0000000000685404

AUTHOR

Matthias Barz

showing 133 related works from this author

Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Mode…

2018

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although similar to 100 and 190 nm NPs concentrated most in granulomas, even similar to 700 nm liposo…

inorganic chemicalsEndotheliumGeneral Physics and Astronomy02 engineering and technologyPulmonary Artery010402 general chemistry01 natural sciencesPermeabilitylaw.inventionMiceConfocal microscopylawmedicineAnimalsGeneral Materials ScienceZebrafishTuberculosis PulmonaryMycobacterium marinumZebrafishLiposomeGranulomaMicroscopy ConfocalbiologyChemistryGeneral Engineeringtechnology industry and agriculture021001 nanoscience & nanotechnologybiology.organism_classificationExtravasation0104 chemical sciencesDisease Models Animalmedicine.anatomical_structurePermeability (electromagnetism)Drug deliveryBiophysicsMycobacterium marinumNanoparticles0210 nano-technology
researchProduct

Well-defined carbohydrate-based polymers in calcium carbonate crystallization: Influence of stereochemistry in the polymer side chain on polymorphism…

2015

Abstract In this work we demonstrate the remarkable phase control on the crystallization of calcium carbonate by the stereochemistry of carbohydrate-based polymers. The polymers (poly(2-(2,3,4,6-tetra-O-acetyl-β- d -glucosyloxy)ethyl methacrylate) and poly(2-(2,3,4,6-tetra-O-acetyl-β- d -galactosyloxy)ethyl methacrylate)) have been synthesized from the respective glucose or galactose containing monomers (3 step synthesis) by RAFT polymerization leading to well-defined carbohydrate-based polymers with number averages of the molecular weights (Mw) of 10,000–18,000 g/mol and a dispersities (Đ) from 1.1 to 1.2. For the deprotected polymers we found differences in the phase selection of calcium …

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsStereochemistryOrganic ChemistryGeneral Physics and AstronomyPolymerMethacrylatelaw.inventionchemistry.chemical_compoundCalcium carbonateMonomerchemistryPolymorphism (materials science)lawPolymer chemistryMaterials ChemistrySide chainOrganic chemistryReversible addition−fragmentation chain-transfer polymerizationCrystallizationEuropean Polymer Journal
researchProduct

Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step.

2017

We report on the synthesis of polysarcosine-block-poly(S-alkylsulfonyl)-l-cysteine block copolymers, which combine three orthogonal addressable groups enabling site-specific conversion of all reactive entities in a single step. The polymers are readily obtained by ring-opening polymerization (ROP) of corresponding α-amino acid N-carboxyanhydrides (NCAs) combining azide and amine chain ends, with a thiol-reactive S-alkylsulfonyl cysteine. Functional group interconversion of chain ends using strain-promoted azide–alkyne cycloaddition (SPAAC) and activated ester chemistry with NHS- and DBCO-containing fluorescent dyes could be readily performed without affecting the cross-linking reaction betw…

chemistry.chemical_classificationPolymers and PlasticsChemistryOrganic ChemistryNanoparticle02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCycloaddition0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundPolymerizationPolymer chemistryMaterials ChemistryCopolymerAmine gas treatingAzide0210 nano-technologyRetrosynthetic analysisACS macro letters
researchProduct

Corrigendum to “Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved …

2020

chemistry.chemical_classificationbiologyChemistryBiomoleculeBiophysicsNanoparticleBioengineeringbiology.organism_classificationBiomaterialsCorona (optical phenomenon)Mechanics of MaterialsCeramics and CompositesBiophysicsBacteriaBiomaterials
researchProduct

Cylindrical Brush Polymers with Polysarcosine Side Chains: A Novel Biocompatible Carrier for Biomedical Applications

2015

Cylindrical brush polymers constitute promising polymeric drug delivery systems (nanoDDS). Because of the densely grafted side chains such structures may intrinsically exhibit little protein adsorption (“stealth” effect) while providing a large number of functional groups accessible for bioconjugation reactions. Polysarcosine (PSar) is a highly water-soluble, nonionic and nonimmunogenic polypeptoid based on the endogenous amino acid sarcosine (N-methyl glycine). Here we report on the synthesis, characterization and biocompatibility of cylindrical brush polymers with either polysarcosine side chains or poly-l-lysine-b-polysarcosine side chains. The latter leads to block copolypept(o)id based…

chemistry.chemical_classificationSarcosineBioconjugationPolymers and PlasticsBiocompatibilityOrganic ChemistryCationic polymerizationPolymerInorganic Chemistrychemistry.chemical_compoundPolymerizationchemistryPolymer chemistryMaterials ChemistrySide chainProtein adsorptionMacromolecules
researchProduct

Poly(S-ethylsulfonyl-l-cysteines) for Chemoselective Disulfide Formation

2016

The amino acid cysteine possesses a unique role in nature due to its ability to reversibly cross-link proteins. To transfer this feature to polypeptides and control the process of disulfide formation, a protective group needs to provide stability against amines during synthesis, combined with chemoselective reactivity toward thiols. A protective group providing these unique balance of stability and reactivity toward different nucleophiles is the S-alkylsulfonyl group. In this work we report the polymerization of S-ethylsulfonyl-l-cysteine N-carboxyanhydride and kinetic evaluations with respect to temperature (−10, 0, and +10 °C) and monomer concentration. The polymerization degree of poly(S…

chemistry.chemical_classificationPolymers and PlasticsOrganic ChemistryDispersity02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmino acidInorganic Chemistrychemistry.chemical_compoundMonomerchemistryPolymerizationNucleophilePolymer chemistryMaterials ChemistryReactivity (chemistry)0210 nano-technologyCysteineMacromolecules
researchProduct

Trans -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging

2020

Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary In-111-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes i…

pretargeted imagingGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundTetrazinetetrazine ligationCycloocteneGeneral Materials Sciencepolypeptide-graft-polypeptoidsPretargetingchemistry.chemical_classificationGeneral EngineeringPolymerEPR effectPeptoBrush021001 nanoscience & nanotechnologynanomedicineSmall moleculeCombinatorial chemistryImaging agent0104 chemical scienceschemistrySPECTNanomedicineBioorthogonal chemistry0210 nano-technologyACS Nano
researchProduct

Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation

2015

Polymeric micelles (PM) are extensively used to improve the delivery of hydrophobic drugs. Many different PM have been designed and evaluated over the years, and some of them have steadily progressed through clinical trials. Increasing evidence suggests, however, that for prolonged circulation times and for efficient EPR-mediated drug targeting to tumors and to sites of inflammation, PM need to be stabilized, to prevent premature disintegration. Core-crosslinking is among the most popular methods to improve the in vivo stability of PM, and a number of core-crosslinked polymeric micelles (CCPM) have demonstrated promising efficacy in animal models. The latter is particularly true for CCPM in…

DrugDrug targetingMaterials sciencemedia_common.quotation_subjectBiomedical EngineeringMedicine (miscellaneous)Pharmaceutical ScienceNanotechnologyBioengineeringMicelleArticleMaterials Science(all)In vivoGeneral Materials SciencePharmaceutical sciencesPolymermedia_commonMETIS-315279Translation (biology)3. Good healthNanomedicineTargeted drug deliveryIR-99653Drug deliveryNanomedicineCore-crosslinkingEPRMicelleBiotechnologyNano Today
researchProduct

Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers

2017

Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (-10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, -7 nm, t1/2 - 1 h) and large…

MaleBiodistributionMaterials scienceCell SurvivalPolymersSurface PropertiesRiboflavinBioengineering02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsMiceProstate cancerDownregulation and upregulationRiboflavin-carrier proteinCell Line TumorPEG ratiomedicineAnimalsHumansTissue DistributionGeneral Materials ScienceParticle Sizepassive and active tumor targetingCell ProliferationDrug CarriersbiologyMechanical EngineeringMembrane Transport ProteinsProstatic NeoplasmsTransporterGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsmedicine.diseasen/a OA procedure0104 chemical sciencesCell biologybranched PEGBiochemistrybiology.proteinHeterograftsAntibody0210 nano-technologyDrug carrierNano Letters
researchProduct

Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates.

2018

The synthesis of ABA and ABA' triblock polyethylene glycol-and polysarcosine-peptide conjugates is reported. The A/A' peptides are based on phenylalanine(F)-histidine(H) pentapeptide sequences FHFHF, which promote pH-switchable β-sheet self-assembly into nanorods in water. Only parallel β-sheet-driven folding and intermolecular assembly using ABA triblock polymer-peptide conjugates leads to interstrand cross-linking and hydrogelation, highlighting the impact of supramolecular interactions-directed structure formation at the nano- and mesoscopic level.

Polymers and PlasticsPolymersSurface PropertiesSupramolecular chemistryPeptide02 engineering and technology010402 general chemistry01 natural sciencesPentapeptide repeatMaterials ChemistryParticle SizeProtein secondary structurechemistry.chemical_classificationTelechelic polymerMolecular StructurefungiOrganic Chemistrytechnology industry and agriculturefood and beveragesHydrogelsHydrogen-Ion Concentration021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesFolding (chemistry)Supramolecular polymerschemistrySelf-healing hydrogels0210 nano-technologyPeptidesMacromolecular rapid communications
researchProduct

Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020)

2020

BiomaterialsMaterials scienceChemical engineeringAsymmetrical Flow Field-Flow FractionationDrug deliveryGeneral Materials ScienceProtein CoronaGeneral ChemistryPolymeric nanoparticlesBiotechnologySmall
researchProduct

Influence of Riboflavin Targeting on Tumor Accumulation and Internalization of Peptostar Based Drug Delivery Systems.

2020

Riboflavin carrier protein (RCP) and riboflavin transporters (RFVTs) have been reported to be highly overexpressed in various cancer cells. Hence, targeting RCP and RFVTs using riboflavin may enhance tumor accumulation and internalization of drug delivery systems. To test this hypothesis, butyl-based 3-arm peptostar polymers were synthesized consisting of a lysine core (10 units per arm) and a sarcosine shell (100 units per arm). The end groups of the arms and the core were successfully modified with riboflavin and the Cy-5.5 fluorescent dye, respectively. While in phosphate buffered saline the functionalized peptostars showed a bimodal behavior and formed supramolecular structures over tim…

SarcosinePolymersmedia_common.quotation_subjectRiboflavinLysineBiomedical EngineeringPharmaceutical ScienceBioengineeringRiboflavinchemistry.chemical_compoundIn vivoRiboflavin-carrier proteinMaterials TestingHumansInternalizationmedia_commonPharmacologyDrug CarriersChemistryLysineOrganic ChemistryMembrane Transport ProteinsBiological TransportSarcosineCarbocyaninesCancer cellDrug deliveryPC-3 CellsBiophysicsBiotechnologyBioconjugate chemistry
researchProduct

Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell

2018

We report the synthesis of ABA' triblock peptide-polysarcosine-peptide conjugates featuring two complementary phenylalanine-histidine pentapeptide strands A/A'. These sequences encode for antiparallel beta-sheet formation into folded conjugates, which promote the self-assembly into polysarcosine-shielded core-shell nanorods. These do not cause aggregation of serum proteins in human blood plasma underlining an enhanced stability.

Human bloodChemistryMetals and AlloysA protein02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyAntiparallel (biochemistry)01 natural sciencesPentapeptide repeatBlood proteinsCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSupramolecular assemblyMaterials ChemistryCeramics and CompositesBiophysicsNanorod0210 nano-technologyConjugate
researchProduct

Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on M…

2018

Prevention of biofouling and microbial contamination of implanted biomedical devices is essential to maintain their functionality and biocompatibility. For this purpose, polypept(o)ide block copolymers have been developed, in which a protein-resistant polysarcosine (pSar) block is combined with a dopamine-modified poly(glutamic acid) block for surface coating and silver nanoparticles (Ag NPs) formation. In the development of a novel, versatile, and biocompatible antibacterial surface coating, block lengths pSar were varied to derive structure-property relationships. Notably, the catechol moiety performs two important tasks in parallel; primarily it acts as an efficient anchoring group to me…

SilverPolymers and PlasticsBiocompatibilityDopamineCatecholsOxideBioengineering02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticleBiomaterialsBiofoulingchemistry.chemical_compoundAnti-Infective AgentsMaterials ChemistryCopolymerMoietyCatecholOxides021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesSurface coatingPolyglutamic AcidchemistryNanoparticles0210 nano-technologyBiomacromolecules
researchProduct

Polypept(o)ides: Hybrid Systems Based on Polypeptides and Polypeptoids.

