waste to Catalysts
Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12–Au composite catalysts. The polyamide-adsorbed tetrachloroaurate can be readily reduced to gold nanoparticles by using sodium borohydride, ascorbic acid, hydrogen peroxide, UV light, or by heating. All reduction methods led to polyamide-anchored nanoparticles with an even size distribution and high dispersion. The particle sizes were somewhat dependent on the reduction method, but the average diameters were typically about 20 nm. Particle sizes were determined by using a combination of…
Improved synthesis and application of conjugation-amenable polyols from d-mannose
A series of polyhydroxyl sulfides and triazoles was prepared by reacting allyl and propargyl D-mannose derivatives with selected thiols and azides in thiol–ene and Huisgen click reactions. Conformational analysis by NMR spectroscopy proved that the intrinsic rigidity and linear conformation of the mannose derived polyol backbone is retained in the final click products in solution. Single crystal X-ray structure determination of one of the compounds prepared further verified that the linear conformation of the polyol segment is also retained in the solid state. In addition, an improved method for direct Barbier-type propargylation of unprotected D-mannose is reported. The new reaction protoc…
3,5-Dimethoxy-4′-methylbiphenyl
The title compound, C15H16O2, crystallizes with three independent molecules in the asymmetric unit. The intramolecular torsion angle between the aromatic rings of each molecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the molecules forms wave-like layers along the b and c axes. The molecules are connected via extensive methoxy–phenyl C—H...π interactions. A weak C—H...O hydrogen-bonding network also exists between methoxy O atoms and aromatic or methoxy H atoms.
Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution
Iron oxide (Fe3O4) and iron oxide/activated carbon (Fe3O4/AC) were fabricated by co-precipitation method for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution in batch mode. These nanoparticles were characterized by BET, FTIR, XRD, SEM/TEM and VSM. The optimum conditions for the removal of ions were pH = 2 for Cr(VI) and 6 for Cu(II) and Cd(II), initial metal ion concentration = 50 mg L−1, nanoparticle dose = 50 mg/10 mL, temperature = 25 ± 1 °C, shaking speed = 180 rpm and contact time = 3 h. The equilibrium data of ions sorption were well described by Langmuir, Freundlich, Redlich-Peterson and Intraparticle Diffusion model. The R2 values obtained by Langmuir model were h…
Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration
Room-temperature plasma-enhanced atomic layer deposition (PEALD) of ZnO was studied by depositing the films using diethylzinc and O2 plasma from inductively-coupled plasma (ICP) and capacitively-coupled plasma (CCP) plasma source configurations. The CCP-PEALD was operated using both remote and direct plasma. It was observed that the films deposited by means of remote ICP and CCP were all highly oxygen rich, independently on plasma operation parameters, but impurity (H, C) contents could be reduced by increasing plasma pulse time and applied power. With the direct CCP-PEALD the film composition was closer to stoichiometric, and film crystallinity was enhanced. The ZnO film growth was observe…
Metal-bound Nitrate Anion as an Acceptor for Halogen Bonds in mono-Halopyridine-Copper(II) nitrate Complexes
Fifteen n-halopyridine-Cu(NO3)2 complexes (n = 2, 3, 4) obtained from two different solvents, acetonitrile and ethanol, are investigated for C–X···O–N halogen bonds (XBs) in the solid state by single and powder X-ray diffraction. The nitrate anions bind copper(II) via anisobidentate modes and one of three oxygens act as an XB acceptor to halogens on the core pyridine rings. The N-metal coordination activates the electron-deficient π-system and triggers even C2- and C4-chlorines in the corresponding [Cu(2-chloropyridine)2(NO3)2] and [Cu(4-chloropyridine)2(NO3)2(ACN)] complexes to form short C–Cl2/Cl4···O–N halogen bonds. Notably, the C2–Cl2···O–N XBs with a normalized XB distance parameter (…
Novel lithocholaphanes: Syntheses, NMR, MS, and molecular modeling studies
Abstract Novel head-to-head lithocholaphanes 6 and 11 have been synthesized via precursors 1 – 5 and 7 – 10 with overall good yields, and characterized by 1 H, 13 C, and 15 N NMR spectroscopy, ESI-TOF mass spectrometry, thermal analysis, and molecular modeling. In addition, the binding abilities of 6 and 11 towards alkali metal cations have been investigated via competitive complexation studies using equimolar mixtures of Li + , Na + , K + , and Rb + -cations, and cholaphanes 6 and 11 . The formation of cation–cholaphane adducts was detected by ESI-TOF mass spectrometry. The trends in these comparative binding studies are nicely reproduced theoretically with PM3 energetically optimized stru…
Structural Modifications of Rb<sub>3</sub>RE(PO<sub>4</sub>)<sub>2</sub> Phases (RE = La, Gd, Y)
Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …
Physicochemical Properties of New Dicationic Ether-Functionalized Low Melting Point Ammonium Salts
Eleven new and one previously known but insufficiently characterized dicationic quaternary ammonium (QA) salts were synthesized and characterized. They contain an ethoxy ethyl group either in a side chain and/or as spacer of the diammonium cation and have bromide, hexafluorophosphate (PF6–), bis(trifluoromethanesulfonyl)imide (TFSI), or trifluoromethanesulfonate (TFMS) as an anion. 1H and 13C techniques, mass spectrometry, and elemental analysis together with X-ray diffraction and thermoanalytical methods were used for their characterization both in the liquid and solid state. In addition, residual water content and viscosity measurements were made for the two room temperature ionic liquid…
Characterization of ALD grown Ti x Al y N and Ti x Al y C thin films
Abstract Atomic layer deposition (ALD) was used to grow Ti x Al y N and Ti x Al y C thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N 2 -atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elemen…
Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes
Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copper(II) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…
Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions
International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…
Synthesis, Characterization, Thermal and Antimicrobial studies of N-substituted Sulfanilamide derivatives
Abstract Four sulfanilamide derivatives N -[4-(phenylsulfamoyl)phenyl]acetamide (1), 4-amino- N -phenylbenzenesulfonamide (2), N -[4-(phenylsulfamoyl)phenyl]benzamide (3) and N -{4-[(3-chlorophenyl)sulfamoyl]phenylbenzamide (4) were synthesized and characterized by Infra-Red (IR), Nuclear Magnetic Resonance (NMR) and UV–visible (UV–Vis) spectra. Also Liquid Chromatographic (LCMS) and High Resolution Mass Spectrometric (HRMS) methods were used. Crystal structures of 1–4 were determined by single crystal X-ray diffraction (XRD) and their conformational and hydrogen bond (HB) network properties were examined with survey of the literature data. Compounds 1 and 2 crystallize in the same orthorho…
Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: direct observation of the evolution of self-assembled fibers
A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state 13C{1H} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecular mass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their 13C{1H}CPMAS NMR spectral pattern. A doublet r…
Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines
Microwave (MW) assisted synthesis and solid state structural characterizations of novel lithocholyl amides of 2-, 3-, and 4-aminopyridine are reported. It is shown that the MW technique is a proper method in the preparation of N-lithocholyl amides of isomeric aminopyridines. It offers many advantages compared to conventional heating. The molecular and crystal structures as well as the polymorphic and hydrated forms of prepared conjugates with their thermodynamic stabilities have been characterized by means of high resolution liquid- and solid-state NMR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Owing to the many biological functions of bile ac…
Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics
Abstract The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO 2 ) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron spin resonance (ESR) spin trapping (ST) techniques with the subsequent identification of free radicals by simulation based fitting (SBF) technique. The radical reaction mechanism, where hydroxyl radical was a primary product of O O bond rupture of PAA, was established taking into account radical reactions, occurring during sonolysis. The potential barriers and the reaction heat were deter…
Nonporous Organic Solids Capable of Dynamically Resolving Mixtures of Diiodoperfluoroalkanes
Halogen bonding has increasingly facilitated the assembly of diverse host-guest solids. Here, we show that a well-known class of organic salts, bis(trimethylammonium) alkane diiodides, can reversibly encapsulate α,ω-diiodoperfluoroalkanes (DIPFAs) through intermolecular interactions between the host's I – anions and the guest's terminal iodine substituents. The process is highly selective for the fluorocarbon that forms an I – ···I(CF 2 ) m I···I – superanion that is matched in length to the chosen dication. DIPFAs that are 2 to 12 carbons in length (common industrial intermediates) can thereby be isolated from mixtures by means of crystallization from solution upon addition of the dissolv…
The influence of ultrasound on the RuI3-catalyzed oxidation of phenol: Catalyst study and experimental design
Abstract The influence of ultrasound at 24 kHz on the heterogeneous aqueous oxidation of phenol over RuI3 with hydrogen peroxide (H2O2) was studied isothermally at 298 K. Effect of ultrasound irradiation on catalytic properties and performance of RuI3 has been studied in details by means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), dispersion analyzer and a surface analyzer. Turn over frequency of the catalyst was also calculated. In this work, experimental design methodology was applied to optimize the degradation of phenol in aqueous solution, while minimizing an excessive consumption of chemical reagents. The independent variables considered were the catalyst lo…
Synthesis, characterization and thermal behavior of nine new -type quaternary ammonium tetrafluoroborate or hexafluorophosphate salts prepared by metathesis from analogous halide salts
Abstract Nine new quaternary ammonium tetrafluoroborate or hexafluoroborate salts were prepared from analogous bromide or chloride salts using anion exchange reaction in which the corresponding bromide or chloride salt was treated with HBF4 or HPF6 acid in aqueous solutions. The characterizations were performed by 1H NMR and 13C NMR spectroscopy as well as by elemental analysis. The single crystals of three tetrafluoroborate and two hexafluorophosphate salts were obtained by slow evaporation from a methanol/ethyl acetate solution and the crystal structures were determined by X-ray single crystal diffraction. Four of the compounds crystallized in the orthorhombic and one in the monoclinic cr…
Acetic acid leaching of neodymium magnets and iron separation by simple oxidative precipitation
Neodymium-iron-boron (NdFeB) has become the most prominent permanent magnet alloy, with a wide variety of applications and an ever-increasing demand. Their recycling is important for securing the supply of critical raw materials used in their manufacturing. The use of organic acids such as acetic acid has been of recent interest for the recycling of waste NdFeB magnets. Despite achieving good leaching efficiencies, the published literature has not properly investigated the effects of key factors influencing the acetic acid leaching process and their respective interactions, which has lead to conflicting findings as to what conditions are optimal. The present work goes to show that no such o…
Charge-Assisted Halogen Bonding in an Ionic Cavity of a Coordination Cage Based on a Copper(I) Iodide Cluster.
