0000000000103352
AUTHOR
Heikki Kettunen
Probing the shape of176Hgalong the yrast line
In-beam \ensuremath{\gamma}-ray and \ensuremath{\gamma}-\ensuremath{\gamma} coincidence measurements have been made for the very neutron-deficient nucleus ${}^{176}\mathrm{Hg}$ using the recoil-decay tagging (RDT) technique. The irregular yrast sequence observed up to $I=10\ensuremath{\Elzxh}$ indicates that the prolate intruder band, seen in heavier Hg isotopes near the neutron midshell, crosses the nearly spherical ground-state band of ${}^{176}\mathrm{Hg}$ above $I=6\ensuremath{\Elzxh}.$
Mobility determination of lead isotopes in glass for retrospective radon measurements rad
In retrospective radon measurements, the 22-y half life of 210Pb is used as an advantage. 210Pb is often considered to be relatively immobile in glass after alpha recoil implanted by 222Rn progenies. The diffusion of 210Pb could, however, lead to uncertain wrong retrospective radon exposure estimations if 210Pb is mobile and can escape from glass, or lost as a result of cleaning-induced surface modification. This diffusion was studied by a radiotracer technique, where 209Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the ion guide isotope separator on-line technique, the 209Pb atoms were implanted into the glass with an energy of 39 keV. The di…
Shape isomerism and spectroscopy ofHg177
High spin states in the $^{177}\mathrm{Hg}$ nucleus were populated by the $^{144}\mathrm{Sm}(^{36}\mathrm{Ar},3\mathrm{n})^{177}\mathrm{Hg}$ reaction at a beam energy of $178\phantom{\rule{0.3em}{0ex}}\text{MeV}$. The emitted prompt $\ensuremath{\gamma}$ rays were detected with the Jurosphere $\ensuremath{\gamma}$-ray spectrometer, while the recoiling nuclei were identified using an active stopper at the focal plane of the gas-filled separator RITU. A quasi-rotational band that decays to an isomeric state with a half-life ${t}_{1∕2}=1.50\ifmmode\pm\else\textpm\fi{}0.15\phantom{\rule{0.3em}{0ex}}\ensuremath{\mu}\mathrm{s}$ and its subsequent $\ensuremath{\gamma}$ decay to the ground state of…
Isomeric state in the doubly odd196At nucleus
An excited isomeric state has been identified in the 196At nucleus using the recoil decay tagging technique. This is the first identification of an excited state in this neutron-deficient odd-odd nucleus. Several tentative prompt γ-rays have also been correlated with 196At α-decay, although it has not been possible to assign them to specific energy levels in 196At. The mean lifetime of the isomeric state has been measured as τ = 11±2 µs. The new level is compared with similar low-lying states in neighbouring nuclei and is de-excited by an E2 γ-ray transition, the large hindrance of which is not expected.
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Recoil isomer tagging in the proton-rich odd-odd N = 77 isotones, 142Tb and 144Ho
A fusion-evaporation reaction has been employed to search for isomeric states in the near-proton drip-line N577 isotones, 65 142Tb and 67 144Ho. The recoiling nuclei were implanted into a silicon detector at the focal plane of a gas-filled separator, where a recoil isomer tagging technique was employed to correlate prompt and delayed g-ray transitions across isomeric states. New states were observed to be built upon a known 15-ms isomer in 142Tb and the feeding and decay of a new 500(20)-ns isomeric state was established in 144Ho. This measurement represents the first observation of excited states in 144Ho. The behavior of the new states above the isomers suggests that they are built upon l…
The GREAT spectrometer
Abstract The GREAT spectrometer is designed to measure the decay properties of reaction products transported to the focal plane of a recoil separator. GREAT comprises a system of silicon, germanium and gas detectors optimised for detecting the arrival of the reaction products and correlating with any subsequent radioactive decay involving the emission of protons, α particles, β particles, γ rays, X-rays or conversion electrons. GREAT can either be employed as a sensitive stand-alone device for decay measurements at the focal plane, or used to provide a selective tag for prompt conversion electrons or γ rays measured with arrays of detectors deployed at the target position. A new concept of …
Neutron yield from carbon, light- and heavy-water thick targets irradiated by 40MeV deuterons
Abstract Angular and energy distributions of neutrons produced by the interaction of deuterons of 40 MeV in carbon, light- and heavy-water targets, in which they are stopped, have been measured by the activation method. A discrepancy with a time-of-flight measurement for d + C has been found. The results are compared with a Monte-Carlo calculation and are discussed in the frame of building a deuteron-to-neutron converter for the SPIRAL2 radioactive ion-beam facility.
Evidence for prolate structure in light Pb isotopes from in-beamγ-ray spectroscopy ofPb185
For the first time, excited states in {sup 185}Pb have been observed in in-beam {gamma}-ray spectroscopic measurements using the recoil-decay tagging method. The resulting level scheme reveals a strongly coupled yrast band structure that originates from coupling of the i{sub 13/2} quasineutron to a prolate deformed core. The band is also observed to de-excite via the spherical {alpha}-decaying 13/2{sup +}isomeric state.
In-beam spectroscopy of $^{253,254}$No
In-beam conversion electron spectroscopy experiments have been performed on the transfermium nuclei 253,254No using the conversion electron spectrometer SACRED in nearly collinear geometry in conjunction with the gas-filled separator RITU at the University of Jyvaskyla. The experimental setup is discussed and the spectra are compared to Monte Carlo simulations. The implications for the ground-state configuration of 253No are discussed.
Mechanisms of Electron-Induced Single Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation
Abstract The stability of black silicon induced junction photodetectors under high-energy irradiation was tested with 11 MeV protons and 12 MeV electrons using fluence of 1 ⋅ 10 10 protons/cm2 and dose of 67 krad(Si) for protons and electrons, respectively. The energies and dose levels were selected to test radiation levels relevant for space applications. The degradation was evaluated through dark current and external quantum efficiency changes during (within 1 h after each step) and after (some days after) full irradiation sequences. Furthermore, the black silicon photodetectors were compared to planar silicon induced junction and planar silicon pn-junction photodetectors to assess the co…
Collective rotational – vibrational transition in the very neutron-deficient nuclei Pt
Excited states have been identified for the first time in very neutron deficient Pt-171.172 nuclei using the recoil-or-decay tagging technique. The ground-state band in Pt-172 has been established up to I-pi = 8+. A similar level sequence, presumably built on the I-pi = 13/2(+) state, is observed for Pt-171. The data are compared with theoretical calculations based on the mean field approach and the random phase approximation and are put into the context of the systematics of platinum isotopes. (C) 1998 Elsevier Science B.V. All rights reserved.
Recoil isomer tagging in the proton-rich odd-oddN=77isotones, 65142Tband 67144Ho
Isomer Spectroscopy in90216Th126and the Magicity of92218U126
Excited states in (216)Th were investigated via prompt and delayed gamma decays and the recoil-decay tagging method. The decay schemes of the I(pi) = (8+), t(1/2) = 128(8) micros, the I(pi) = (11-), t(1/2) = 615(55) ns, and the I(pi) = (14+), t(1/2) > or = 130 ns isomers were established. The configuration pi h(9/2)f(7/2) is assigned to the I(pi) = (8+) isomer, which implies that the h(9/2) and f(7/2) states are nearly degenerate. This is ascribed to increased binding of the f(7/2) orbital by its coupling to a low-lying I(pi) = (3-) state at E(x) = 1687 keV. The role of octupole and pairing correlations for a Z = 92 shell closure prediction is discussed on the basis of shell model calculati…
From the Reference SEU Monitor to the Technology Demonstration Module On-Board PROBA-II
The reference SEU Monitor system designed and presented in 2005 (R. H. SOslashrensen, F.-X. Guerre, and A. Roseng ldquoDesign, testing and calibration of a reference SEU monitor system,rdquo in Proc. RADECS, 2005, pp. B3-1-B3-7) has now been used by many researchers at many radiation test sites and has provided valuable calibration data in support of numerous projects. As some of these findings and results give new insight into improved inter-facility calibrations and provide additional inputs into ongoing SEE research, a few of the more interesting cases are presented. Furthermore the dasiadetector elementpsila, the Atmel AT60142F SRAM, now in a hybrid configuration, will form the key dete…
Evolution of collective motion in light polonium nuclei
The {gamma}-ray spectroscopy of even- and odd-mass isotopes of polonium have been studied using arrays of Ge detectors coupled to recoil-mass analyzers, including recoil-decay tagging techniques. The level energies and B(E2) branching ratios can be reproduced by theoretical frameworks which do not explicitly include proton particle-hole excitations across the Z = 82 shell, conclusions in contrast to those deduced from alpha-decay measurements.