2015

Polypept(o)ides combine the multifunctionality and intrinsic stimuli-responsiveness of synthetic polypeptides with the "stealth"-like properties of the polypeptoid polysarcosine (poly(N-methyl glycine)). This class of block copolymers can be synthesized by sequential ring opening polymerization of α-amino acid N-carboxy-anhydrides (NCAs) and correspondingly of the N-substituted glycine N-carboxyanhydride (NNCA). The resulting block copolymers are characterized by Poisson-like molecular weight distributions, full end group integrity, and dispersities below 1.2. While polysarcosine may be able to tackle the currently arising issues regarding the gold standard PEG, including storage diseases i…

Polymers and PlasticsChemistryPolysarcosineOrganic ChemistryGene Transfer TechniquesSarcosineCombinatorial chemistryRing-opening polymerizationProtein Structure SecondaryAnhydridesPolymerizationMolecular WeightEnd-groupPeptoidsDrug Delivery SystemsNanomedicineHybrid systemMaterials ChemistryCopolymerNanomedicineHumansAmino AcidsPeptidesProtein secondary structureMacromolecular rapid communications
researchProduct

Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications.

2016

To optimally exploit the potential of (tumor-) targeted nanomedicines, platform technologies are needed in which physicochemical and pharmaceutical properties can be tailored according to specific medical needs and applications. We here systematically customized the properties of core-crosslinked polymeric micelles (CCPM). The micelles were based on mPEG-b-pHPMAmLacn (i.e. methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate]), similar to the block copolymer composition employed in CriPec® docetaxel, which is currently in phase I clinical trials. The CCPM platform was tailored with regard to size (30 to 100 nm), nanocarrier degradation (1 month to 1 year) and drug…

Drug targetingPolymersPharmaceutical ScienceNanotechnology02 engineering and technologyDocetaxel010402 general chemistry01 natural sciencesMicellechemistry.chemical_compoundCopolymerMicelleschemistry.chemical_classificationAcrylamidesDrug CarriersPolymerDrug release021001 nanoscience & nanotechnology0104 chemical sciencesMolecular WeightDrug LiberationNanomedicineCross-Linking ReagentschemistryTargeted drug deliveryDoxorubicin2023 OA procedureNanomedicinePolymeric micellesTaxoidsCore-crosslinkingNanocarriers0210 nano-technologyDrug carrierEthylene glycolJournal of controlled release : official journal of the Controlled Release Society
researchProduct

How ill-defined constituents produce well-defined nanoparticles: effect of polymer dispersity on the uniformity of copolymeric micelles

2019

We investigate the effect of polymer length dispersity on the properties of self-assembled micelles in solution by self-consistent field calculations. Polydispersity stabilizes micelles by raising the free energy barriers of micelle formation and dissolution. Most importantly, it significantly reduces the size fluctuations of micelles: Block copolymers of moderate polydispersity form more uniform particles than their monodisperse counterparts. We attribute this to the fact that the packing of the solvophobic monomers in the core can be optimized if the constituent polymers have different length.

chemistry.chemical_classificationMaterials sciencePhysics and Astronomy (miscellaneous)DispersitySelf assembleNanoparticleFOS: Physical sciencesNanotechnology02 engineering and technologyPolymerCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyPolymeric nanoparticles01 natural sciencesMicellechemistry0103 physical sciencesCopolymerSoft Condensed Matter (cond-mat.soft)General Materials ScienceWell-defined010306 general physics0210 nano-technology
researchProduct

Efficient Shielding of Polyplexes Using Heterotelechelic Polysarcosines

2018

Shielding agents are commonly used to shield polyelectrolyte complexes, e.g. polyplexes, from agglomeration, precipitation in complex media, like blood, and thus enhance their circulation times in vivo. Since up to now primarily poly(ethylene glycol) (PEG) has been investigated to shield non-viral carriers for systemic delivery, we report on the use of polysarcosine (pSar) as a potential alternative for steric stabilization. A redox-sensitive, cationizable lipo-oligomer structure (containing two cholanic acids attached via a bioreducible disulfide linker to an oligoaminoamide backbone in T-shape configuration) was equipped with azide-functionality by solid phase supported synthesis. After m…

BiodistributionPolymers and Plastics02 engineering and technologypolysarcosine010402 general chemistry01 natural sciencesArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryPEG rationucleic acid carrierbiodistributionlipopolyplexshielding agentclick-chemistryGeneral Chemistry021001 nanoscience & nanotechnologyPolyelectrolyte0104 chemical scienceschemistryPolymerizationClick chemistryBiophysicsSurface modification0210 nano-technologyEthylene glycolLinkerbiomaterials
researchProduct

New Perspectives of HPMA-based Copolymers Derived by Post-Polymerization Modification

2014

Poly[N-(2-hydroxypropyl) methacrylamide] (HPMA) was one of the first polymers applied as polymer drug conjugate in the clinics. Since then many attempts have been made to expand the functionality of HPMA-based copolymers from advanced synthetic pathways to multiple biomedical applications. This Feature Article highlights multifunctional HPMA based copolymers prepared by controlled radical polymerization and subsequent post-polymerization modification of activated ester precursor polymers via aminolysis. This approach combines precise control of the polymer's microstructure (molecular weight, dispersity, block copolymer formation, end group functionalization) with an easy introduction of var…

chemistry.chemical_classificationPolymers and PlasticsDispersityRadical polymerizationBioengineeringNanotechnologyPolymerBiomaterialsEnd-groupchemistry.chemical_compoundchemistryDrug deliveryMaterials ChemistryCopolymerOrganic chemistryMethacrylamideDrug carrierBiotechnologyMacromolecular Bioscience
researchProduct