The design of molecular containers capable of selective binding of specific guest molecules presents an interesting synthetic challenge in supramolecular chemistry. Here, we report the synthesis and structure of a coordination cage assembled from Cu3I4– clusters and tripodal cationic N-donor ligands. Owing to the localized permanent charges in the ligand core the cage binds iodide anions in specific regions within the cage by ionic interactions. This allows the selective binding of bromomethanes as secondary guest species within cage promoted by halogen bonding, which was confirmed by single crystal X-ray diffraction. peerReviewed
Phase-selective low molecular weight organogelators derived from allylated D-mannose
In the last decades, synthesis and design of low molecular weight organogelators has gained increasing attention due to their versatile use in, for example, cosmetics, biomedicine and oil spill remediation. In this work, three potential gelators have been prepared from allylated d-mannose. Both the gelators and the corresponding gels formed were thoroughly characterized by crystallography, FTIR spectroscopy, SEM, rheometry and NMR spectroscopy, in solution and in solid state. The results showed that two of the compounds phase-selectively form gels with hydrocarbon solvents. The most promising gelator compound is alkene terminated, with the unsaturated end functionality not critical for gel …
Bile acid–cysteamine conjugates: Structural properties, gelation, and toxicity evaluation
Abstract Design, synthesis, and characterization of six novel bile acid–cysteamine conjugates together with investigation of their structural studies, gelation properties, and preliminary toxicity evaluation, are reported. Solid state properties of selected compounds were studied by means of X-ray diffraction and 13C CPMAS NMR spectroscopy. N-(2-thioethyl)-3α,7α,12α-trihydroxy-5β-cholan-24-amide was shown to exhibit (pseudo)polymorphism, and a single crystal structure of its non-stoichiometric hydrate is reported herein. Cholyl and dehydrocholyl derivatives bearing three functionalities in their steroidal backbone were shown to undergo self-assembly leading to gelation in certain organic so…
The conformational polymorphism and weak interactions in solid state structures of ten new monomeric and dimeric substituted dibenzyldimethylammonium chloridopalladate salts
In this study, ten new dibenzyldimethyl/ethyl ammonium chloridopalladate(II) compounds with five different cations and two anions have been synthesized and a simple method for a synthesis, in which hydrochloric acid solutions are used, has been described. Furthermore, twelve structures including two polymorphs have been obtained from hydrochloric and methanol/acetonitrile solutions. The anion–cation and cation–cation interactions of the synthesized compounds have been studied mainly by means of single X-ray diffraction in order to study the effects of varying either the anion or the cations in these QA2PdCl4 and QA2Pd2Cl6 salts. The results indicate that the effects of intermolecular cation…
N,N-Di-n-octyl-N,N-dimethyl and N,N-di-n-nonyl-N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical characterization
Abstract N,N-Di-n-octyl-N,N-dimethyl cholate (1) and N,N-di-n-nonyl-N,N-dimethyl ammonium cholate (2) have been prepared by crystallization from equimolar mixtures of sodium cholate and quaternary N,N-di-n-alkyl-N,N-dimethyl (n-octyl or n-nonyl) ammonium bromides. The formed crystalline materials have been structurally characterized by 13C and 15N cross polarization magic angle spinning (CPMAS) NMR, powder X-ray diffraction (PXRD) and thermoanalytical (TGA/DTA and DSC) methods and compared with each other. Powder X-ray diffraction patterns of 1 and 2 reveal clear similarities. Combined with the thermoanalytical data of these structures an existence of two hydrated polymorphs (most probably …
Tansy fruit mediated greener synthesis of silver and gold nanoparticles
Abstract In this paper we have reported the green synthesis of silver (AgNPs) and gold (AuNPs) nanoparticles by reduction of silver nitrate and chloroauric acid solutions, respectively, using fruit extract of Tanacetum vulgare ; commonly found plant in Finland. The process for the synthesis of AgNPs and AuNPs is rapid, novel and ecofriendly. Formation of the AgNPs and AuNPs were confirmed by surface plasmon spectra using UV–Vis spectrophotometer and absorbance peaks at 452 and 546 nm. Different tansy fruit extract concentration (TFE), silver and gold ion concentration, temperature and contact times were experimented in the synthesis of AgNPs and AuNPs. The properties of prepared nanoparticl…
Bile acid amidoalcohols: simple organogelators.
Simple bile acid amide synthesis of lithocholic and deoxycholic acids with 2-aminoethanol and 3-aminopropanol are reported. The structural properties of these amides were examined by NMR spectroscopic, ESI-TOF mass spectral, and X-ray crystallographic methods. The gelation properties of these amides in common organic solvents and in three different water solutions were also investigated using Tyndall effect, SEM, TEM, and optical microscopy. 2-Hydroxyethylamides were found to be effective gelators in chlorinated organic solvents and 3-hydroxypropylamides in aromatic solvents. Both derivatives thicken neutral and acidic water solutions.
Properties of new low melting point quaternary ammonium salts with bis(trifluoromethanesulfonyl)imide anion
Eight new monocationic quaternary ammonium (QA) salts with the bis(trifluoromethanesulfonyl)imide (TFSI) anion were prepared by metathesis using our previously reported QA halides as precursors. New salts were characterized both in liquid and solid state using 1 H and 13 C NMR techniques, mass spectroscopy and elemental analysis together with X-ray diffraction and thermoanalytical methods. In addition, residual water content, viscosity and conductivity measurements were made for three of the roomtemperature ionic liquids (RTILs). The crystal structures of three compounds were determined by X-ray single crystal diffraction. Powder diffraction was used to study the crystallinity of the solid …
Phosphotungstic acid (PTA) in the synthesis of 3D CdS superstructures by diffusion assisted hydrothermal method
Abstract In this study, the synthesis of cadmium sulfide (CdS) microstructures by gas diffusion assisted hydrothermal method using phosphotungstic acid (PTA) is reported. The as-synthesized products were characterized by Fourier transform infrared (FTIR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of PTA dose, thioacetamide amount, time and temperature on the morphology of obtained particles have been studied. In this process, PTA ion host stabilizes the CdS particles against aggregation and thioacetamide plays two roles, being at the same time a sulfur source and a capping ligand. Based on the performed analyses it seems that the thioacetamide is mor…
Towards controlling PCDD/F production in a multi-fuel fired BFB boiler using two sulfur addition strategies
Abstract PCDD/F abatement strategies – sulfur pellet addition and peat co-combustion – were tested for a BFB boiler facility utilizing SRF-bark-sludge as fuel. In this paper chemical and physical analyses of electrostatic precipitator (ESP) fly ashes were used to explain the differences in the performance of these strategies. These analyses revealed a difference between the coarse and fine fly ashes collected in the ESP. Chemical analysis of the fine fly ashes revealed high concentration of easily volatilized elements while the SEM micrographs showed that fine ash are composed of clusters of spherical particles, thereby leading to a conclusion that fine ashes were originally in a gas phase …
Systematic study of physicochemical properties of a homologous series of aminobisphosphonates
Aminobisphosphonates, e.g., alendronate and neridronate, are a well known class of molecules used as drugs for various bone diseases. Although these molecules have been available for decades, a detailed understanding of their most important physicochemical properties under comparable conditions is lacking. In this study, ten aminobisphosphonates, H2N(CH2)nC(OH)[P(O)(OH)2]2, in which n = 2–5, 7–11 and 15 have been synthesized. Their aqueous solubility as a function of temperature and pH, pKa-values, thermal stability, IR absorptions, and NMR spectral data for bothliquid (1H, 13C, 31P-NMR) and solid state (13C, 15N and 31P-CPMAS NMR) were determined. peerReviewed
High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition
"Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations"
Abstract The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2…
High-quality superconducting titanium nitride thin film growth using infra-red pulsed laser deposition
Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ~17 μΩ cm and residual resist…
3,4,5-Trimethoxy-4'-methylbiphenyl
In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, molecules are packed in a zigzag arrangement along the b-axis and are interconnected via weak C—H⋯O hydrogen bonds, and C—H⋯π interactions involving the methoxy groups and the benzene rings of neighbouring molecules.