Semi-Empirical Model for SEGR Prediction
The underlying physical mechanisms in single event gate rupture (SEGR) are not known precisely. SEGR is expected to occur when the energy deposition due to a heavy ion strike exceeds a certain threshold simultaneously with sufficient electric field across the gate dielectric. Typically the energy deposition is described by using the linear energy transfer (LET) of the given ion. Previously the LET has been demonstrated not to describe the SEGR sufficiently. The work presented here introduces a semi-empirical model for the SEGR prediction based on statistical variations in the energy deposition which are described theoretically.
In-beam spectroscopy using the JYFL gas-filled magnetic recoil separator RITU
The techniques of recoil-gating and recoil-decay tagging have been employed at Jyvaskyla to perform in-beam γ-ray and electron spectroscopy studies of heavy nuclei. The JUROSPHERE γ-ray array and the SACRED electron spectrometer have been placed at the target position of the JYFL gas-filled recoil separator recoil ion transport unit (RITU). The RITU separator has been used to collect the recoils of interest and separate them from beam particles and fission products. At the focal plane a detector system consisting of time-of-flight and implantation detectors has been used for further event identification. The method and some highlights from the results in the lead region close to the proton …
Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure
Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …
Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4
The tendency to reduce the spacecraft mass covers nowadays all components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP is a well known and vastly used approach to mass reduction. In cost reduction the use of standard (non-space qualified) electronics has increased. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore the use of standard electronics components poses challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to give an insight on the radiation shielding…
The design of a new gas-filled separator at JYFL
Abstract A new gas-filled recoil separator, intended mainly for the study of reaction products in mass region of 100–200 produced in symmetric or nearly symmetric reactions, is under design at the Department of Physics in the University of Jyvaskyla. The separator will be of the type DQQ where a horizontally focusing dipole (D) is followed by a quadrupole (Q) doublet. The bending radius of the dipole magnet will be 1850 mm and the bending angle 50°.
First observation of excited states in 184Pb: spectroscopy beyond the neutron mid-shell
Excited states have been identified for the first time in 184Pb, the first even-even Pb isotope beyond the 82 < N < 126 mid-shell, using the recoil-decay tagging (RDT) technique. A collective band built on the first-excited 2+ state has been observed. This resembles those seen in 186,188Pb and the Hg isotones, and can thus be associated with a prolate-deformed shape. Variable moment of inertia (VMI) fits of the prolate 0+ level energies in 184,186,188Pb indicate that the minimum appears at N= 103, the same neutron number at which the corresponding minimum in Hg isotopes is observed.
Gamma-ray spectroscopy of 192–195Po
Prompt and delayed γ-rays have been observed from very neutron deficient 192–195Po nuclei by using the recoil-decay tagging (RDT) and recoil gating techniques. The yrast levels up to the (10+) state in the 192Po were identified for the first time. Comprehensive data for 194Po rendered it possible to extend the yrast line and to observe several positive and negative parity non-yrast states. In the odd-mass isotopes 193Po and 195Po, favoured and unfavoured states on top of the 13/2+ state have been identified. The results are discussed within the simple vibrator and rotor pictures as well as in the framework of coexisting spherical and deformed-intruder structures.
Direct Ionization Impact on Accelerator Mixed-Field Soft-Error Rate
We investigate, through measurements and simulations, the possible direct ionization impact on the accelerator soft-error rate (SER), not considered in standard qualification approaches. Results show that, for a broad variety of state-of-the-art commercial components considered in the 65-16-nm technological range, indirect ionization is still expected to dominate the overall SER in the accelerator mixed-field. However, the derived critical charges of the most sensitive parts, corresponding to ~0.7 fC, are expected to be at the limit of rapid direct ionization dominance and soft-error increase.
Coexistence of triaxial and prolate shapes in 171Ir
Abstract Excited states in 171Ir have been observed for the first time. Gamma-rays were assigned to the nucleus by the recoil-decay tagging method. The ground-state band has a structure consistent with an h 11 2 proton coupled to a core of large triaxial deformation. At high spins, a bandcrossing occurs which is interpreted as a change in shape to a prolate deformation. Band-mixing calculations are performed for 171–175Ir. These show that shape-coexistence between triaxial and prolate states in these nuclei follows the same systematics found in their Pt and Os neighbours. The systematics are also compared with deformations calculated for 171–179Ir using the code “Ultimate Cranker”. Dipole b…
Microsecond isomers in 187Tl and 188Pb
Lifetime measurements of states in nuclei with A=187 and 188 have been performed, using reactions between 155Gd and 36Ar and following the transport of evaporation residues to the focal plane of a gas-filled recoil separator. In a separate experiment using the 159Tb(32S, 4n) reaction the γ-decay of isomeric levels in 187Tl has been studied using delayed γ-γ coincidence measurements. From observation of their subsequent γ decay, the mean lifetimes were measured to be 1000 ± 55 ns and 1600 ± 100 ns. Although it was not possible to characterize the isomers completely, they are proposed as candidates for one-proton, two-neutron excitations. In the course of this study, the decay of an isomer in…
Investigation of nuclear collectivity in the neutron mid-shell nucleusPb186
For the first time, non-yrast structures of the neutron mid-shell nucleus $^{186}\mathrm{Pb}$ have been identified in an in-beam \ensuremath{\gamma}-ray spectroscopy measurement using the recoil-decay tagging technique. The yrast band has been tentatively extended up to ${I}^{\ensuremath{\pi}}=20{}^{+},$ revealing a similar backbend to that observed in the Pt and Hg isotones. Three new bands and several other transitions have been observed. Calculations carried out in the framework of the interacting boson model together with mean-field studies using the generator coordinate method provide arguments for the association of one of the new bands with an oblate shape. The present data also show…
Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species
Experimental linear energy transfer values of heavy ions in silicon are presented with comparison to estimations from different semi empirical codes widely used among the community. This paper completes the experimental LET data for the RADEF cocktail ions in silicon.
In-beam andα-decay spectroscopy of191Poand evidence for triple shape coexistence at low energy in the daughter nucleus187Pb
Prompt gamma rays have been observed for the first time from the neutron-deficient nucleus Po-191 using the recoil-decay tagging technique at the RITU gas-filled separator. In addition improved alp ...
Evidence for oblate structure inPb186
In-beam $\ensuremath{\gamma}\ensuremath{\gamma}$ coincidence data have been collected for $^{186}\mathrm{Pb}$ by combining the JUROGAM Ge-detector array and the GREAT spectrometer with the RITU gas-filled recoil separator for recoil-decay tagging measurements. In addition to the known prolate yrast band in $^{186}\mathrm{Pb}$, these data have enabled a new low-lying side band to be identified. Based on the analysis of its decay pattern and comparison with Interacting Boson Model (IBM) calculations, the new band is associated with an oblate shape.
Structure of rotational bands in 253No
In-beam gamma-ray and conversion electron spectroscopic studies have been performed on the 253 No nucleus. A strongly coupled rotational band has been identified and the improved statistics allows an assignment of the band structure as built on the $\ensuremath 9/2^-[734]_{\nu}$ ground state. The results agree with previously known transition energies but disagree with the tentative structural assignments made in earlier work.