"A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in ""click …

2013

In this article we describe a versatile methodology for the synthesis of polyglutamic acid (PGA) derivatives bearing orthogonal reactive sites. The reactive groups enable selective conjugation chemistry by copper catalyzed azide-alkyne coupling (CuAAC). PGA was derived in aqueous media as well as in organic media using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl morpholinium chloride (DMTTM) salts. The spectra of attached chemical moieties ranges from simple PEGylation with 2,5,8,11,14,17,20-heptaoxadocosan-22-amine (mEG(6)NH2) to the incorporation of propargylamine, 11-azido-3,6,9-trioxaundecan-1-amine (NH2-EG(2)N-3), and 20-azido-3,6,9,12,15,18-hexaoxaicosan-1-amine (NH2-EG(6)N-3). Here…

Polymers and PlasticsOrganic ChemistryPolyglutamic acidBioengineering02 engineering and technologyConjugated system010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistryOrganic mediaChloride0104 chemical scienceschemistry.chemical_compoundchemistryPEGylationClick chemistrymedicineOrganic chemistrySurface modification0210 nano-technologyPost polymerizationmedicine.drug
researchProduct

Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines

2014

Two series (degree of polymerization: 20–200) of polylysines with Z and TFA protecting groups were synthesized, and their behavior in a range of analytical methods was investigated. Gel permeation chromatography of the smaller polypeptides reveals a bimodal distribution, which is lost in larger polymers. With the help of GPC, NMR, circular dichroism (CD), and MALDI-TOF, it was demonstrated that the bimodal distribution is not due to terminated chains or other side reactions. Our results indicate that the bimodality is caused by a change in secondary structure of the growing peptide chain that occurs around a degree of polymerization of about 15. This change in secondary structure interferes…

chemistry.chemical_classificationCircular dichroismPolymers and PlasticsOrganic ChemistryPeptidePolymerDegree of polymerizationRandom coilInorganic ChemistryGel permeation chromatographychemistryPolymerizationPolymer chemistryMaterials ChemistryProtein secondary structureMacromolecules
researchProduct

Langmuir-Blodgett films of biocompatible poly(HPMA)-block-poly(lauryl methacrylate) and poly(HPMA)-random-poly(lauryl methacrylate): influence of pol…

2010

Membranes based on functional biocompatible polymers can be regarded as a useful model system to study biological interactions, e.g. antibody-antigen interactions or protein polymer interactions. These model systems may give a better insight into these processes and may help to find suitable polymeric structures offering biocompatibility as well as reduced polymer protein interaction. In this respect, Langmuir-Blodgett (LB) layer formation at the air/water (A/W) interface is studied in respect to polymer architecture in this article. For this purpose, narrowly distributed N-(2-hydroxypropyl)-methacrylamide (HPMA) random and block copolymers have been prepared by the RAFT polymerization meth…

chemistry.chemical_classificationAqueous solutionMaterials scienceMagnetic Resonance SpectroscopyBiocompatibilityPolymersPolymer architectureBiocompatible MaterialsMembranes ArtificialSurfaces and InterfacesPolymerCondensed Matter PhysicsMicroscopy Atomic ForceLangmuir–Blodgett filmMembranechemistryPolymer chemistryElectrochemistryCopolymerMethacrylatesGeneral Materials ScienceReversible addition−fragmentation chain-transfer polymerizationSpectroscopyLangmuir : the ACS journal of surfaces and colloids
researchProduct

PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation

2013

Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4 center dot 2H(2)O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then b…

Materials sciencePolymersPotentiometric titrationAcrylic ResinsMicroscopy Atomic Force530Calcium Carbonatelaw.inventionchemistry.chemical_compoundlawPolymer chemistryElectrochemistryCopolymerChemical PrecipitationGeneral Materials ScienceReversible addition−fragmentation chain-transfer polymerizationCrystallizationSpectroscopyAcrylic acidchemistry.chemical_classificationWaterIsothermal titration calorimetrySurfaces and InterfacesPolymerCondensed Matter PhysicsPolyelectrolytechemistrySulfonic AcidsCrystallization
researchProduct

Functionalized magnetic nanoparticles for selective targeting of cells

2009

AbstractInitiation of pathways that lead to proliferation and chemoresistance by Toll-like receptors (TLRs) is an important factor in cancer progression. Here, we show the response of human cancer cells to TLR signaling inevitably linked to tumor biology. The approach is based on tailored multifunctional magnetic nanoparticles equipped with pathogen-derived ligands (CpG) functioning as TLR agonists (molecular component) to investigate the impact of transcription factor immune activation on human cancer cells. Magnetic nanoparticles (MnO and bifunctional Au-MnO) particles were covalently coated with a multifunctional polymer, displaying no cytotoxicity, to being able to enter cells while car…

Materials scienceCellNanotechnologyCell biologychemistry.chemical_compoundmedicine.anatomical_structurechemistryCpG siteNucleic acidmedicineMagnetic nanoparticlesCytotoxicityTranscription factorDNAIntracellular
researchProduct

Directed Interactions of Block Copolypept(o)ides with Mannose-binding Receptors: PeptoMicelles Targeted to Cells of the Innate Immune System

2015

Core-shell structures based on polypept(o)ides combine stealth-like properties of the corona material polysarcosine with adjustable functionalities of the polypeptidic core. Mannose-bearing block copolypept(o)ides (PSar-block-PGlu(OBn)) have been synthesized using 11-amino-3,6,9-trioxa-undecyl-2,3,4,6-tetra-O-acetyl-O-α-D-mannopyranoside as initiator in the sequential ring-opening polymerization of α-amino acid N-carboxyanhydrides. These amphiphilic block copolypept(o)ides self-assemble into multivalent PeptoMicelles and bind to mannose-binding receptors as expressed by dendritic cells. Mannosylated micelles showed enhanced cell uptake in DC 2.4 cells and in bone marrow-derived dendritic ce…