Poly[[myy-N,N'-bis(2-hydroxyethyl)-N,N,N',N'-tetramethylpropane-1,3-diaminium-kappa2O:O']tetra-myy-bromido-dibromidodimanganese(II)]
The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)]n, consists of one MnII cation, half of a dicationic N,N0 -bis(2-hydroxyethyl)- N,N,N0 ,N0 -tetramethylpropane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The MnII cation is coordinated by a single L ligand via the hydroxy O atom and by five bromide ions, resulting in a distorted octahedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent MnII atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn—(-Br)2—Mn chains, also forming a polymeric con…
3α-Hydroxy-N-(3-hydroxypropyl)-5β-cholan-24-amide
The title compound, C27H47NO3, is a (3-hydroxypropyl)amide derivative of naturally occurring enantiopure lithocholic acid (3-hydroxy-5-cholan-24-oic acid). The molecule contains four fused rings: three six-membered rings in chair conformations and one five-membered ring in a half-chair form. The two terminal six-membered rings are cis-fused, while other rings are trans-fused. The structure contains an intramolecular O—H O hydrogen bond and a similar hydrogen-bond framework to the corresponding deoxycholic and chenodeoxycholic acid derivatives. Intermolecular O— H O and N—H O interactions are also present in the crystal. This compound seems to have at least two polymorphic forms from a compa…
Structural, Thermoanalytical and Molecular Modeling Studies on N-(3-hydroxypropyl) 3a,12a-Dihydroxy-5b-cholan-24-amide and Its Monohydrates
The synthetic method for preparing N-(3-hydroxypropyl) 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-amide can lead to formation of at least three different crystal forms - an anhydrous compound and two monohydrates. The structural and thermal properties of these forms have been characterized by 13C-CP/MAS-NMR and IR spectroscopy, thermo- gravimetry, differential scanning calorimetry and by powder and single crystal x-ray crystallography. In addition, theoretical 13C-NMR chemical shift calculations were also performed for the anhydrous compound and for the first monohydrate, starting from single crystal structures and the structures of these species have now been verified. The first monohydra…
Separation of chelating agents as copper complexes by capillary zone electrophoresis using quaternary ammonium bromides as additives in N-methylformamide
This study presents the use of quaternary ammonium bromides as additives in N-methylformamide (NMF) for the separation and quantification of chelating agents as copper complexes by capillary zone electrophoresis (CZE). The new quaternary ammonium bromides were synthesized in our laboratory and used for the first time for CZE applications performed in NMF media. The methods were developed and optimized for determination of six chelating agents (trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), nitrilotriacetic acid (NTA) and trieth…
The Effect of Interferences on the Uptake of Heavy Metals by Sodium (iron) Titanates from Waste Water
Sodium hexatitanate, sodium trititanate, sodium nonatitanate, and a new iron doped sodium nonatitanate were synthesized. Common interferences present in waste waters that hinder the removal of heavy metals by these ion exchangers were investigated. The presence of K+, Mg2+ and Ca2+ at 0.001-0.05 M concentration had minor effect on the amount of Pb2+, Cr3+, and Ni2+ uptake. EDTA on the other hand, interferes tremendously with the metal uptake. Both in ternary and in single system, the selectivity series is in the order: Pb2+>Cr3+>Ni2+. This order changed to Cr3+>Pb2+>Ni2+, in the presence of 0.001-0.1 M EDTA at pH 5.
Synthesis and characterization of novel bile-acid – heteroaryl conjugates with N-(2-aminoethyl)amido linker
Abstract Four novel bile acid conjugates N-[2-([2,2′]-bithiophen-5-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (1), N-[2-([2,2′]-bithiophen-5-ylmethyl)aminoethyl]-3α,7α,12α-trihydroxy-5β-cholan-24-amide (2), N-[2-(1H-pyrrol-2-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (3), N-[2-(pyridin-2-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (4) have been synthesized in moderate to good yields, and their structures have been characterized by 1H, 13C, 13C DEPT-135, PFG 1H,13C HMQC, and PFG 1H,13C HMBC NMR spectra. Their molecular weights and elemental compositions have been determined by ESI-TOF mass spectrometry and elemental analyses. Crystal structure of 1 characterized with o…
ChemInform Abstract: X-Ray Powder Structure Determination and Thermal Behavior of a New Modification of Pb(II) Selenite.
The crystal structure of a new polymorphic form of lead(II) selenite (PbSeO3) was solved directly from conventional X-ray powder diffraction data. Direct methods and Rietveld refinement techniques were used for the structure determination. The compound crystallizes in the monoclinic space group P21/c (no. 14) with cell dimensions a = 9.1587(1) A, b = 8.0902(1) A, c = 8.7932(1) A, β = 103.032(1)°, and V = 634.76(2) A3. The final refinement gave background excluded Rp = 6.22%, Rwp = 8.81%, and RB = 2.16% by using 45 structural and 15 profile parameters with 10 atoms in an asymmetric unit. The three-dimensional structure consists of 9-coordinated lead atoms, which are linked by three bidentate…
Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis
Water-soluble gold nanoclusters with well-defined molecular structures and stability possess particular biophysical properties making them excellent candidates for biological applications as well as for fundamental spectroscopic studies. The currently existing synthetic protocols for atomically monodisperse thiolate-protected gold nanoclusters (AuMPCs) have been widely expanded with organothiolates, yet the direct synthesis reports for water-soluble AuMPCs are still deficient. Here, we demonstrate a wet-chemistry pH-controlled synthesis of two large water-soluble nanoclusters utilizing p-mercaptobenzoic acid (pMBA), affording different sizes of plasmonic AuMPCs on the preparative scale (∼7 …
Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids
At the present time the bioprospective field is a dynamic area of research. The rapid biosynthesis of silver and gold nanoparticles without using toxic chemicals is reported here. Sorbus aucuparia is omnipresent in Europe. The aqueous leaves extract of the plant were used as reducing agent for the synthesis of silver and gold nanoparticles from their salt solutions. The synthesized nanoparticles were spherical, triangular and hexagonal in shape with an average size of 16 and 18nm for silver and gold, respectively. Different extract quantities, metal concentrations, temperatures and contact times were investigated to find their effect on nanoparticles synthesis. The resulting silver and gold…
N-{4-[(3-Methylphenyl)sulfamoyl]phenyl}benzamide
In the title compound, C20H18N2O3S, the dihedral angle between the central benzene ring and the amide group is 24.1 (3) and that between this ring and the aromatic ring of the tolyl group is 68.2 (16). In the crystal, adjacent molecules are linked by N—HO hydrogen bonds into a linear chain running along [100]. Weak C—HO contacts also occur. Extensive weak – interactions exist from both face-to-face and face-to-edge interactions occur between the aromatic rings [centroid–centroid distances = 3.612 (2) and 4.843 (2) A˚ ]. Related peerReviewed
Systematic study of the physicochemical properties of a homologous series of aminobisphosphonates
ABSTRACT: Aminobisphosphonates, e.g., alendronate and neridronate, are a well known class of molecules used as drugs for various bone diseases. Although these molecules have been available for decades, a detailed understanding of their most important physicochemical properties under comparable conditions is lacking. In this study, ten aminobisphosphonates, H2N(CH2)nC(OH)[P(O)(OH)2]2, in which n = 2-5, 7-11 and 15 have been synthesized. Their aqueous solubility as a function of temperature and pH, pKa-values, thermal stability, IR absorptions, and NMR spectral data for both liquid (1H, 13C, 31P-NMR) and solid state (13C, 15N and 31P-CPMAS NMR) were determined. Peer reviewed
Evaluation of entropies of fusion of polychlorinated naphthalenes by model congeners: A DSC study
Abstract Thirteen congeners of polychlorinated naphthalenes (PCN) were synthesized and studied by differential scanning calorimetry (DSC). Melting points (Tm) were obtained for all thirteen, and enthalpies of fusion (ΔHf) were obtained for nine congeners. Melting points of other PCNs, except for five, were found in literature. In addition, experimental ΔHf values determined by DSC were found only for 1- and 2-mono-chloronaphthalenes in the literature. The missing or uncertain values of the eight melting points and 64 enthalpies of fusion were estimated by multiple linear regressions using a set of thirteen molecular descriptors as candidates for independent variables. The stepwise model of …
Preparation of potentially porous, chiral organometallic materials through spontaneous resolution of pincer palladium conformers.