SEGR in SiO<inf>2</inf>-Si<inf>3</inf>N<inf>4</inf> stacks
Alpha decay of the new isotopes 188,189Po
New neutron-deficient isotopes 188,189Po have been produced in the complete fusion reaction of 52Cr ions with a 142Nd target at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of α-γ and α-conversion electron coincidence measurements and of α-α position and time correlations. In 189Po a ground state to ground state α decay with Eα1= 7540(20) keV, T1/2= 5(1) ms and two fine structure α-decays at Eα2= 7264(15) keV and Eα3= 7316(15) keV have been observed. In 188Po (T1/2= 400+200 −150μs) a ground state to ground state α decay at Eα= 7915(25) keV and a fine structure α decay at Eα= 7350(40) keV have been found. Improved data o…
Energy-loss straggling of 2-10 MeV/u Kr ions in gases
Measurements have been performed on a time-of-flight setup at the Jyväskylä K130 cyclotron, aiming at energy-loss straggling of heavy ions in gases. Theoretical predictions based on recently developed theory as well as an empirical interpolation formula predict that straggling can be more than ten times higher than Bohr straggling in the MeV/u regime. Our measurements with up to 9.3 MeV/u Kr ions on He, N2, Ne and Kr targets confirm this feature. Our calculations show the relative contributions of linear straggling, bunching including packing, and charge exchange. Our results for stopping cross sections are compatible with values from the literature. Funding Agencies|EU||Academy of Finland …
Effects of high-energy electrons in advanced NAND flash memories
We study the effects of high-energy electrons on advanced NAND Flash memories with multi-level and single-level cell architecture. We analyze the error rate in floating gate cells as a function of electron energy, evaluate the impact of total ionizing dose, and discuss the physical origin of the observed behavior.
Neutron yield from a 13C thick target irradiated by protons of intermediate energy
Abstract Angular and energy distributions of neutrons produced by the interaction of protons of 20, 25 and 40 MeV in 13C targets, in which they are stopped, have been measured by time-of-flight and activation methods. Neutron yields are compared with a Monte-Carlo based model prediction and with the experimental neutron yields of proton and deuteron beams impinging on natural carbon thick targets. The gain with respect to p + 12C is only sizeable at the lowest proton energies. The neutron yield curve of p + 13C versus proton energy is definitely lower than the one of d + 12C, in contrast to the suggestion by an earlier published measurement at 30 MeV.
Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells
Floating gate cells in advanced NAND Flash memories, with single-level and multi-level cell architecture, were exposed to low-energy proton beams. The first experimental evidence of single event upsets by proton direct ionization in floating gate cells is reported. The dependence of the error rate versus proton energy is analyzed in a wide energy range. Proton direct ionization events are studied and energy loss in the overlayers is discussed. The threshold LET for floating gate errors in multi-level and single-level cell devices is modeled and technology scaling trends are analyzed, also discussing the impact of the particle track size. peerReviewed
Production of pure samples of 131mXe and 135Xe
Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.
MBU characterization of NAND-Flash memories under heavy-ion irradiation
The angular dependence of the MBU-Cross-Section of two 8-Gbit-SLC-NAND-Flash and the orientation of the MBU-pattern has been measured.
Identification of excited states in doubly odd63140Eu77by recoil-isomer tagging
The 36Ar + 107Ag fusion-evapn. reaction was used to search for isomeric states in the N = 77 isotope 140Eu near the proton-drip line. The recoiling nuclei were implanted into a Si detector, at the focal plane of a gas-filled separator, where prompt and delayed g-ray transitions were correlated across isomeric states using recoil-isomer tagging. The feeding and decay of a new 299(3) ns isomeric state was established. This measurement represents the first observation of excited high-spin states in 140Eu. The behavior of the new states above the isomer is discussed in terms of theor. calcns. based upon the cranked-shell model and upon the exptl. systematics of other N = 77 isotones. Within thi…
Collectivity and Configuration Mixing inPb186,188andPo194
Lifetimes of prolate intruder states in {sup 186}Pb and oblate intruder states in {sup 194}Po have been determined by employing, for the first time, the recoil-decay tagging technique in recoil distance Doppler-shift lifetime measurements. In addition, lifetime measurements of prolate states in {sup 188}Pb up to the 8{sup +} state were carried out using the recoil-gating method. The B(E2) values have been deduced from which deformation parameters vertical bar {beta}{sub 2} vertical bar =0.29(5) and vertical bar {beta}{sub 2} vertical bar =0.17(3) for the prolate and the oblate bands, respectively, have been extracted. The results also shed new light on the mixing between different shapes.
Spectroscopy of transfermium nuclei: No-252(102)
An in-beam study of excited states in the transfermium nucleus 252 No has been performed using the recoil separator RITU together with the JUROSPHERE II array at the University of Jyväskylä. This is the second transfermium nucleus studied in an in-beam experiment. Levels up to spin 20 were populated and compared to levels in 254 No . An upbend is seen at a frequency of 200 keV/ħ corresponding to spin 16. We also use an improved systematics to connect the energy of the lowest 2 + state with its half-life and find that the deformation of both 2 5 2 , 2 5 4 No is slightly larger than previously assumed. peerReviewed
Fine structure in the alpha decays of 226U and 230Pu
The nuclei 226U and 230Pu have been populated via reactions involving 208Pb targets bombarded by 22Ne and 26Mg projectiles. Fusion-evaporation residues were separated in-flight using a gas-filled recoil separator. A position-sensitive Si-strip detector was employed at the focal plane in order to identify correlated α-decay chains. Two fine structure α-decay lines have been observed. The first, with an energy of 7385(5) keV, is assigned as the α decay from 226U to the first excited 2+ state of 222Th. The second line, observed for the first time in this work, has an energy of 6961(30) keV and is assigned as the α decay from 230Pu to the first excited 2+ state of 226U. The excitation energy of…
Low-lying structure of light radon isotopes
The excited states in the neutron-deficient isotopes Rn have been populated using the Er(Ar,4n), Er(Ar,4n), and Er(Ar,4n) reactions at beam energies of 175, 182, and 177 MeV, respectively. Evaporation residues were selected using an in-flight gas-filled separator and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt γ rays were observed at the target position using an array of Compton-suppressed germanium detectors. Correlation with the subsequent radioactive decay of associated recoiling ions in the silicon detector, recoil-γ and recoil-γ-γ coincidences were used to construct decay schemes of light radon isotopes. Me…
Decay of aπh11/2⊗νh11/2microsecond isomer in61136Pm75
An experiment has been performed to populate several extremely neutron-deficient nuclei around the mass-140 region of the nuclear chart, using a beam of {sup 54}Fe on a {sup 92}Mo target at an energy of 315 MeV. Analysis of these data using recoil-isomer tagging has established that the yrast {pi}h{sub 11/2} x {nu}h{sub 11/2},J{sup {pi}}=(8{sup +}), bandhead state in {sup 136}Pm is isomeric with a half-life of 1.5(1) {mu}s. This isomeric state decays via a 43-keV, probable-E1 transition to a J{sup {pi}}=(7{sup -}) state. Consideration of the theoretical Nilsson orbitals near the Fermi surface suggests that the J{sup {pi}}=(8{sup +}) state has a {nu}h{sub 11/2}[505](11/2){sup -} x {pi}h{sub …
Identification of yrast states in187Pb
gamma-ray spectroscopy of the high-spin states of the neutron-deficient nucleus Pb-187 has been conducted with the Gd-155(Ar-36,4n) reaction. A cascade of three transitions was deduced from gamma-gamma coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these gamma rays were positively identified with Pb-187 by recoil-gamma coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in Pb-187 is associated with the sequence of three E2 transitions from the yrast 25/2(+) level to a low-lying 13/2(+) is…
In-beam electron spectrometer used in conjunction with a gas-filled recoil separator
The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described.
Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation
International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…
Shape coexistence in183Tl
Prompt and delayed $\ensuremath{\gamma}$ rays originating from the neutron deficient nucleus ${}^{183}\mathrm{Tl}$ have been observed using the recoil-decay tagging and recoil gating techniques. The band-head energy of the prolate $\ensuremath{\pi}{i}_{13/2}$ yrast band has been determined. The yrast structure has also been confirmed up to the ${(33/2}^{+})$ state. In addition, a candidate for the ${(11/2}^{\ensuremath{-}})$ level based on the $\ensuremath{\pi}{(h}_{11/2}{)}^{\ensuremath{-}1}$ configuration has been observed.