Innate immune systemPolymers and PlasticsChemistryMannose bindingCellMannoseBioengineeringMicelleBiomaterialschemistry.chemical_compoundmedicine.anatomical_structurePolymerizationBiochemistryAmphiphileMaterials ChemistrymedicineBiophysicsReceptorBiotechnologyMacromolecular Bioscience
researchProduct

Synthesis and Sequential Deprotection of Triblock Copolypept(o)ides Using Orthogonal Protective Group Chemistry

2014

The synthesis of triblock copolymers based on polysarcosine, poly-N-ε-t-butyloxycarbonyl-l-lysine, and poly-N-ε-t-trifluoroacetyl-l-lysine by ring-opening polymerization of the corresponding α-amino acid N-carboxyanhydrides (NCAs) is described. For the synthesis of N-ε-t-butyloxycarbonyl-l-lysine (lysine(Boc)) NCAs, an acid-free method using trimethylsilylchloride/triethylamine as hydrochloric acid (HCl) scavengers is presented. This approach enables the synthesis of lysine(Boc) NCA of high purity (melting point 138.3 °C) in high yields. For triblock copolypept(o)ides, the degree of polymerization (Xn ) of the polysarcosine block is varied between 200 and 600; poly-N-ε-t-butyloxycarbonyl-l-…

Polymers and PlasticsOrganic ChemistryLysineSarcosineHydrochloric acidDegree of polymerizationcomplex mixturesPolymerizationchemistry.chemical_compoundEnd-groupchemistryPolymerizationPolymer chemistryMaterials ChemistryMelting pointCopolymerbacteriaPolylysinePeptidesTriethylamineMacromolecular Rapid Communications
researchProduct

Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their applic…

2017

Therapeutic nucleic acids such as pDNA hold great promise for the treatment of multiple diseases. These therapeutic interventions are, however, compromised by the lack of efficient and safe non-viral delivery systems, which guarantee stability during blood circulation together with high transfection efficiency. To provide these desired properties within one system, we propose the use of reactive triblock copolypept(o)ides, which include a stealth-like block for efficient shielding, a hydrophobic block based on reactive disulfides for cross-linking and a cationic block for complexation of pDNA. After the complexation step, bifunctional cross-linkers can be employed to bio-reversibly stabiliz…

Models MolecularLysisEndosomePolymersPharmaceutical ScienceNanotechnology02 engineering and technologyGene delivery010402 general chemistryCleavage (embryo)Transfection01 natural sciencesCell Linechemistry.chemical_compoundMiceVaccines DNAAnimalsHumansDisulfidesBifunctionalCationic polymerizationGene Transfer TechniquesTransfection021001 nanoscience & nanotechnology0104 chemical sciencesCross-Linking ReagentschemistryBiophysicsNucleic acid0210 nano-technologyPlasmidsJournal of controlled release : official journal of the Controlled Release Society
researchProduct

Nanomedicine and macroscale materials in immuno-oncology

2019

Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less t…

medicine.medical_specialtyChemistry(all)Macromolecular Substancesmedicine.medical_treatmentContext (language use)02 engineering and technologyArticle03 medical and health sciencesNeoplasmsmedicineHumansIntensive care medicine030304 developmental biology0303 health sciencesTumor microenvironmentbusiness.industryNeoplasms therapyGeneral ChemistryImmunotherapy021001 nanoscience & nanotechnologyn/a OA procedure3. Good healthNanomedicineTreatment modalityNanomedicineImmunotherapy0210 nano-technologybusiness
researchProduct

Radioactive labeling of defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography.

2009

During the last decades polymer-based nanomedicine has turned out to be a promising tool in modern pharmaceutics. The following article describes the synthesis of well-defined random and block copolymers by RAFT polymerization with potential medical application. The polymers have been labeled with the positron-emitting nuclide fluorine-18. The polymeric structures are based on the biocompatible N-(2-hydroxypropyl)-methacrylamide (HPMA). To achieve these structures, functional reactive ester polymers with a molecular weight within the range of 25,000-110,000 g/mol were aminolyzed by 2-hydroxypropylamine and tyramine (3%) to form (18)F-labelable HPMA-polymer precursors. The labeling procedure…

chemistry.chemical_classificationBiodistributionAcrylamidesFluorine RadioisotopesPolymers and PlasticsPolymersRadical polymerizationSize-exclusion chromatographyRadiochemistryBioengineeringChain transferPolymerPolymerizationRatsBiomaterialsPolymerizationchemistryIsotope LabelingPositron-Emission TomographyPolymer chemistryMaterials ChemistryAnimalsReversible addition−fragmentation chain-transfer polymerizationPreclinical imagingBiotransformationBiomacromolecules
researchProduct

A Deeper Insight into the Postpolymerization Modification of Polypenta Fluorophenyl Methacrylates to Poly(N -(2-Hydroxypropyl) Methacrylamide)

2014

This work provides a detailed insight into the synthesis of N-(2-hydroxypropyl)methacrylamide (HPMA) polymers employing the activated ester approach. In this approach, polypenta fluorophenyl methacrylate (PFPMA)-activated ester polymers are synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization and transferred into HPMA-based systems by the use of 2-hydroxypropylamine. To prove quantitative conversion in the absence of side reactions, special attention is devoted to investigate different reaction conditions by different analytical methods ((1) H, (19) F, inverse-gated (13) C NMR, and zeta potential measurements). Furthermore the influence of common solvent…

chemistry.chemical_classificationMagnetic Resonance SpectroscopyMaterials sciencePolymers and PlasticsPolymersHydrolysisOrganic ChemistryWaterEstersChain transferPolymerMethacrylatePolymerizationKineticschemistry.chemical_compoundPolymethacrylic AcidsPolymerizationchemistryTacticityPolymer chemistryMaterials ChemistryZeta potentialOrganic chemistryMethacrylamideN-(2-Hydroxypropyl) methacrylamideMacromolecular Rapid Communications
researchProduct