Understanding the mechanism by which advanced materials assemble is essential for the design of new materials with desired properties. Here, we report a method to form chiral, potentially porous materials through spontaneous resolution of conformers of a PCP pincer palladium complex ({2,6-bis[(di-t-butylphosphino)methyl]phenyl}palladium(II)halide). The crystallisation is controlled by weak hydrogen bonding giving rise to chiral qtz-nets and channel structures, as shown by 16 such crystal structures for X = Cl and Br with various solvents like pentane and bromobutane. The fourth ligand (in addition to the pincer ligand) on palladium plays a crucial role; the chloride and the bromide primaril…
Synthesis, thermal properties and X-ray structural study of weak C–H⋯OC hydrogen bonding in aliphatic polyester dendrimers
Dendritic polyester compounds based on polyol with three, four and six reactive hydroxy groups as a molecular core, chloroacetyl chloride (or bromoacetyl bromide) and sodium metal enolate were prepared by a simple two-step synthetic procedure. The compounds were characterised by using the NMR and MS techniques, and the thermal properties were measured by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The structures of the crystalline compounds were determined by X-ray single crystal diffraction. Detailed analysis of the structures showed that the self-complementarity of the molecules together with a multitude of weak C-H⋯O=C hydrogen bonding results in crystal…
Evidence of Weak Halogen Bonding: New Insights on Itraconazole and its Succinic Acid Cocrystal
Exact knowledge of the crystal structure of drugs and lead compounds plays a significant role in the fields of crystal engineering, docking, computational modeling (drug–receptor interactions), and rational design of potent drugs in pharmaceutical chemistry. The succinic acid cocrystal of the systemic antifungal drug, itraconazole, reported by Remenar et al. (J. Am. Chem. Soc.2003, 125, 8456–8457) (CSD: IKEQEU), represents one of the classical examples displaying a molecular fitting mechanism in the solid state. In this work, we disclose the X-ray single-crystal structure of the cis-itraconazole–succinic acid (2:1) cocrystal and found that it differs slightly from the previously reported st…
A novel magnetic Preyssler acid grafted chitosan nano adsorbent: synthesis, characterization and adsorption activity
BACKGROUND This study concerns the application of magnetic heteropolyacids composite for the adsorption of organic compounds from aqueous solutions. A novel magnetic Preyssler/chitosan/Fe3O4 nanoparticles composite (PCNF) adsorbent was designed using a one-pot synthesis method and characterized by multiple techniques including X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), N2 adsorption–desorption isotherms and scanning electron microscopy (SEM). RESULTS The adsorption activity of PCNF was evaluated by the removal of methyl orange (as an anionic azo dye model, MO) from aqueous solution and all the factors influencing the removal efficiency, such as adsorbent dosage, initial …
In-depth structural analysis of lanthanoid coordination networks based on a flexible tripodal zwitterionic isonicotinate ligand
Crystallizing metal–organic frameworks (MOFs) has been studied using a tripodal pyridinecarboxylic acid derivative ligand and selected lanthanoid salts. The zwitterionic ligand, 1,1′,1′′-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(pyridin-1-ium-4-carboxylate) (TTTPC) introduced as a bromide salt, forms coordination networks in aqueous environments and under ambient conditions with neodymium bromide, trifluoromethanesulfonate (OTf) or acetate (OAc). Seven structures are elucidated in detail using single crystal X-ray crystallography. TTTPC NdBr3, TTTPC NdBr2OTf, TTTPC NdBr(OTf)2 and TTTPC Nd(OTf)3 are porous 3D networks with similar ligand–metal and ligand–anion interactions, b…
Single crystal X-ray structural dataset of 1,2,4-dithiazolium tetrafluoroborate
Herein, we present the crystallographic dataset of 1,2,4-dithiazolium tetrafluoroborate. Single crystal X-ray structural analysis evidences that the 1,2,4-dithiazolium ring is almost planar. The 1,2,4-dithiazolium and tetrafluoroborate ions contribute in hydrogen bonding wherein the N-H·N hydrogen bonding in 1,2,4-dithiazolium dimer forms an eight-membered pseudo ring with the R22(8) Etter's graph set. The information provided in this data contributes to the understanding of structural chemistry and hydrogen bonding interactions in dithiazole derivatives.
Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations
The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2− anions …
Synthesis, characterization and thermal properties of new aromatic quaternary ammonium bromides
Series of new aromatic R 2R′ 2N +Br - (R=benzyl, 4-methylbenzyl, 2-phenylethyl, 3-phenylpropyl; R′=ethyl, methyl, isopropyl) or RR′ 2NH +Br --type (R=benzyl, R′=isopropyl) quaternary ammonium bromides were prepared by using novel synthetic route in which a formamide (N,N-diethylformamide, N,N-dimethylformamide, N,N-diisopropylformamide) is treated with aralkyl halide in presence of a weak base. The compounds were characterized by 1H-NMR and 13C-NMR spectroscopy and mass spectrometry. Structures of the crystalline compounds were determined by X-ray single crystal diffraction, and in addition the powder diffraction method was used to study the structural similarities between the single crysta…
Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show ra…
3,4-Dimethoxy-4'-methylbiphenyl
In the title compound, C15H16O2, the dihedral angle between the planes of the aromatic rings is 30.5 (2). In the crystal, molecules are linked via C—HO hydrogen bonds and C— H interactions, forming a two-dimensional network lying parallel to (100). peerReviewed
3,5-Dimethoxy-4'-methylbiphenyl
The title compound, C15H16O2, crystallizes with three independent molecules in the asymmetric unit. The intramolecular torsion angle between the aromatic rings of each molecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the molecules forms wave-like layers along the b and c axes. The molecules are connected via extensive methoxy–phenyl C—H…π interactions. A weak C—H…O hydrogen-bonding network also exists between methoxy O atoms and aromatic or methoxy H atoms.
Non-Innocent Base Properties of 3- and 4-Pyridyl-dithia- and Diselenadiazolyl Radicals : The Effect of N-Methylation
International audience; Condensation of persilylated nicotinimideamide and isonicotinimideamide with sulfur monochloride affords double salts of the 3-, 4-pyridyl-substituted 1,2,3,5-dithiadiazolylium DTDA cations of the general formula [3-, 4-pyDTDA][Cl][HCl] in which the pyridyl nitrogen serves as a noninnocent base. Reduction of these salts with triphenylantimony followed by deprotonation of the intermediate-protonated radical affords the free base radicals [3-, 4-pyDTDA], the crystal structures of which, along with those of their diselenadiazolyl analogues [3-, 4-pyDSDA], have been characterized by powder or single-crystal X-ray diffraction. The crystal structures consist of “pancake” π…
Self-Assembly of Water-Mediated Supramolecular Cationic Archimedean Solids
Understanding the self-assembly of small structural units into large supramolecular assemblies remains one of the great challenges in structural chemistry. We have discovered that tetrahedral supramolecular cages, exhibiting the shapes of Archimedean solids, can be self-assembled by hydrogen bonding interactions using tricationic N-donors (1 or 2) in cooperation with water (W). Single crystal X-ray analysis shows that cage (2)4(W)6, assembled in an aqueous solution of cation 2 and KPF6, consists of four tripodal trications linked by six water monomers and resembles the shape of a truncated tetrahedron. Similarly, cage (1)4(W6)4 spontaneously self-assembles in an aqueous solution of cation 1…
Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid–triazole–spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show ra…
Synthesis, characterization and thermal properties of nine quaternary dialkyldiaralkylammonium chlorides
Abstract Nine R 2 R 2 ′ N + Cl − (R=benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2-phenylethyl or 3-phenylpropyl; R′=ethyl or methyl) quaternary dialkyldiaralkylammonium chlorides were synthesized by treating dimethylformamide or diethylformamide with non-substituted or substituted arylalkyl (aralkyl) halide in the presence of sodium carbonate. The 1H NMR, 13C NMR spectroscopy, mass spectroscopy and elemental analysis were used to characterize the synthesized products. The crystal structures of six compounds were determined by X-ray single crystal diffraction. Four of the compounds crystallized in monoclinic space groups C2/c and P21/c (or P21/n), one in triclinic space group P−1…
Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.