Energy loss and straggling of MeV Si ions in gases
We present measurements of energy loss and straggling of Si ions in gases. An energy range from 0.5 to 12 MeV/u was covered using the 6 MV EN tandem accelerator at ETH Zurich, Switzerland, and the K130 cyclotron accelerator facility at the University of Jyväskylä, Finland. Our energy-loss data compare well with calculation based on the SRIM and PASS code. The new straggling measurements support a pronounced peak in He gas at around 4 MeV/u predicted by recent theoretical calculations. The straggling curve structure in the other gases (N2, Ne, Ar, Kr) is relatively flat in the covered energy range. Although there is a general agreement between the straggling data and the theoretical calculat…
SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below
International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.
Beta-delayed fission of 186, 188Bi isotopes
By using the technique of correlating implanted evaporation residues and their subsequent fission decay, β-delayed fission (βDF) of 186Bi has been identified for the first time and βDF of 188Bi has been unambiguously confirmed. The experiments were performed at the velocity filter SHIP (GSI, Darmstadt). The βDF probabilities for both nuclides were qualitatively estimated, and, in particular indications for a large value in the case of 186Bi are regarded. peerReviewed
β-delayed fission of186,188Bi isotopes
By using the technique of correlating implanted evaporation residues and their subsequent fission decay, $\ensuremath{\beta}$-delayed fission ($\ensuremath{\beta}$DF) of ${}^{186}$Bi has been identified for the first time and $\ensuremath{\beta}$DF of ${}^{188}$Bi has been unambiguously confirmed. The experiments were performed at the velocity filter SHIP (GSI, Darmstadt). The $\ensuremath{\beta}$DF probabilities for both nuclides were qualitatively estimated, and, in particular indications for a large value in the case of ${}^{186}$Bi are regarded.
Probing the shape of 176Hg along the yrast line
In-beam γ-ray and γ-γ coincidence measurements have been made for the very neutron-deficient nucleus 176Hg using the recoil-decay tagging (RDT) technique. The irregular yrast sequence observed up to I=10ħ indicates that the prolate intruder band, seen in heavier Hg isotopes near the neutron midshell, crosses the nearly spherical ground-state band of 176Hg above I=6ħ. peerReviewed
SEGR in SiO${}_2$–Si$_3$N$_4$ Stacks
Abstract. This work presents experimental Single Event Gate Rupture (SEGR) data for Metal–Insulator–Semiconductor (MIS) devices, where the gate dielectrics are made of stacked SiO2–Si3N4 structures. A semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is first proposed. Then interrelationship between SEGR cross- section and heavy-ion induced energy deposition probability in thin dielectric layers is discussed. Qualitative connection between the energy deposition in the dielectric and the SEGR is proposed. peerReviewed
Electromagnetic transitions andαdecay of the223Panucleus
Actinides with $N\ensuremath{\sim}132$ present the best explored region of pear shape nuclei. Still almost no spectroscopic information is available for the heaviest elements, $Z=91--98,$ which are predicted to be octupole instable. The lack of data for the latter nuclei results from the high fission probability encountered in the heavy-ion reactions used to populate them. In order to overcome this handicap, an $\ensuremath{\alpha}$-decay tagging technique was used to identify $\ensuremath{\gamma}$ rays in ${}^{223}\mathrm{Pa}$ produced through the ${}^{208}\mathrm{Pb}{(}^{19}\mathrm{F},4n)$ reaction. A new value of 4.9(4) ms for the half-life of ${}^{223}\mathrm{Pa}$ was obtained as a by-p…
Strongly coupled bands in the neutron-deficient nucleus167Re
Excited states in the neutron-deficient nucleus Re-167 have been observed in a recoil-tagging experiment performed with the Jurosphere gamma-ray spectrometer in conjunction with the RITU gas-filled ...
High-spin study of neutron-deficient $^{114}$Xe
Abstract High-spin states have been populated in 114 54 Xe via the 58 Ni( 58 Ni, 2p) reaction at 210 MeV, using the Jurosphere γ -ray spectrometer to record γ -ray coincidences. The known level scheme has been significantly extended and includes two positive-parity and three negative-parity structures. At the highest spins, one of the negative-parity bands becomes yrast and shows the characteristics of a smoothly terminating band. Quadrupole moments for two of the bands at high spin have been estimated through a Doppler-broadened lineshape analysis; the terminating band has a reduced quadrupole moment implying that it is not far from full termination into a noncollective oblate state. Extra…
Heavy Ion Sensitivity of 16/32-Gbit NAND-Flash and 4-Gbit DDR3 SDRAM
16/32-Gbit NAND-Flash and 4-Gbit DDR3 SDRAM memories have been tested under heavy ion irradiation. At high LET, 25nm NAND-Flash show MBUs at normal incidence. Techniques for SEFI mitigation in DDR3 SDRAM are studied.
Decay spectroscopy of heavy nuclei beyond the proton drip line
Alpha decay study of 218U; a search for the sub-shell closure at Z=92
Neutron-deficient uranium isotopes were studied via α spectroscopic methods. A low-lying α-decaying isomeric state was found in 218U. The new isomeric state was assigned spin and parity I π = 8+. The isomer decays by α emission with an energy E = 10678(17) keV and with a half-life T 1/2 = (0.56 -0.14 +0.26 ) ms. The known alpha-decay properties of the ground state of 218U was measured with improved statistics. The ground-state α-decay has an energy E = 8612(9) keV and a half-life T 1/2 = (0.51 -0.10 +0.17 ) ms.
High-spin states in205Rn:A new shears band structure?
The high-spin structure of {sup 205}Rn has been investigated for the first time following the {sup 170}Er({sup 40}Ar,5n) and {sup 197}Au({sup 14}N,6n) reactions at beam energies of 183 MeV and 90{endash}110 MeV, respectively, using the Jurosphere and YRAST Ball arrays. Two new cascades have been identified which dominate the high-spin decay. One of these, consisting of ten stretched M1 transitions with unobserved E2 crossover transitions, is interpreted as a shears structure based on the {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}i{sub 13/2}{sup 2} (or {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}h{sub 9/2}i{sub 13/2}) configuration. {copyright} {ital 1999} {ital The American Physical…
First observation of excited states in the very neutron deficient nucleus76165Osand the yrast structure of76166Os
Probing intruder structures in lead nuclei
In-beam γ-ray spectroscopy measurements provide important information on coexisting normal and intruder configurations in lead nuclei. However, in these experiments the yrast states are preferentially populated so that in many cases nothing is known about non-yrast states that are essential for obtaining a fuller understanding. Complementary experiments designed to study fine structure in the a decays of polonium nuclei have led to the discovery of low-spin non-yrast states in the daughter lead nuclei, while higher-spin states can be identified through the γ decays of isomeric states. The α-decay studies have the additional benefit of allowing information on configuration mixing in the polo…
Radiation hardness studies of CdTe and for the SIXS particle detector on-board the BepiColombo spacecraft
Abstract We report of the radiation hardness measurements that were performed in the developing work of a particle detector on-board ESA's forthcoming BepiColombo spacecraft. Two different high- Z semiconductor compounds, cadmium telluride (CdTe) and mercuric iodide (HgI 2 ), were irradiated with 22 MeV protons in four steps to attain the estimated total dose of 10 12 p / cm 2 for the mission time. The performance of the detectors was studied before and after every irradiation with radioactive 55 Fe source Mn K α 5.9 keV emission line. We studied the impact of the proton beam exposure on detector leakage current, energy resolution and charge collection efficiency (CCE). Also the reconstruct…
Recoil-isomer tagging techniques at RITU
Techniques have been developed to study isomeric states in nuclei with the use of RITU (gas filled separator) at the University of Jyvaskyla. The first was the recoil-isomer tagging technique initially, utilised by D.M. Cullen to study the K π = 8− isomeric state in 138Gd [1]. The juro-sphere array was employed in conjunction with ritu and a focal plane array which consisted of several Compton-suppressed Germanium detectors, placed in close geometry around a multi wire proportional counter (mwpc) and a silicon strip detector used for the implantation of recoiling nuclei. This technique correlates prompt and delayed γ-ray transitions across isomeric states and identifies the lifetime of the …
αdecay of the new isotope206Ac
The new neutron-deficient nuclide {sup 206}Ac was produced by bombarding a {sup 175}Lu target with 5.5 MeV/nucleon {sup 36}Ar ions. The evaporation residues were separated in flight by a gas-filled separator and subsequently identified by the {alpha}-{alpha} position and time correlation method. {sup 206}Ac was found to have two {alpha} particle emitting isomeric levels with half-lives of (22{sub {minus}5}{sup +9}) ms and (33{sub {minus}9}{sup +22}) ms, and with {alpha} particle energies of (7790{plus_minus}30) keV and (7750{plus_minus}20) keV, respectively. The former isomer is tentatively assigned to a J{sup {pi}}=3{sup +} level and the latter to a J{sup {pi}}=10{sup {minus}} level, both …
First observation of excited states in182Pb
Application and development of ion-source technology for radiation-effects testing of electronics
Abstract Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laborat…
Proton Direct Ionization in Sub-Micron Technologies : Test Methodologies and Modelling
Two different low energy proton (LEP) test methods, one with quasi-monoenergetic and the other with very wide proton beam energy spectra, have been studied. The two test methodologies have been applied to devices that were suggested from prior heavy-ion tests to be sensitive to proton direct ionization (PDI). The advantages and disadvantages of the two test methods are discussed. The test method using quasi-monoenergetic beams requires device preparation and high energy resolution beams, but delivers results that can be interpreted directly and can be used in various soft error rate (SER) calculation methods. The other method, using a heavily degraded high energy proton beam, requires littl…
Structure of the Odd-A, Shell-Stabilized NucleusNo102253
In-beam {gamma}-ray spectroscopic measurements have been made on {sub 102}{sup 253}No. A single rotational band was identified up to a probable spin of 39/2({Dirac_h}/2{pi}), which is assigned to the 7/2{sup +}[624] Nilsson configuration. The bandhead energy and the moment of inertia provide discriminating tests of contemporary models of the heaviest nuclei. Novel methods were required to interpret the sparse data set associated with cross sections of around 50 nb. These methods included comparisons of experimental and simulated spectra, as well as testing for evidence of a rotational band in the {gamma}{gamma} matrix.
γdecay of excited states in198Rnidentified using correlated radioactive decay
The low-lying level structure of the neutron-deficient isotope ${}^{198}\mathrm{Rn}$ has been studied for the first time, using the ${}^{166}\mathrm{Er}{(}^{36}\mathrm{Ar},4n)$ reaction at a beam energy of 175 MeV. Evaporation residues were selected using an in-flight gas-filled separator, RITU, and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt $\ensuremath{\gamma}$ rays in ${}^{198}\mathrm{Rn}$ were observed at the target position using the JUROSPHERE array of 24 Compton-suppressed germanium detectors, and were identified by the subsequent radioactive decay of associated recoiling ions in the silicon detector. Is…
Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams
Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10−5 Gy/bunch and 1.5×10−2 Gy/bunch. The presented results show that these…
Heavy ion SEE test of 2 Gbit DDR3 SDRAM
New generation 2 Gbit DDR3 SDRAMs from Micron, Samsung and Nanya have been tested under heavy ions. SEFIs significantly outweigh random SEU errors even at low LET; however, SEFIs can be mitigated by frequent re-initialization.
Identification of low-lying proton-based intruder states in189–193Pb
Low-lying proton-based intruder states have been observed in the odd-mass isotopes Pb-189,Pb-191,Pb-193 in experiments at the RITU gas-filled recoil separator. The identification has been performed ...
Spectroscopy of the neutron-deficient nuclide 171Pt
A number of previously unobserved gamma-rays emitted from the neutron-deficient nuclide Pt-171 have been identified using the recoil decay tagging technique. The level scheme has been updated using ...
Aalto-1, multi-payload CubeSat: Design, integration and launch
The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanica…
SEU and MBU Angular Dependence of Samsung and Micron 8-Gbit SLC NAND-Flash Memories under Heavy-Ion Irradiation
The angular dependence of the SEU and MBU cross sections of two 8-Gbit NAND-Flash memories, Samsung and Micron, is measured under Ar, Fe, and Kr irradiation. The omnidirectional sensitivity is calculated based on experimental results.
Mobility determination of lead isotopes in glass for retrospective radon measurements
In retrospective radon measurements, the 22-y half life of (210)Pb is used as an advantage. (210)Pb is often considered to be relatively immobile in glass after alpha recoil implanted by (222)Rn progenies. The diffusion of (210)Pb could, however, lead to uncertain wrong retrospective radon exposure estimations if (210)Pb is mobile and can escape from glass, or lost as a result of cleaning-induced surface modification. This diffusion was studied by a radiotracer technique, where (209)Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the ion guide isotope separator on-line technique, the (209)Pb atoms were implanted into the glass with an energy of …
Properties of Gd-Doped Sol-Gel Silica Glass Radioluminescence under Electron Beams
International audience; The radiation-induced emission (RIE) of Gd3+-doped sol–gel silica glass has been shown to have suitable properties for use in the dosimetry of beams of ionizing radiation in applications such as radiotherapy. Linear electron accelerators are commonly used as clinical radiotherapy beams, and in this paper, the RIE properties were investigated under electron irradiation. A monochromator setup was used to investigate the light properties in selected narrow wavelength regions, and a spectrometer setup was used to measure the optical emission spectra in various test configurations. The RIE output as a function of depth in acrylic was measured and compared with a reference…
Mass-140 isomers near the proton dripline
An experiment has been performed in Jyvaskyla, Finland, using Jurogam in conjunction with RITU and GREAT. This experiment populated several extremely neutron-deficient nuclei around the mass-140 region of the nuclei chart, using the 92Mo(54Fe, α2n) reaction at 245 MeV. Analysis of these data has revealed several previously unobserved isomeric states, in several nuclei. One of these has been assigned to 143Dy with a half-life of 1.2 ± 0.3 µs. The energies of the prompt γ rays in the band built upon the isomer are in agreement with those previously observed.
Investigations into the alpha-decay of 195At
The low-energy nuclear structure and decay properties of the neutron-deficient isotopes 195At and 191Bi have been studied. 195At was produced in the reaction 142Nd(56Fe,p2n)195At and 191Bi as the daughter activity of 195At. The activities were implanted in a position-sensitive silicon detector after being separated from the primary beam by a gas-filled recoil separator. The 1/2+ intruder state was determined to be the ground state in 195At with an alpha-decay energy of E α = 6953(3) keV and a half-life T 1/2 = 328(20) ms. Another state with an alpha-decay energy E α = 7075(4) keV and a half-life T 1/2 = 147(5) ms was found to decay to a 148.7(5) keV excited state in 191Bi for which a spin a…
αdecay studies of the nuclides195Rnand196Rn
The new neutron deficient nuclide ${}^{195}\mathrm{Rn}$ and the nuclide ${}^{196}\mathrm{Rn}$ have been produced in fusion evaporation reactions using ${}^{56}\mathrm{Fe}$ ions on ${}^{142}\mathrm{Nd}$ targets. A gas-filled recoil separator was used to separate the fusion products from the scattered beam. The activities were implanted in a position sensitive silicon detector. The isotopes were identified using spatial and time correlations between implants and decays. Two $\ensuremath{\alpha}$ decaying isomeric states, with ${E}_{\ensuremath{\alpha}}=7536(11)\mathrm{keV}[{T}_{1/2}{=(6}_{\ensuremath{-}2}^{+3})\mathrm{ms}]$ for the ground state and ${E}_{\ensuremath{\alpha}}=7555(11)\mathrm{k…
Decay studies ofAu170,171,Hg171–173, andTl176
The $^{170,171}\mathrm{Au}$ isotopes were produced in the fusion-evaporation reaction of a $^{78}\mathrm{Kr}$ ion beam with a $^{96}\mathrm{Ru}$ target. For $^{170}\mathrm{Au}$ the proton and $\ensuremath{\alpha}$ emission from the ground state were observed for the first time and the decay of the isomeric state was measured with improved accuracy. In addition, the decay of $^{171}\mathrm{Au}$ was measured with high statistics. A new $\ensuremath{\alpha}$-emitting nucleus $^{171}\mathrm{Hg}$ and the previously known $^{172}\mathrm{Hg}$ and $^{167,168,169,170}\mathrm{Pt}$ isotopes were also studied. The ground-state proton emission was identified for a new proton emitter $^{176}\mathrm{Tl}$ …
In-beam study of 254No
Excited states of the Z = 102 nuclide 254No have been studied in the reaction 208Pb(48Ca,2n) by means of in-beam γ -ray spectroscopy in combination with recoil gating and recoil decay tagging. A Ge detector array, consisting of four clover detectors, and a gas-filled separator were used. Six γ-ray lines were observed and associated with E2 transitions in the ground state band of 254No, the highest-lying of these being the 16+→ 14+ transition. Based on global systematics and the extrapolated 2+ 1 excitation energy, the value β2= 0.27 ± 0.03 was extracted for the quadrupole deformation. An improved value for the half-life of 254No, T1/2= (48 ± 3) s, was determined.