Metal‐organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well‐defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three‐dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow‐through filters containing the MOF copper(II) benzene‐1,3,5‐tricarboxylate (HKUST‐1). These filters were printed simply by mixing HKUST‐1 with an easily printable nylon‐12 polymer matrix. By using the SLS, powdery particles were fused t…
Halogen bonding drives the self-assembly of piperazine cyclophanes into tubular structures.
Halogen bonding with 1,4-diiodotetrafluorobenzene leads to the self-assembly of piperazine cyclophanes into well-defined tubular structures with solvent inclusion.
Solid-State NMR, X-ray Diffraction, and Thermoanalytical Studies Towards the Identification, Isolation, and Structural Characterization of Polymorphs in Natural Bile Acids
Combined solid-state NMR, powder, and single crystal X-ray diffraction, as well as thermoanalytical studies were performed towards the identification, isolation, and structural characterization of ...
Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers
Abstract Hypothesis The microcrystalline fibers of N -(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Experiments Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infr…
Metal Doping of Au25(SR)18- Clusters : Insights and Hindsights
The structure, properties, and applications of atomically precise gold nanoclusters are the object of active research worldwide. Over the last few years, research has been also focusing on selective doping of metal nanoclusters through introduction of foreign-metal atoms. Doping has been studied for several clusters, especially the atomically precise Au25(SR)18. Doping has been carried out with noble metals, such as platinum, and less noble metals, such as cadmium and mercury, also because of the ease by which monodoping can be achieved with these metals. Previous studies, which relied extensively on the use of mass spectrometry and single crystal X-ray crystallography, led to assign the sp…
Methyl 3',5'-dimethoxybiphenyl-4-carboxylate
In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, molecules are packed in layers parallel to the b axis in which they are connected via weak intermolecular C-H...O contacts. Face-to-face π-π interactions also exist between the benzene rings of adjacent molecules, with centroid-centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.
Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor
Abstract Three new planar Ni(II) dithiocarbamate complexes; [Ni(4-dpmpzdtc)2] (1), [Ni(4-dpmpzdtc)(PPh3)(NCS)] (2) and [Ni(bupcbzdtc)(PPh3)(NCS)] (3) (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bupcbzdtc = N-butyl-N-(4-chlorobenzyl))dithiocarbamato anion and PPh3 = triphenylphosphine) with “NiS4” and “NiS2PN” chromophore units were synthesized and characterized by single crystal X-ray structural analysis as well as UV–Vis, IR and NMR (1H, 13C and 31P) spectroscopy. For 2, 1H–1H COSY spectrum was also recorded. Single crystal X-ray structural analysis of 1–3, reveals a slightly distorted square planar geometry in all three complexes wherein the steric and electroni…
Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine-fluorine interactions.
Simple ML2 [M = Fe(II), Co(II), Ni(II)] complexes obtained from a perfluoroalkylamide derivative of 4-aminophenyl-2,2′,6,2′-terpyridine spontaneously, yet anion selectively, self-assemble into gels, which manifest an unprecedented rapid gel strength recovery, viz. self-healing, and thermal rearrangement in aqueous dimethyl sulfoxide. The key factor for gelation and rheological properties emerges from the fluorine–fluorine interactions between the perfluorinated chains, as the corresponding hydrocarbon derivative did not form metallogels. The perfluoro-terpyridine ligand alone formed single crystals, while its Fe(II), Co(II) or Ni(II) complexes underwent rapid gelation leading to highly enta…
Facile fabrication of flower like self-assembled mesoporous hierarchical microarchitectures of In(OH)3 and In2O3: In(OH)3 micro flowers with electron beam sensitive thin petals
Abstract A template and capping-reagent free facile fabrication method for mesoporous hierarchical microarchitectures of flower-like In(OH) 3 particles under benign hydrothermal conditions is reported. Calcination of In(OH) 3 to In 2 O 3 with the retention of morphology is also described. Both In(OH) 3 and In 2 O 3 microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. The crystal sizes for In(OH) 3 and In 2 O 3 were calculated using the Scherrer equation. In In(OH) 3 the thin flakes at the periphery of micro flowers were electron beam sensitive. The mechanism of self-assembly process was analyzed as well.
Dimensional encapsulation of I− I 2 I− in an organic salt crystal matrix
Bis(trimethylammonium)hexane diiodide encapsulates iodine from solution and through a gas/solid reaction yielding in a predictable and controllable manner the selective formation of the rare polyiodide species I(-)...I-I...I(-), which matches in length to the chosen dication.
Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters.
Abstract The ion exchange properties of sodium iron titanates, namely, NaFeTiO4, Na2Fe2Ti6O16 and iron-doped sodium nonatitanate were investigated. Conventional solid state and sol–gel methods were used in the synthesis of the sodium iron titanates. Structural characterization of the materials was performed with powder X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and with inductively coupled plasma optical emission spectrometry (ICP-OES). Based on TG analyses, the novel iron-doped sodium nonatitanate was proven to be a member of the layered titanate family. The different sodium iron titanates were compa…
Powder structures of two pharmaceutically interesting alkylaminobisphosphonates
Solid state structural studies of five bile acid derivatives
Five synthetically important bile acid derivatives have been characterized by 13 C CP-MAS, X-ray diffraction (both single crystal and powder), FTIR, and thermoanalytical (DSC and TG) methods. The crystallinity of all these derivatives is high, which can be deducted from the 13 C CP-MAS and powder X-ray diffraction data. Two of the compounds showed polymorphism, and one polymorph was structurally elucidated for both by comparing single crystal and powder X-ray diffraction data.
Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures
Global climate change ensued by the rise in atmospheric CO2 levels is one of the greatest challenges our planet is facing today. This worldwide distress demands technologies that can contribute to our society toward “negative carbon emissions”. Carbon capture and storage (CCS) technologies are in in important role for capturing CO2 from existing emission sources, such as industrial and energy production point sources, before new more prominent modifications to the energy infrastructure can be implemented. Recently, alongside point source capture, direct air capture (DAC) processes have emerged as highly sought-after technologies that are able to capture CO2 from the ambient air. Alongside t…
Structural studies of five novel bile acid-4-aminopyridine conjugates
Abstract Synthesis and solid-state structural characterization of five bile acid amides of 4-aminopyridine (4-AP) are reported. Systematic crystallization experiments revealed a number of structural modifications and/or solvate/hydrate systems for these conjugates. Particularly, cholic acid conjugate exhibited five distinct structure modifications, including one anhydrous form, mono- and dihydrates, as well as ethanol and 2-butanol solvates. The obtained crystal forms were examined extensively with various analytical methods, including solid-state NMR, Raman, and IR spectroscopies, powder and single crystal X-ray diffraction methods, thermogravimetry, and differential scanning calorimetry. …
Bile acid–amino acid ester conjugates: gelation, structural properties, and thermoreversible solid to solid phase transition
Design, synthesis, and gelation properties of three novel biocompatible bile acid–L-methionine methyl ester conjugates are presented. Two of the conjugates have been shown to undergo self-assembly leading to organogelation in certain aromatic solvents. The properties of these gels have been investigated by conventional methods typical for molecular gel studies along with 13C CPMAS NMR spectroscopic studies of the native gel. In addition, properties in solid and solution states for all three compounds have been investigated, and single crystal X-ray structures of all compounds determined. Furthermore, powder X-ray diffraction studies have revealed that compound 1 undergoes a dynamic and reve…
Steroid-based gelators of A(LS)2 type: Tuning gel properties by metal coordination
By utilizing up-to-date knowledge about gelators, we designed and synthesized a novel low-molecular-weight gelator bearing a pyridine-2,6-dicarboxylic acid moiety and two cholesteryl glycinate units. In order to demonstrate the ingenuity of our design, we prepared a series of structurally related compounds and studied their gelation properties. Based on the results, we determined structural features of the gelator molecules which were important for successful gel formation. We showed that the properties of the gel systems (transparency, morphology, etc.) can be tuned by coordination with different metal ions, as well as by changing the solvent. Gelators, and their gels and xerogels were stu…
Halogen-Bonded Mono-, Di-, and Tritopic N-Alkyl-3-iodopyridinium Salts
Halogen bonding interactions of 15 crystalline 3-iodopyridinium systems were investigated. These systems were derived from four N-alkylated 3-iodopyridinium salts prepared in this study. The experimental results in the solid state show that halogen bonding acts as a secondary intermolecular force in these charged systems but sustains the high directionality of interaction in the presence of other intermolecular forces. Halogen bonds donated by polytopic 3-iodopyridinium cations are also sufficient to enclose guest molecules inside the formed supramolecular cavities. The experimental data were supplemented by computational gas-phase and solid-state studies for selected halogen-bonded systems…
Novel Au NPs/Preyssler acid/TiO 2 nanocomposite for the photocatalytic removal of azo dye
Abstract In this study, we introduced a novel nanocomposite consisting of Au nanoparticles decorated TiO 2 and Preyssler acid as a multifunctional photocatalyst linker molecule, in which gold ions reduced locally on the TiO 2 surface. The obtained nanocomposite has been characterized using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), Electron Dispersive X-ray (EDX) Spectroscopy, Transmission Electron Microscopy (TEM) and Scanning Electron Microscope (SEM). Also, their photocatalytic activity has been studied for the degradation of model organic azo dye Malachite Green under UV light irradiation.