A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb
Understanding the fundamental excitations of many-fermion systems is of significant current interest. In atomic nuclei with even numbers of neutrons and protons, the low-lying excitation spectrum is generally formed by nucleon pair breaking and nuclear vibrations or rotations. However, for certain numbers of protons and neutrons, a subtle rearrangement of only a few nucleons among the orbitals at the Fermi surface can result in a different elementary mode: a macroscopic shape change. The first experimental evidence for this phenomenon came from the observation of shape coexistence in 16O (ref. 4). Other unexpected examples came with the discovery of fission isomers and super-deformed nuclei…
γ-ray and decay spectroscopy of194,195,196At
Excited states of ${}^{195}$At have been studied by means of in-beam $\ensuremath{\gamma}$-ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the $\ensuremath{\alpha}$-decaying $7/{2}^{\ensuremath{-}}$ state via unobserved transitions was identified. This band is presumably built on the oblate proton ${I}^{\ensuremath{\pi}}=13/{2}^{+}$ state. Confirming earlier measurements, $\ensuremath{\alpha}$ decays from the $1/{2}^{+}$ and $7/{2}^{\ensuremath{-}}$ states were observed. Additionally, an $E3$ branch competing with the $\ensuremath{\alpha}$ decay of the $7/{2}^{\ensuremath{-}}$ state was inferred. Also $\ensuremath{\alpha}$ decays of the od…
Identification of theKπ=8−rotational band in138Gd
A ${K}^{\ensuremath{\pi}}{=8}^{\ensuremath{-}}$ collective rotational band has been established upon the 6 $\ensuremath{\mu}$s isomeric state in the very neutron-deficient nucleus ${}^{138}\mathrm{Gd}.$ The band was observed using a technique involving the correlation of $\ensuremath{\gamma}$-ray transitions across the isomeric state. The single-particle configuration of the isomer has been deduced from the $\ensuremath{\Delta}I=2$ to $\ensuremath{\Delta}I=1$ intensity branching ratios. In addition, a series of other $\ensuremath{\gamma}$-ray transitions were observed which are reasoned to be part of a higher-lying four quasiparticle structure which decays through the ${K}^{\ensuremath{\pi}…
Heavy-Ion Induced Charge Yield in MOSFETs
The heavy-ion induced electron/hole charge yield in silicon-oxide versus electric field is presented. The heavy-ion charge yield was determined by comparing the voltage shifts of MOSFET transistors irradiated with 10-keV X-rays and several different heavy ions. The obtained charge yield for the heavy ions is in average nearly an order of magnitude lower than for the X-rays for the entire range of measured electric fields.
Alpha-decay studies of the nuclides 195Rn and 196Rn
The new neutron deficient nuclide 195 Rn and the nuclide 196 Rn have been produced in fusion evaporation reactions using 56 Fe ions on 142 Nd targets. A gas-filled recoil separator was used to separate the fusion products from the scattered beam. The activities were implanted in a position sensitive silicon detector. The isotopes were identified using spatial and time correlations between implants and decays. Two α decaying isomeric states, with E α = 7536 ( 11 ) keV [ T 1 / 2 = ( 6 + 3 − 2 ) ms ] for the ground state and E α = 7555 ( 11 ) keV [ T 1 / 2 = ( 5 + 3 − 2 ) ms ] for an isomeric state were identified in 195 Rn . In addition, the half-life and α decay energy of 196 Rn were measure…
High-spin states beyond the proton drip-line: Quasiparticle alignments in Cs-113
Excited states have been studied in the deformed proton emitter 113Cs. Gamma-ray transitions have been unambiguously assigned to 113Cs by correlation with its characteristic proton decay, using the method of recoil-decay tagging. Two previously identified rotational bands have been observed and extended to tentative spins of 45/2 and 51/2 h¯, with excitation energies over 8 MeV above the lowest state. These are the highest angular momenta and excitation energies observed to date in any nucleus beyond the proton drip-line. Transitions in the bands have been rearranged compared to previous work. A study of aligned angular momenta, in comparison to the predictions of Woods–Saxon cranking calcu…
Hindered (Δl=0) Alpha Decay and Shape Staggering in191Po
Two $\ensuremath{\alpha}$-decaying isomeric states were observed in ${}^{191}\mathrm{Po}$ with ${E}_{\ensuremath{\alpha}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}7334(10)\mathrm{keV}$ and $\mathrm{T}{}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}22(1)\mathrm{ms}$ for ${}^{191g}\mathrm{Po}$ and $\mathrm{E}{}_{\ensuremath{\alpha}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}7378(10)\mathrm{keV}$ and $\mathrm{T}{}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}98(8)\mathrm{ms}$ for ${}^{191m}\mathrm{Po}$. Evidence was found for fine-structure decay to excited levels in the ${}^{187}\mathrm{Pb}$ daughter nucleus. The tentative interpretation of these new lev…
Probing structural changes in the very neutron-deficient Os isotopes with recoil-decay tagging
In recent years, the exploitation of the iecoil-decay tagging (RDT) technique with,large arrays of germanium detectors has revealed much information about the structure of heavy nuclei approaching the proton drip line. The yrast bands of the N <= 93 osmium isotopes have been identified in a campaign of tagging experiments using various spectrometer arrays coupled to the RITU gas-filled separator based at the University of Jyvaskyla. Trends in the yrast state excitation energies have indicated a transition from gamma-soft triaxial to near-spherical shapes with decreasing neutron number. Recent experimental results for Os-162 obtained with the JUROGAM and GREAT spectrometers also indicate the…
Comparison of Single Event Transients Generated at Four Pulsed-Laser Test Facilities-NRL, IMS, EADS, JPL
Four pulsed-laser single-event effects systems, differing in wavelength and pulse width, were used to generate single event transients in a large-area silicon photodiode and an operational amplifier (LM124) to determine how transient amplitude and charge collection varied among the different systems. The optical wavelength and the focused spot size are the primary factors influencing the resultant charge density profile. In the large-area photodiode the transients can be distorted by high charge-injection densities that occur for tightly focused, higher energy optical pulses. When the incident laser-pulse energies are corrected for reflection losses and photon efficiency, with collection de…
Spectroscopy of very neutron-deficient 187,189Bi isotopes
Shape coexistence is well known to occur in nuclei, in particular near closed shells [1], where particle-hole excitations across the shell gap can create deformed intruder states. In the neutron-deficient lead isotopes (Z = 82), deformed structures appear at low excitation energy. The isotope 188Pb [2] shows for example a triple shape coexistence with oblate and prolate excited 0+ states that compete with the spherical ground state. The study of the odd-proton single-particle excitations in Bi isotopes allows to obtain information on the orbitals involved in the different shapes observed in this mass region.
Recoil decay tagging ofγrays in the extremely neutron-deficient nucleusOs162
The neutron-deficient nucleus $^{162}\mathrm{Os}$, produced in the $^{106}\mathrm{Cd}(^{58}\mathrm{Ni},2n)$ reaction, has been studied using the JUROGAM $\ensuremath{\gamma}$-ray spectrometer in conjunction with the RITU gas-filled separator and the GREAT focal plane spectrometer. $\ensuremath{\gamma}$-ray transitions in $^{162}\mathrm{Os}$ have been assigned for the first time through the application of the recoil decay tagging technique. The excitation energy of the ${2}^{+}$ state and the tentative energy of the ${8}^{+}$ state are discussed in terms of the systematic energy trends as the $N=82$ shell gap is approached.
Energy loss measurement of protons in liquid water
The proton stopping power of liquid water was, for the first time, measured in the energy range 4.7-15.2 MeV. The proton energies were determined by the time-of-flight transmission technique with the microchannel plate detectors, which were especially developed for timing applications. The results are compared to the literature values (from ICRU Report 49 (1993) and Janni's tabulation (1982 At. Data Nucl. Data Tables 27 147-339)) which are based on Bethe's formula and an agreement is found within the experimental uncertainty of 4.6%. Thus, earlier reported discrepancy between the experimental and literature stopping power values at lower energies was not observed at the energies considered …
High-spin states beyond the proton drip-line: Quasiparticle alignments in 113 Cs
Abstract Excited states have been studied in the deformed proton emitter 113Cs. Gamma-ray transitions have been unambiguously assigned to 113Cs by correlation with its characteristic proton decay, using the method of recoil-decay tagging. Two previously identified rotational bands have been observed and extended to tentative spins of 45/2 and 51 / 2 ħ , with excitation energies over 8 MeV above the lowest state. These are the highest angular momenta and excitation energies observed to date in any nucleus beyond the proton drip-line. Transitions in the bands have been rearranged compared to previous work. A study of aligned angular momenta, in comparison to the predictions of Woods–Saxon cra…
Upgrades for the RADEF Facility
RADEF includes heavy ion and proton beam lines for irradiation of space electronics. A special beam cocktail for back side irradiations has been developed. Also, experimental LET values of its two heaviest ions have been determined.
Low-lying shears bands in very light odd—odd Bi isotopes
The concept of magnetic rotation in nuclei was introduced to explain the observed regular bands with enhanced M1 transitions and weak or absent E2 crossover transitions in nearly spherical nuclei around 198Pb [1]. These bands can be described by the coupling of high-j proton and neutron configurations to a total spin tilted at an angle of ~ 45° with respect to the symmetry axis. As the proton and neutron spins align with increasing excitation energy, a sequence of ΔI = 1 levels of fixed parity (“shears band”) is formed [2].
Bandcrossings in 171Os
The nucleus Os-171 has been populated using the reaction Sn-116(Ni-58,2pn). Four new bands are identified, and the previously known bands are extended in spin, to a maximum of 53/2 (h) over bar. On ...
Gamma-ray and decay spectroscopy of 194,195,196At
Excited states of 195At have been studied by means of in-beam γ -ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the α-decaying 7/2− state via unobserved transitions was identified. This band is presumably built on the oblate proton I π = 13/2+ state. Confirming earlier measurements, α decays from the 1/2+ and 7/2− states were observed. Additionally, an E3 branch competing with the α decay of the 7/2− state was inferred. Also α decays of the odd-odd isotopes 194,196At were examined. peerReviewed
Irradiation of the head reduces adult hippocampal neurogenesis and impairs spatial memory, but leaves overall health intact in rats.
Treatment of brain cancer, glioma, can cause cognitive impairment as a side‐effect, possibly because it disrupts the integrity of the hippocampus, a structure vital for normal memory. Radiotherapy is commonly used to treat glioma, but the effects of irradiation on the brain are still poorly understood, and other biological effects have not been extensively studied. Here we exposed healthy adult male rats to small and moderate‐dose irradiation of the head. We found no effect of irradiation on systemic inflammation, weight gain or gut microbiota diversity, although it increased the abundance of Bacteroidaceae family, namely Bacteroides genus in the gut microbiota. Irradiation had no effect on…
Evaluation of the relative thermoluminescence efficiency of LiF:Mg,Ti and LiF:Mg,Cu,P TL detectors to low-energy heavy ions
Abstract The most popular types of LiF-based thermoluminescent (TL) detectors, LiF:Mg,Ti (MTS-N) and LiF:Mg,Cu,P (MCP-N), have been investigated, with respect to their dose (fluence) response and relative TL efficiency to different ion species. The detectors were irradiated using the nitrogen, iron, krypton and xenon ion beams, at energies ranging from 5.0 to 9.3 MeV/n. Supra- and sublinear response was found, for the MTS-N and MCP-N, respectively, similarly as observed for γ-rays. However, the level of nonlinearity of response of studied detectors is strongly reduced by increasing values of the ion ionization density (no supralinearity for Xe ions, for MTS-N, within calculated uncertaintie…
Heavy-ion induced single event effects and latent damages in SiC power MOSFETs
The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…
Influence of beam conditions and energy for SEE testing
GANIL/Applications industrielles; The effects of heavy-ion test conditions and beam energy on device response are investigated. These effects are illustrated with two types of test vehicles: SRAMs and power MOSFETs. In addition, GEANT4 simulations have also been performed to better understand the results. Testing to high fluence levels is required to detect rare events. This increases the probability of nuclear interactions. This is typically the case for power MOSFETs, which are tested at high fluences for single event burnout or gate rupture detection, and for single-event-upset (SEU) measurement in SRAMs below the direct ionization threshold. Differences between various test conditions (…
Isomeric states in proton-unbound 187, 189Bi isotopes
Prompt and delayed gamma-ray spectroscopy of very neutron-deficient bismuth isotopes 187, 189Bi has been performed using the Recoil Decay Tagging (RTD) method. The isomeric i 13/2 states have been identified and their lifetimes have been measured. The systematics of these long-lived M2 isomers has been extended to the proton-unbound isotopes. The general behaviour of single-proton states is discussed within the systematics and interpreted within the shell-model framework.
Electron-Induced Upsets and Stuck Bits in SDRAMs in the Jovian Environment
This study investigates the response of synchronous dynamic random access memories to energetic electrons and especially the possibility of electrons to cause stuck bits in these memories. Three different memories with different node sizes (63, 72, and 110 nm) were tested. Electrons with energies between 6 and 200 MeV were used at RADiation Effects Facility (RADEF) in Jyvaskyla, Finland, and at Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER) in The European Organization for Nuclear Research (CERN), Switzerland. Photon irradiation was also performed in Jyvaskyla. In these irradiation tests, stuck bits originating from electro…
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory
International audience; This paper identifies the failure modes of a commercial 130-nm ferroelectric random access memory. The devices were irradiated with heavy-ion and pulsed focused X-ray beams. Various failure modes are observed, which generate characteristic error patterns, affecting isolated bits, words, groups of pages, and sometimes entire regions of the memory array. The underlying mechanisms are discussed.
In-beam γ-ray spectroscopy of 190Po: First observation of a low-lying prolate band in Po isotopes
Gamma rays from excited states of 190Po have been observed using the Jurosphere Ge-detector array coupled to the RITU gas-filled separator. They were associated with a collective band which from spin 4 onwards resembles the prolate rotational bands known in the isotones 188Pb and 186Hg. This indicates that in 190Po the prolate configuration becomes yrast above I = 2. The experimental results are interpreted in a two-band mixing calculation and are in agreement with α-decay data and potential energy surface calculations.