Molybdenum(VI) complexes with a chiral L-alanine bisphenol [O,N,O,O’] ligand : Synthesis, structure, spectroscopic properties and catalytic activity
Dioxidomolybdenum(VI) compound [MoO2Cl2(dmso)2] reacts with a chiral tetradentate O3N-type L-alanine bisphenol ligand precursor (Et3NH)H2Lala to form an oxidochloridomolybdenum(VI) complex [MoOCl(Lala)] (1) as two separable geometric isomers with phenolate groups in cis or trans positions. The single crystal X-ray and NMR analyses of cis- and trans-1 reveal that the complexes are formed of monomeric molecules, in which the ligand has a tetradentate coordination through three oxygen donors and one nitrogen donor. The reaction of Na2MoO4·2H2O with the same ligand precursor in an acidic methanol solution leads to the formation of an anionic dioxido complex (Et3NH)[MoO2(Lala)] (2) with a trans …
Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives
Three quinazolin-4-ylamino derivatives containing phenylbenzenesulfonamides (7a-7c) were synthesized by reacting (E)-N'-(2-cyanophenyl)-N,N-dimethyl formamidine (6) with different 4- amino-N-(phenyl)benzenesulfonamides (4a-4c) and characterized by different techniques such as HRMS, IR, 1H NMR and 13C NMR spectroscopy. The structural properties were further examined by single crystal X-ray diffraction method. The X-ray data shows that compounds 7a and 7c contain two molecules and 7b contains one molecule in the asymmetric unit. Comparison of conformation of two distinct molecules, “A” and “B”, in the asymmetric unit of 7a and 7c were studied with the aid of reported literature. The in vitro …
Characterization of ALD grown TixAlyN and TixAlyC thin films
Atomic layer deposition (ALD) was used to grow TixAlyN and TixAlyC thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N2-atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elements. Carbon, chlorin…
Bringing a Molecular Plus One : Synergistic Binding Creates Guest-Mediated Three-Component Complexes
C-Ethyl-2-Methylresorcinarene (A), pyridine (B), and a set of ten carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple non-covalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution as explored by both experimental and computational methods. The interactions be-tween A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions b…
Synthesis, characterization, and thermal behavior of steroidal dendrons
A series of novel dendritic steroidal polyesters of first and second generation has been synthesized in convergent fashion by the use of 2,2-bis(hydroxymethyl)propionic acid as a repeating unit. The first- and second-generation hydroxy-functionalized dendrons with a variety of surface modifications were produced through the use of four bile acids: lithocholic acid (LCA), ursodeoxycholic acid (UDCA), deoxycholic acid (DCA), and cholic acid (CA). The thermal behavior of the steroidal dendrons was characterized by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). Finally, quantum chemical calculation methods were used to study the geometries of the dendrons and t…
X-ray Powder Structure Determination and Thermal Behavior of a New Modification of Pb(II) Selenite
The crystal structure of a new polymorphic form of lead(II) selenite (PbSeO3) was solved directly from conventional X-ray powder diffraction data. Direct methods and Rietveld refinement techniques were used for the structure determination. The compound crystallizes in the monoclinic space group P21/c (no. 14) with cell dimensions a = 9.1587(1) A, b = 8.0902(1) A, c = 8.7932(1) A, β = 103.032(1)°, and V = 634.76(2) A3. The final refinement gave background excluded Rp = 6.22%, Rwp = 8.81%, and RB = 2.16% by using 45 structural and 15 profile parameters with 10 atoms in an asymmetric unit. The three-dimensional structure consists of 9-coordinated lead atoms, which are linked by three bidentate…
Synthesis and thermal behavior of Janus dendrimers, part 1
Abstract Eight Janus-type dendrimers up to the second generation were synthesized, and their thermal properties were evaluated. Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-dihexyloxybenzoic acid or 3,4-dihexadecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The structures of the molecules were verified with 1 H NMR, 13 C NMR, ESI TOF mass spectrometry and elemental analysis. The thermal stability was evaluated by thermogravimetric analysis, displaying onset decomposition temperatures ( T d ) ranging from 241 to 308 °C. Phase transitions were studied by differential scanning calorimetry. Based on the performed studie…
A linear Fe-O-Fe unit in bis(dibenzyldimethylammonium) mu-oxo-bis[tribromoferrate(III)].
The title compound, (C 16 H 20 )N) 2 [Fe 2 Br 6 O], crystallizes with one dibenzyldimethylammonium cation and one half of a μ-oxo-bis[tribromoferrate(III)] anion in the asymmetric unit. The bridging oxo group is situated on an inversion centre, resulting in a linear conformation for the Fe-O-Fe unit. The iron(III) cations have tetrahedral geometry, with bond angles in the range 106.8 (1)-112.2 (1)°. The ion pairs are held together by Coulombic forces and C-H···Br hydrogen bonds. Each Br - anion forms one hydrogen bond. No C-H···O hydrogen bonds are found between the O atom in the Fe-O-Fe unit and surrounding counter-cations, consistent with the linear configuration of the Fe-O-Fe unit.
Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3
Abstract This report reveals the methodology for the fabrication of α-GaOOH micro rods and micro flowers from gallium nitrate with two different complexing agents. α-GaOOH self-assembled 3D hierarchical architecture, comprising of nanorods and nanoribbbons with a flower like morphology, is fabricated under benign hydrothermal conditions. Calcination of α-GaOOH results in formation of α-Ga 2 O 3 with the retention of morphology. Both gallium oxyhydroxide and gallium oxide microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. α-Ga 2 O 3 micro flowers are furnished with nanorods having ordered diamond like cross section with a diagonal length proportion of 2:1. The hyd…
Crystal Structures and Thermal Behavior of Isostructural Bis(dibenzyldimethylammonium) Tetrachlorometallate [M = Mn(II), Co(II), Ni(II) and Zn(II)] Solvates Crystallized from Acetonitrile and/or Methanol Solutions
Five isostructural bis(dibenzyldimethylammonium) tetrachlorometallate solvate complexes [M = Mn(II), Co(II), Ni(II) or Zn(II)] were crystallized from acetonitrile and/or methanol solutions. The crystal structures are compared to those of the analogous, isostructural copper compounds (X = Cl or Br) reported earlier. The complexes crystallize in the monoclinic space group P21/n with Z = 4, and unit cell dimensions of a ≈ 14.1, b ≈ 16.1, c ≈ 15.7 °A and β ≈ 108 - 109°. The asymmetric unit of these compounds contains one MCl4 2− anion, two Bz2Me2N+ cations in theW-conformation and one half of a disordered solvent molecule (acetonitrile or methanol). The geometry of the MCl4 2− anion is close to…
Halogen Bonding Based “Catch and Release”: Reversible Solid State Entrapment of Elemental Iodine with Mono-Alkylated DABCO Salts
The halogen bonding (XB) between elemental iodine (I2) and neutral 1,4-diazabicyclo[2.2.2]octane (DABCO) and its monoalkylated PF6– salts was studied by X-ray crystallographic, thermoanalytical, and computational methods. DABCO was found to form both 1:1 and 1:2 complexes with I2 showing an exceptionally strong halogen bond (ΔEcp = −73.0 kJ/mol) with extremely short N···I distance (2.37 A) in the 1:1 complex (1a). In the more favored 1:2 complex (1b), the XB interaction was found to be slightly weaker [ΔEcp = −64.4 kJ/mol and d(N···I) = 2.42 A] as compared to 1a. The monoalkylated DABCO salts (2PF6–7PF6) form corresponding 1:1 XB complexes with I2 {[2···I2]PF6–([7···I2]PF6} similarly to the…
N-{4-[(3-Methyl-phen-yl)sulfamo-yl]phen-yl}benzamide.
In the title compound, C20H18N2O3S, the dihedral angle between the central benzene ring and the amide group is 24.1&#8197;(3)&#176; and that between this ring and the aromatic ring of the tolyl group is 68.2&#8197;(16)&#176;. In the crystal, adjacent molecules are linked by N&#8212;H...O hydrogen bonds into a linear chain running along [100]. Weak C&#8212;H...O contacts also occur. Extensive weak &#960;&#8211;&#960; interactions exist from both face-to-face and face-to-edge interactions occur between the aromatic rings [centroid&#8211;centroid distances = 3.612&#8197;(2) and 4.843&#8197;(2)&#8197;&#197;].