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random-Access Memory
This paper identifies the failure modes of a commercial 130-nm ferroelectric random access memory. The devices were irradiated with heavy-ion and pulsed focused X-ray beams. Various failure modes are observed, which generate characteristic error patterns, affecting isolated bits, words, groups of pages, and sometimes entire regions of the memory array. The underlying mechanisms are discussed. peerReviewed
Lifetimes of intruder states in 186Pb, 188Pb and 194Po
Abstract Lifetimes of prolate intruder states in 186Pb and 188Pb and oblate intruder states in 194Po have been determined through recoil distance Doppler-shift lifetime measurements. Deformation parameters of | β 2 | = 0.29 ( 5 ) and | β 2 | = 0.17(3) have been extracted from experimental B ( E 2 ) values for the prolate and the oblate bands, respectively. The present study addresses the phenomenon of shape coexistence typical for the nuclei near Z = 82 and N = 104 , providing information on configuration mixing of intrinsic structures of the nuclei of interest. The results are compared with the available lifetime data and theoretical results for neutron-deficient Po, Pb, Hg and Pt nuclei. …
Determination of electronic stopping powers of 0.05–1MeV/u 131Xe ions in C-, Ni- and Au-absorbers with calorimetric low temperature detectors
Abstract A new experimental system for precise determination of electronic stopping powers of heavy ions has been set up at the accelerator laboratory of the University of Jyvaskyla. The new setup, combining an established B-ToF system and an array of calorimetric low temperature detectors (CLTDs), has been used for the determination of electronic stopping powers of 0.05–1 MeV/u 131Xe ions in carbon, nickel and gold. Thereby advantage of the improved linearity and energy resolution of CLTDs as compared to the previously used ionization detector was taken to reduce energy calibration errors and to increase sensitivity for the energy loss determination, in particular at very low energies. The…
Investigation on MCU Clustering Methodologies for Cross-Section Estimation of RAMs
International audience; Various failure scenarios may occur during irradiation testing of SRAMs, which may generate different characteristic Multiple Cell Upset (MCU) error patterns. This work proposes a method based on spatial and temporal criteria to identify them.
First observation of gamma-rays from the proton emitter 171Au
Gamma-rays from the alpha- and proton-unstable nuclide 171Au have been observed for the first time. The gamma-rays were correlated with both a proton- and an alpha-particle decay branch, confirming that the nucleus decays by alpha and proton emission from a single (11/2-) state. The measurement confirms the previously determined half-lives for these particle decays but the present values are of higher precision. In addition, a longer half-life than determined in previous work was measured for the proton-unstable tentative ground state. The results are discussed in relation to structures in neighbouring nuclei and compared with a Strutinsky-type TRS calculation.
First observation of excited states in $^{197}$At: the onset of deformation in neutron-deficient astatine nuclei
Excited states in the Z= 85 nucleus 197At have been identified for the first time using the recoil-decay-tagging (RDT) technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient astatine nuclei and with theoretical calculations indicating that the nucleus may be deformed in its ground state.
New microsecond isomers in 189, 190Bi
New microsecond isomers in the neutron-deficient isotopes 189g, 190Bi have been identified after in-flight separation by the velocity filter SHIP. The evaporation residues were identified on the basis of delayed recoil-γ/X-ray, recoil-γ/X-ray-α and excitation function measurements. The systematics of the [ π1i 13/2]13/2+ excited states in the odd-mass Bi nuclei is discussed.
α decay studies of the nuclidesU218andU219
Very neutron deficient uranium isotopes were produced in fusion evaporation reactions using $^{40}\mathrm{Ar}$ ions on $^{182}\mathrm{W}$ targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam and other reaction products. The activities were implanted into a position sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and the decays. Two $\ensuremath{\alpha}$-decaying states, with ${E}_{\ensuremath{\alpha}}=(8612\ifmmode\pm\else\textpm\fi{}9)$ keV and ${T}_{1/2}=(0.{51}_{\ensuremath{-}0.10}^{+0.17})$ ms for t…
Recent developments at the RITU focal plane
Several technical developments have recently taken place at the RITU [1] focal plane detector system. Due to these developments the gas-filled recoil separator RITU is now, in the best case, up to an order of magnitude more sensitive than before.
Yrast structures in the light Pt isotopes169–173Pt
The exploitation of the recoil-decay tagging (RDT) technique has reinvigorated experimental investigations of the shape coexistence phenomenon in heavy neutron-deficient nuclei. In a recent experiment using the JUROGAM and GREAT spectrometers in conjunction with the RITU gas-filled separator, excited states have been investigated in the light platinum isotopes. In addition to extending the yrast sequences in 170Pt and 172Pt, the first observation of excited states in the odd-N isotopes, 169Pt and 173Pt, is reported. The bands are discussed in terms of trends in level excitation energies as a function of neutron number.
Radiation Tolerance Tests of Small-Sized CsI(Tl) Scintillators Coupled to Photodiodes
Radiation tolerance of small-sized CsI (Tl) crystals coupled to silicon photodiodes was studied by using protons. Irradiations up to the fluence of 1012 protons/cm2 were used. Degradation of light output by less than 5% was achieved.
Low Energy Protons at RADEF - Application to Advanced eSRAMs
A low energy proton facility has been developed at RADEF, Jyvskyl, Finland. The proton energy selection, calibration and dosimetry are described. The first experiment with external users was performed using two memory test vehicles fabricated with 28 nm technology. Examples of single event upset measurements in the test vehicles embedded SRAMs (eSRAMs) as a function of proton energy are provided.
Ultra-high resolution mass separator—Application to detection of nuclear weapons tests
Abstract A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, 133mXe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors.
αdecay studies of very neutron-deficient francium and radium isotopes
Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using $^{63}\mathrm{Cu}$ and $^{65}\mathrm{Cu}$ ions on $^{141}\mathrm{Pr}$ targets and $^{36}\mathrm{Ar}$ ions on $^{170}\mathrm{Yb}$ targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new \ensuremath{\alpha} decaying radium isotopes, $^{201}\mathrm{Ra}$ and $^{202}\mathrm{Ra}$, were identi…
First observation of excited states in the neutron deficient nuclei Pt and Pt
Abstract Excited states have been observed for the first time in 168 Pt and 170 Pt using the α -decay recoil-tagging technique. The trend of decreasing deformation moving away from the N =104 mid-shell continues for 170 Pt but the structure of 168 Pt is significantly different. The low spin level energy systematics in 168 – 184 Pt are presented and discussed within the framework of the interacting boson model.
A simple timestamping data acquisition system for ToF-ERDA
A new data acquisition system, ToF-DAQ, has been developed for a ToF-ERDA telescope and other ToF-E and ToF-ToF measurement systems. ToF-DAQ combines an analogue electronics front-end to asynchronous time stamped data acquisition by means of a FPGA device. Coincidences are sought solely in software based on the timestamps. Timestamping offers more options for data analysis as coincidence events can be built also in offline analysis. The system utilises a National Instruments R-series FPGA device and a Windows PC as a host computer. Both the FPGA code and the host software were developed using the National Instruments LabVIEW graphical programming environment. Up to eight NIM ADCs can be han…
Identification of the 13/2+ isomer in 199At
The 13/2+ isomeric state in the 199At nucleus has been identified at an excitation energy of 573 keV and its half-life measured to be 580(130) ns using the recoil-decay tagging technique.
Identification of excited states in 167Os and 168Os: shape coexistence at extreme neutron deficiency
Excited states in the very neutron-deficient isotopes Os-167 and Os-168 have been observed using the reaction Sn-112(Ni-58, 2pxn). The JUROSPHERE gamma -ray spectrometer array was used in conjuncti ...
Improved stability of black silicon detectors using aluminum oxide surface passivation
Publisher Copyright: © 2021 ESA and CNES We have studied how high-energy electron irradiation (12 MeV, total dose 66 krad(Si)) and long term humidity exposure (75%, 75 °C, 500 hours) influence the induced junction black silicon or planar photodiode characteristics. In our case, the induced junction is formed using n-type silicon and atomic-layer deposited aluminum oxide (Al2O3), which contains a large negative fixed charge. We compare the results with corresponding planar pn-junction detectors passivated with either with silicon dioxide (SiO2) or Al2O3. The results show that the induced junction detectors remain stable as their responsivity remains nearly unaffected during the electron beam…