From Mannose to Small Amphiphilic Polyol: Perfect Linearity Leads To Spontaneous Aggregation
Terminally unsaturated and diastereochemically pure polyol derived from d-mannose shows spontaneous aggregation behavior in water solution. In order to study and clarify this unforeseen phenomenon, a conformational study based on NMR spectroscopy combined with ab initio structure analysis using the COSMO-solvation model was pursued. The results, together with X-ray diffraction studies, suggest a low energy linear conformation for this particular substrate both in solid states and in solution. For such small-sized acyclic carbohydrate derivatives, the linear conformation appears to be a key prerequisite for the unusual molecular self-assembly reported herein. peerReviewed
Powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3
Previously unpublished powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3 are presented. F30 values for AgK(SCN)2 and AgK2(SCN)3 are 80(0.0075, 50) and 53(0.0089, 63), respectively. The Rietveld refinement of the patterns is also performed. For AgK(SCN)2Rp=6.98, Rwp=11.84, and RBragg=2.9. For AgK2(SCN)3Rp=7.22, Rwp=10.79, and RBragg=5.0.
Insights into localized manipulation of organogel-related microcrystalline spherulite formation
Abstract The formation processes of microcrystalline spherulitic fiber systems related to bile acid amides were determined to include dominant interface-related aspects, the role of which were studied in terms of potential manipulation and increased control over the overall structure of the networks. The nucleation and growth properties and aggregation of two lithocholyl amide derivatives were studied in several organic solvents using thermomicroscopy, as well as thermal control at macroscopic level. Nucleation/crystallization at interfaces was observed to act as the main route for the formation of microcrystalline fibers/solids in six gelator–solvent systems, in which spherulite formation …
Hydrogen and Halogen Bond Mediated Coordination Polymers of Chloro-Substituted Pyrazin-2-Amine Copper(I) Bromide Complexes
A new class of six mono- (1
NI halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide
Two different dicationic N-donors, based on the DABCO diamine, have been studied as templates for polyiodides. The results present a new strategy for polyiodide stabilization, which involves both N⋯I halogen bonding and cation–anion interactions. This is highlighted by the self-assembly of an unprecedented discrete pseudo-linear dodecaiodide species.
Bringing a Molecular Plus One: Synergistic Binding Creates Guest-Mediated Three-Component Complexes
Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions betw…
Probing the Gelation Synergies and Anti-Escherichia coli Activity of Fmoc-Phenylalanine/Graphene Oxide Hybrid Hydrogel
The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material’s bactericidal activity on Gram…
A comparative study for the removal of methylene blue dye by N and S modified TiO2 adsorbents
Successful removal of methylene blue (MB) dye from aqueous solutions using nitrogen and sulfur modified TiO2(P25) nanoparticles has been demonstrated in this study. The modified adsorbents were characterized using various analytical methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The adsorption potential of S-TiO2, N-TiO2 and TiO2(P25) type adsorbents was tested for the removal of MB dye. The kinetic studies indicated that the adsorption of MB dye followed the pseudo-first order model, while desorption processes followed the second order model. The adsorption capacity of the adsorbent proved to be increasing as a f…
Improved synthesis and application of conjugation-amenable polyols from d-mannose
A series of polyhydroxyl sulfides and triazoles was prepared by reacting allyl and propargyl d-mannose derivatives with selected thiols and azides in thiol-ene and Huisgen click reactions. Conformational analysis by NMR spectroscopy proved that the intrinsic rigidity and linear conformation of the mannose derived polyol backbone is retained in the final click products in solution. Single crystal X-ray structure determination of one of the compounds prepared further verified that the linear conformation of the polyol segment is also retained in the solid state. In addition, an improved method for direct Barbier-type propargylation of unprotected d-mannose is reported. The new reaction protoc…
Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages
Tripodal N‐donor ligands are used to form halogen‐bonded assemblies via structurally analogous Ag+‐complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N⋅⋅⋅I+⋅⋅⋅N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1‐methyl‐1‐azonia‐4‐azabicyclo[2.2.2]octane)‐mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5‐tris(imidazole‐1‐ylmethyl)‐2,4,6‐trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N⋅⋅⋅Ag+⋅⋅⋅N]→ [N⋅⋅⋅I+⋅⋅⋅N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepare…
High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions
Pharmaceutical nanosuspensions are formed when drug crystals are suspended in aqueous media in the presence of stabilizers. This technology offers a convenient way to enhance the dissolution of poorly water-soluble drug compounds. The stabilizers exert their action through electrostatic or steric interactions, however, the molecular requirements of stabilizing agents have not been studied extensively. Here, four structurally related amphiphilic Janus-dendrimers were synthesized and screened to determine the roles of different macromolecular domains on the stabilization of drug crystals. Physical interaction and nanomilling experiments have substantiated that Janus-dendrimers with fourth gen…
Methyl 3',4',5'-trimethoxybiphenyl-4-carboxylate
In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the molecules are packed in an antiparallel fashion in layers along the a axis. In each layer, very weak C-H...O hydrogen bonds occur between the methoxy and methyl ester groups. Weak C-H...[pi] interactions between the 4'- and 5'-methoxy groups and neighbouring benzene rings [methoxy-C-ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.
Novel one-pot synthesis of quaternary ammonium halides: new route to ionic liquids
Treatment of an amide with an alkyl or substituted alkyl halide in the presence of a weak base in a one-pot reaction leads to crystalline quaternary ammonium halides with reasonable chemical yields; some of the compounds show low melting points and a liquid range of over 50–100 °C before decomposition.
Solution stoichiometry determines crystal stoichiometry in halogen-bonded supramolecular complexes
The behavior of the methylisonicotinate (MINC) building block as halogen bonding-acceptor module has been investigated in the solid state. Both the N and the O atoms of MINC interact with the iodine atoms of 1,4-diiodotetrafluorobenzene (DITFB) giving rise to N⋯I and O⋯I interactions. Hierarchy between these interactions allows the control of the composition and thus the structure of the supramolecular complex, according to the composition of the reaction mixture. A structure based on an infinite chain and a trimeric supermolecule have been obtained starting from a 1 ∶ 1 MINC/DITFB stoichiometry or by using a large excess of MINC, respectively. While the former structure shows simultaneous …
Reversible Supracolloidal Self-Assembly of Cobalt Nanoparticles to Hollow Capsids and Their Superstructures
| openaire: EC/FP7/291364/EU//MIMEFUN The synthesis and spontaneous, reversible supracolloidal hydrogen bond-driven self-assembly of cobalt nanoparticles (CoNPs) into hollow shell-like capsids and their directed assembly to higher order superstructures is presented. CoNPs and capsids form in one step upon mixing dicobalt octacarbonyl (Co2CO8) and p-aminobenzoic acid (pABA) in 1,2-dichlorobenzene using heating-up synthesis without additional catalysts or stabilizers. This leads to pABA capped CoNPs (core ca. 5nm) with a narrow size distribution. They spontaneously assemble into tunable spherical capsids (d≈50-200nm) with a few-layered shells, as driven by inter-nanoparticle hydrogen bonds th…
Synthesis and characterization of chiral azobenzene dye functionalized Janus dendrimers
Abstract Eight bischromophoric bisMPA based polyester Janus dendrimers emanating from a pentaerythritol core were synthesized and their properties evaluated. 4-((4-(Ethyl(2-(2-(6-methoxynaphthalen-2-yl)propanoyloxy)ethyl)amino)-phenyl)diazenyl)-benzoic acid and 4-((4-(ethyl(2-(2-(6-methoxynaphthalen-2-yl)propanoyloxy)-ethyl)-amino)phenyl)diazenyl)-3-nitrobenzoic acid were attached to the dendritic polyester skeleton to make chiral dendrimers up to the second generation. The structures and the purity of the molecules were verified with 1H NMR, 13C NMR, ESI TOF mass spectrometry, and elemental analysis. Spectral properties were evaluated with UV–vis and CD spectrometer. The compounds displaye…
Synthesis and structural studies on Ni(II) dithiocarbamates : Exploring intramolecular Ni···H-C interactions
Abstract Five new Ni(II) dithiocarbamates with NiS4, NiS2PN and NiS2PCl coordination spheres, viz. [Ni(bupmbzdtc)2] (1), [Ni(bupmbzdtc)(PPh3)(NCS)] (2), [Ni(bupmbzdtc)(PPh3)Cl] (3), [Ni(4-dpmpzdtc)(PPh3)Cl] (4) and [Ni(pbbzbudtc)(PPh3)(NCS)] (5), where bupmbzdtc = N-butyl(p-methylbenzyl)dithiocarbamato anion, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, pbbzbudtc = N-(p-bromobenzyl)butyl-dithiocarbamato anion and PPh3 = triphenylphosphine, were synthesized and characterized by UV, IR, NMR and single crystal X-ray diffraction methods. Spectral results suggest a square planar geometry around the Ni(II) metal center for all the synthesized complexes. Single crystal X-ray stru…
Poly[[μ-N,N′-bis(2-hydroxyethyl)-N,N,N′,N′-tetramethylpropane-1,3-diaminium-κ2O:O′]tetra-μ-bromido-dibromidodimanganese(II)]
The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)] n , consists of one Mn(II) cation, half of a dicationic N,N'-bis-(2-hy-droxy-eth-yl)-N,N,N',N'-tetra-methyl-propane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The Mn(II) cation is coordinated by a single L ligand via the hy-droxy O atom and by five bromide ions, resulting in a distorted octa-hedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent Mn(II) atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn-(μ-Br)2-Mn chains, also forming a …
Crystal structures and thermal behavior of bis[dibenzyldimethylammonium]CuBr4, bis[dibenzyldimethylammonium]CuCl4 and bis[dimethyldi(2-phenylethyl)ammonium]CuBr4 crystallized from acetonitrile and dilute HX (X=Cl or Br) solutions
Abstract Bis[dibenzyldimethylammonium]CuBr4, bis[dibenzyldimethylammonium]CuCl4 and bis[dimethyldi(2-phenylethyl)ammonium]CuBr4 were crystallized from acetonitrile and/or dilute HX solutions. Five different kinds of single crystals were obtained. In the case of bis[dibenzyldimethylammonium]CuX4 (X=Br or Cl), the acetonitrile molecules cocrystallized into the crystal structure when acetonitrile solution was used. As a result, the isomorphic structures of Bis[dibenzyldimethylammonium]CuX4·0.5 CH3CN (X=Br or Cl) in monoclinic space group P21/n were obtained. When a dilute HX solution was used, the bis[dibenzyldimethylammonium]CuX4 (X=Br or Cl) crystallized without solvent molecules. The formed…
Stability of Rare-Earth Oxychloride Phases: Bond Valence Study
Abstract The crystal structures of the tetragonal rare earth ( RE ) oxychlorides, RE OCl ( RE =La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P 4/ nmm , No. 129, Z =2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of ( RE O) n n + complex cations and X n − anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation an…
Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties
This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied.
Syntheses and structural study of bile acid amidoalcohols.
Preparation, structural and thermoanalytical characterization of fourteen N-hydroxyalkyl 5beta-cholan-24-amides have been performed in this study. The utilized techniques include liquid state and CP-MAS 13C NMR spectroscopy, thermogravimetry, differential scanning calorimetry, and also powder and single crystal X-ray crystallography. The results were discussed and compared to each other and also to previous findings on similar compounds. One pure hydrate form was obtained. Six new single crystal structures were determined, including one hydrated chloroform solvate. Decomposition temperatures were found to correlate with the side chain length, and the number of the hydroxyl groups. The spati…
Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.
The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of …
CCDC 2054859: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1429013: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027
CCDC 1821333: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1404481: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 1901279: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1833434: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 947893: Experimental Crystal Structure Determination
Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063
CCDC 947892: Experimental Crystal Structure Determination
Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063
CCDC 1424396: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 913158: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1424395: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1863396: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2098810: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1842357: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1833432: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1404479: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 1938867: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1938197: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1821338: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1023710: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1833433: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1554863: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 1938194: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 990215: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016
CCDC 2149492: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Manu Lahtinen, Ruzal Sitdikov, Bianca Wank, Tiina Saloranta-Simell, Reko Leino|2022|Carbohydr.Res.|518|108596|doi:10.1016/j.carres.2022.108596
CCDC 1901284: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1821334: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1938193: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1007104: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016
CCDC 1533110: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1554861: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 1833439: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 2158304: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1023705: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 947895: Experimental Crystal Structure Determination
Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063
CCDC 1938198: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1938870: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1885475: Experimental Crystal Structure Determination
Related Article: Morten K. Peters, Sebastian Hamer, Torben Jäkel, Fynn Röhricht, Frank D. Sönnichsen, Carolina von Essen, Manu Lahtinen, Christian Naether, Kari Rissanen, Rainer Herges|2019|Inorg.Chem.|58|5265|doi:10.1021/acs.inorgchem.9b00349
CCDC 2149491: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Manu Lahtinen, Ruzal Sitdikov, Bianca Wank, Tiina Saloranta-Simell, Reko Leino|2022|Carbohydr.Res.|518|108596|doi:10.1016/j.carres.2022.108596
CCDC 1938871: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1833445: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1023709: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1894870: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1901282: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1533112: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 913147: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 913151: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2171093: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 2098809: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2171080: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 913154: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1901276: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 2001488: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 996586: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059
CCDC 927661: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1821336: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 913161: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1863394: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 990214: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016
CCDC 996587: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059
CCDC 1901283: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 913150: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 913155: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2211278: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689
CCDC 2001484: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 947464: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n
CCDC 1901278: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1406085: Experimental Crystal Structure Determination
Related Article: Tiina Saloranta, Anssi Peuronen, Johannes M. Dieterich, Janne Ruokolainen, Manu Lahtinen, Reko Leino|2016|Cryst.Growth Des.|16|655|doi:10.1021/acs.cgd.5b01135
CCDC 1027704: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076
CCDC 913149: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2171079: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 913148: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1833437: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1901272: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901285: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 978171: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E
CCDC 2157985: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1884544: Experimental Crystal Structure Determination
Related Article: Morten K. Peters, Sebastian Hamer, Torben Jäkel, Fynn Röhricht, Frank D. Sönnichsen, Carolina von Essen, Manu Lahtinen, Christian Naether, Kari Rissanen, Rainer Herges|2019|Inorg.Chem.|58|5265|doi:10.1021/acs.inorgchem.9b00349
CCDC 1956436: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Ruzal Sitdikov, Andreas C. M. Gunell, Manu Lahtinen, Tiina Saloranta-Simell, Reko Leino|2020|RSC Advances|10|3960|doi:10.1039/C9RA10378C
CCDC 2211279: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689
CCDC 2171088: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1863392: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 947462: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n
CCDC 2157989: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 913160: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1863395: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1833446: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1821329: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1986213: Experimental Crystal Structure Determination
Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531
CCDC 2171091: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 2054860: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1833443: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 2171089: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1842358: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1404485: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 1986216: Experimental Crystal Structure Determination
Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531
CCDC 2171092: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 2001485: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1822427: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263
CCDC 2171084: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1822426: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263
CCDC 1833435: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1938873: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1404484: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 2001490: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 947463: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n
CCDC 1938195: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1863398: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1554864: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 2157988: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1938868: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1833442: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1821328: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 2211276: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689
CCDC 1833436: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1986214: Experimental Crystal Structure Determination
Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531
CCDC 2171081: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 2171090: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 2171087: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1938872: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1023706: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1938866: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1821327: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1533113: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 913159: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2001487: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 2171086: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 996588: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059
CCDC 1938869: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1486829: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1821330: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1901271: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 2054861: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1863393: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2129454: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1429012: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027
CCDC 1901275: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1833428: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1821335: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 2109451: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Chandran Udhaya Kumar, Manu Lahtinen, Anssi Peuronen, Mika Sillanp����|2022|Data in Brief|41|107924|doi:10.1016/j.dib.2022.107924
CCDC 978172: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E
CCDC 2157986: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 2001489: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1424394: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1833444: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 2157987: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 947894: Experimental Crystal Structure Determination
Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063
CCDC 1429016: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027
CCDC 2157984: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1027705: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076
CCDC 913145: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1404482: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 1863397: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1821331: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 947465: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n
CCDC 1833441: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1901281: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1023708: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1986215: Experimental Crystal Structure Determination
Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531
CCDC 1821332: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1557625: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 1023704: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1901273: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901274: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901280: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1429014: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027
CCDC 1901277: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1557624: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 1901270: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 913146: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1821337: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1938196: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1833440: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 2171082: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 913153: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1027703: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076
CCDC 1533111: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 913156: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1557623: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 2171085: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1833431: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 2001491: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1938192: Experimental Crystal Structure Determination
Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228
CCDC 1863391: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 913152: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1429015: Experimental Crystal Structure Determination
Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027
CCDC 927662: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2171083: Experimental Crystal Structure Determination
Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351
CCDC 1404483: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 913157: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 1833429: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 927660: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 927663: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2211277: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689
CCDC 1825936: Experimental Crystal Structure Determination
Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263
CCDC 2001486: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 927659: Experimental Crystal Structure Determination
Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f
CCDC 2054862: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 992712: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E
CCDC 1987795: Experimental Crystal Structure Determination
Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531
CCDC 2129453: Experimental Crystal Structure Determination
Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034
CCDC 1023707: Experimental Crystal Structure Determination
Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D
CCDC 1533114: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1404480: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552
CCDC 1833430: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1833438: Experimental Crystal Structure Determination
Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C
CCDC 1554862: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655