Precision wormlike nanoadjuvant governs potency of vaccination

2021

It remains unclear how the precise length of one-dimensional nanovehicles influences the characters of vaccination. Here, a unimolecular nanovehicle with tailored size and aspect ratio (AR) is applied to deliver CpG oligodeoxynucleotide, a Toll-like receptor (TLR) 9 agonist, as an adjuvant of recombinant hepatitis B virus surface antigen (rHBsAg), for treating chronic hepatitis B (CHB). Cationic nanovehicles with fixed width (ca. 45 nm) but varied length (46 nm-180 nm), AR from 1 to 4, are prepared through controlled polymerization and are loaded with CpG by electrostatic interaction. We reveal that the nanoadjuvant with AR = 2 shows the highest retention in proximal lymph nodes. Importantl…

Hepatitis B virusCpG OligodeoxynucleotideChemistryMechanical Engineeringmedicine.medical_treatmentVaccinationTLR9BioengineeringGeneral ChemistryCondensed Matter Physicsmedicine.disease_causeMolecular biologyDisease Models AnimalMiceImmune systemCpG siteAdjuvants ImmunologicmedicineAnimalsGeneral Materials ScienceReceptorAdjuvantLate endosome
researchProduct

72/74As-labeling of HPMA based polymers for long-term in vivo PET imaging

2010

Abstract In the context of molecular imaging, various polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA) have been radio-labeled using longer-living positron emitters 72As t1/2 = 26 h or 74As t1/2 = 17.8 d. This approach may lead to non-invasive determination of the long-term in vivo fate of polymers by PET (positron emission tomography). Presumably, the radio label itself will not strongly influence the polymer structure due to the fact that the used nuclide binds to already existing thiol moieties within the polymer structure. Thus, the use of additional charges or bulky groups can be avoided.

Time FactorsClinical BiochemistryPharmaceutical ScienceContext (language use)BiochemistryArsenicIn vivoDrug DiscoveryPolymer chemistrymedicineMolecular BiologyRadioisotopeschemistry.chemical_classificationAcrylamidesmedicine.diagnostic_testOrganic ChemistryArsenic isotopePositron emittersPolymerPet imagingchemistryPositron emission tomographyPositron-Emission TomographyBiophysicsMolecular MedicineMolecular imagingBioorganic & Medicinal Chemistry Letters
researchProduct

Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors

2018

Tumors are characterized by leaky blood vessels, and by an abnormal and heterogeneous vascular network. These pathophysiological characteristics contribute to the enhanced permeability and retention (EPR) effect, which is one of the key rationales for developing tumor-targeted drug delivery systems. Vessel abnormality and heterogeneity, however, which typically result from excessive pro-angiogenic signaling, can also hinder efficient drug delivery to and into tumors. Using histidine-rich glycoprotein (HRG) knockout and wild type mice, and HRG-overexpressing and normal t241 fibrosarcoma cells, we evaluated the effect of genetically induced and macrophage-mediated vascular normalization on th…

Histidine-rich glycoproteinUT-Hybrid-DPharmaceutical ScienceVascular normalization02 engineering and technologyPermeabilityArticleMice03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicinePolymethacrylic AcidsCell Line TumorNeoplasmsmedicineAnimalsMethacrylamideTissue DistributionpHPMAFibrosarcomaMice Knockoutchemistry.chemical_classificationDrug CarriersProteins021001 nanoscience & nanotechnologymedicine.diseasePathophysiologyUp-RegulationMice Inbred C57BLHRGNanomedicineTumor targetingchemistryTargeted drug deliveryPermeability (electromagnetism)030220 oncology & carcinogenesisDrug deliveryDrug deliveryCancer researchEPR0210 nano-technologyGlycoprotein
researchProduct

Macromol. Rapid Commun. 1/2015

2015

Polymers and PlasticsChemistryOrganic ChemistryMaterials ChemistryMacromolecular Rapid Communications
researchProduct

P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellula…

2012

In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M-n around 20,000 g/mol with dispersities (D=M-w/M-n) below 1.3. In addition, the solution conformation of this new type of partially degradable…

PaclitaxelStereochemistryCell SurvivalPolyestersTacticityMolecular ConformationPharmaceutical ScienceMicellechemistry.chemical_compoundTacticityAmphiphilePolymer chemistryPolylactide block copolymersCopolymerHumansReversible addition−fragmentation chain-transfer polymerizationMicelleschemistry.chemical_classificationLactideRAFT polymerizationPoly(N-(2-hydroxypropyl)-methacrylamideBiological TransportPolymerStructure activity relationshipAntineoplastic Agents PhytogenicKineticschemistryDrug deliveryHPMA block copolymersMethacrylatesHeLa Cells
researchProduct

Rethinking Cysteine Protective Groups:S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation

2016

The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation…

Stereochemistry010402 general chemistryCleavage (embryo)01 natural sciencesRing-opening polymerizationCatalysisAnhydridesPolymerizationchemistry.chemical_compoundPeptide synthesisCysteineDisulfidesSulfhydryl CompoundsAmineschemistry.chemical_classification010405 organic chemistryOrganic ChemistryGeneral Chemistry0104 chemical sciencesAmino acidchemistryPolymerizationDrug deliveryPeptidesDerivative (chemistry)CysteineChemistry - A European Journal
researchProduct

Polymeric Nanoparticles with Neglectable Protein Corona

2020

Small : nano micro 16(18), 1907574 (2020). doi:10.1002/smll.201907574

540 Chemistry and allied sciencesDispersity610 Medizinmicellar structuresNanoparticleProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsBiomaterialschemistry.chemical_compoundAdsorption610 Medical sciencesHumansGeneral Materials ScienceParticle SizeGel electrophoresisChemistryasymmetrical flow field-flow fractionationSarcosineGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineering540 Chemiedrug deliveryNanoparticlesParticleProtein CoronaParticle sizePeptides0210 nano-technologyHydrophobic and Hydrophilic InteractionsEthylene glycolBiotechnologySmall
researchProduct

Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion

2017

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses r…

Mechanical bondStereochemistryChemistry MultidisciplinaryStatic ElectricitySupramolecular chemistry02 engineering and technology010402 general chemistryPhotochemistryNANOSTRUCTURES01 natural sciencesBiochemistryArticleCatalysisSupramolecular assemblySurface-Active AgentsColloid and Surface ChemistryMicroscopy Electron TransmissionSYSTEMSPeptide amphiphileDRUG-DELIVERYCONTROLLED LENGTHchemistry.chemical_classificationScience & TechnologyMICELLESMolecular StructureChemistryHydrogen bondIntermolecular forceHydrogen BondingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSUPRAMOLECULAR POLYMERSSupramolecular polymersChemistryPOLYMERIZATIONCovalent bondPhysical SciencesGROWTHPeptides0210 nano-technologyNANOFIBERS
researchProduct

Overcoming the PEG-addiction: well-defined alternatives to PEG from structure-property relationships to better defined therapeutics

2011

Synthetic methods in polymer chemistry have evolved tremendously during the last decade. Nowadays more and more attention is devoted to the application of those tools in the development of the next generation of nanomedicines. Nevertheless, poly(ethylene glycol) (PEG) remains the most frequently used polymer for biomedical applications. In this review, we try to summarize recent efforts and developments in controlled polymerisation techniques that may allow alternatives to PEG based systems and can be used to improve the properties of future polymer therapeutics.

Polymers and PlasticsComputer scienceOrganic ChemistryStructure propertyBioengineeringNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundchemistryPEG ratio0210 nano-technologyEthylene glycol
researchProduct

Cover Picture: Macromol. Biosci. 10/2014

2014

BiomaterialsGeographyPolymers and PlasticsMaterials ChemistryBioengineeringCover (algebra)Physical geographyBiotechnologyMacromolecular Bioscience
researchProduct

Poly(sarcosine) surface modification imparts stealth-like properties to liposomes

2019

Circulation lifetime is a crucial parameter for a successful therapy with nanoparticles. Reduction and alteration of opsonization profiles by surface modification of nanoparticles is the main strategy to achieve this objective. In clinical settings, PEGylation is the most relevant strategy to enhance blood circulation, yet it has drawbacks, including hypersensitivity reactions in some patients treated with PEGylated nanoparticles, which fuel the search for alternative strategies. In this work, lipopolysarcosine derivatives (BA-pSar, bisalkyl polysarcosine) with precise chain lengths and low polydispersity indices are synthesized, characterized, and incorporated into the bilayer of preformed…

SarcosineSurface PropertiesProton Magnetic Resonance SpectroscopyDispersityStatic ElectricityNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsAnimals Genetically Modifiedchemistry.chemical_compoundAnimalsGeneral Materials ScienceSurface chargeComplement ActivationZebrafishLiposomeChemistryBilayerSarcosineGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMolecular WeightLiposomesBiophysicsPEGylationSurface modification0210 nano-technologyPeptidesBiotechnology
researchProduct

Influence of Binding-Site Density in Wet Bioadhesion

2008

Materials scienceChemical engineeringMechanics of MaterialsMechanical EngineeringOrganic chemistryGeneral Materials ScienceAdhesiveBinding siteAdvanced Materials
researchProduct

Insight into the synthesis of N-methylated polypeptides

2020

The ring-opening polymerization (ROP) of N-carboxy anhydrides (NCAs) is mostly divided into two classes: NCAs of α-substituted amino acids and N-methylated NCAs of α-unsubstituted glycine derivatives (NNCAs). The use of both monomer types offers different mechanistic features and results in a multitude of functional materials. To combine these properties, the synthesis and ROP of α-substituted and N-methylated NCAs (αNNCAs) of several amino acids were investigated. The current study provides insight into the influence of polymerization conditions and the limitations caused by the enhanced steric demand of the amino acid NCA monomers and their N-methylated derivatives. Namely, the effects of…

chemistry.chemical_classificationSteric effectsPolymers and PlasticsOrganic ChemistryBioengineeringPolymerBiochemistryCombinatorial chemistryAmino acidchemistry.chemical_compoundMonomerchemistryPolymerizationGlycineElectronic effectAmine gas treatingPolymer Chemistry
researchProduct

Complex Formation between Polyelectrolytes and Oppositely Charged Oligoelectrolytes

2016

We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains, and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation, and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule,…

Complex formationGeneral Physics and AstronomySalt (chemistry)FOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciencesIonChain (algebraic topology)Physics - Biological PhysicsPhysical and Theoretical Chemistrychemistry.chemical_classificationIonsMolecular StructureChemistryCharge (physics)021001 nanoscience & nanotechnologyPolyelectrolytesPolyelectrolyte0104 chemical sciencesModels ChemicalChemical physicsBiological Physics (physics.bio-ph)Soft Condensed Matter (cond-mat.soft)Counterion0210 nano-technologyStructure factor
researchProduct

Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration

2016

Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-LewisX (SLeX ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endo…

OligosaccharidesTyramine02 engineering and technologyLigands010402 general chemistry01 natural sciencesCatalysisFucoseInhibitory Concentration 50chemistry.chemical_compoundPolymethacrylic AcidsCell MovementHuman Umbilical Vein Endothelial CellsSide chainHumansTetrasaccharideMethacrylamideSialyl Lewis X AntigenCell adhesionCells CulturedMacrophagesGeneral ChemistrySurface Plasmon ResonanceFlow Cytometry021001 nanoscience & nanotechnologyIn vitro0104 chemical sciencesSialic acidMicroscopy Fluorescence MultiphotonNanomedicinechemistryBiochemistrySelectins0210 nano-technologySelectinAngewandte Chemie International Edition
researchProduct

Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells

2014

A series of well-defined polypeptide-polypeptoid block copolymers based on the body's own amino acids sarcosine and lysine are prepared by ring opening polymerization of N-carboxyanhydrides. Block lengths were varied between 200-300 for the shielding polysarcosine block and 20-70 for the complexing polylysine block. Dispersity indexes ranged from 1.05 to 1.18. Polylysine is polymerized with benzyloxycarbonyl as well as trifluoroacetyl protecting groups at the ϵ-amine group and optimized deprotection protocols for both groups are reported. The obtained block ionomers are used to complex pDNA resulting in the formation of polyplexes (PeptoPlexes). The PeptoPlexes can be successfully applied i…

chemistry.chemical_classificationSarcosinePolymers and PlasticsDispersityBioengineeringTransfectionRing-opening polymerizationAmino acidBiomaterialschemistry.chemical_compoundBiochemistrychemistryPolylysinePEG ratioMaterials ChemistryBiophysicsCytotoxicityBiotechnologyMacromolecular Bioscience
researchProduct

Back Cover: Macromol. Biosci. 10/2014

2014

BiomaterialsHydrologyPolymers and PlasticsMaterials ChemistryBioengineeringCover (algebra)GeologyBiotechnologyMacromolecular Bioscience
researchProduct

Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions

2020

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and…

NANOCARRIERSEmbryo Nonmammalianmiceanimal structurescirculation timeCellNanoparticleLIPOSOMES02 engineering and technology010402 general chemistry01 natural sciencesSEQUENCEBiomaterialsMiceDELIVERYmedicineMedicine and Health SciencesAnimalsGeneral Materials ScienceZebrafishZebrafishbiologyChemistryMacrophagesEndothelial CellsOptical transparencyPLGAGeneral ChemistryTARGETING MACROPHAGES021001 nanoscience & nanotechnologybiology.organism_classificationzebrafishCANCER0104 chemical sciencesCell biologymacrophagesChemistrymedicine.anatomical_structureCell cultureembryonic structuresZebrafish embryoNanoparticlesCirculation timenanoparticlesNanocarriers0210 nano-technologyANTIBIOTICSBiotechnology
researchProduct

CpG-DNA loaded multifunctional MnO nanoshuttles for TLR9-specific cellular cargo delivery, selective immune-activation and MRI

2012

Initiation of pathways that lead to a proliferation and chemoresistance by Toll-like receptors (TLRs) are an important factor in cancer progression. Multifunctional magnetic nanoparticles equipped with a pathogen-derived ligand (CpG) functioning as TLR agonists were used to show the impact of immune activation on human HNSCC (head and neck squamous cell carcinoma) cells. The response of human cancer cells to TLR signaling is linked to tumor biology. The magnetic MnO nanoparticles were coated with a multifunctional polymer, displaying no cytotoxicity and being able to enter cells while carrying foreign DNA (unmethylated CpG) to recognize intracellular TLR9. Both the particle and the nucleic …

Materials scienceCellTLR9NanotechnologyGeneral Chemistrymedicine.diseaseHead and neck squamous-cell carcinomaCell biologychemistry.chemical_compoundmedicine.anatomical_structureCpG sitechemistryMaterials ChemistrymedicineCytotoxicityReceptorDNAIntracellularJournal of Materials Chemistry
researchProduct

Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, 225Ac, and beta-particle emitter, 177Lu

2021

Introduction: Radiotherapy of cancer requires both alpha- and beta-particle emitting radionuclides, as these radionuclide types are efficient at destroying different types of tumors. Both classes of radionuclides require a vehicle, such as an antibody or a polymer, to be delivered and retained within the tumor. Polyglutamic acid (pGlu) is a polymer that has proven itself effective as a basis of drug-polymer conjugates in the clinic, while its derivatives have been used for pretargeted tumor imaging in a research setup. trans-Cyclooctene (TCO) modified pGlu is suitable for pretargeted imaging or therapy, as well as for intratumoral radionuclide therapy. In all cases, it becomes indirectly ra…

0303 health sciencesCancer ResearchAlpha Particle EmitterPolyglutamic acidRadiochemistrySize-exclusion chromatographyPolypeptidesPolyethylene glycolTargeted radionuclide therapyAc030218 nuclear medicine & medical imagingTetrazine ligation03 medical and health scienceschemistry.chemical_compoundTetrazine0302 clinical medicineIon bindingchemistryRadionuclide therapyClick chemistryLuMolecular MedicineDOTARadiology Nuclear Medicine and imaging030304 developmental biology
researchProduct

Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation

2018

Polysarcosine (pSar) was one of the first polymers synthesized in a controlled living manner, but it was only recently when it was reconsidered as a promising alternative for poly(ethylene glycol) (PEG) in biomedical applications. Despite receiving more and more attention, very little is known about the solution properties of pSar, such as coil dimensions and thermodynamic interactions. In this article, we report on these properties of pSar with degrees of polymerization 50 < X-n < 400 that were prepared by controlled living ring-opening polymerization. The polymers are characterized by gel permeation chromatography (GPC), MALDI-TOF mass spectrometry, dynamic and static light scattering (SL…

chemistry.chemical_classificationMaterials sciencePolymers and PlasticsOrganic ChemistryAnalytical chemistrytechnology industry and agricultureViscometer02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnologyMass spectrometry01 natural sciences0104 chemical sciencesInorganic ChemistryGel permeation chromatographychemistry.chemical_compoundchemistryPolymerizationPEG ratioMaterials ChemistryStatic light scattering0210 nano-technologyEthylene glycol
researchProduct

Thermodynamics and Kinetics of the Interactions Between Proteins and Hydrophilic Polymers

2021

Hydrophilic polymers are being investigated as possible coating agents for therapeutic nanoparticles because of their capacity to reduce immune response and increase circulation life time. The mechanism of action of these coatings is not well understood although it is clear that they unspecifically reduce the amount of proteins adsorbing on the nanoparticle surface coming in contact with biological fluids. Here we have investigated, using state-of-the-art atomistic molecular dynamics simulations, the equilibrium and kinetic properties of the interactions forming between human serum albumin, the most abundant protein in the blood stream, and two different and promising polymers poly(ethylene…

chemistry.chemical_classificationKineticsNanoparticlePolymerHuman serum albuminchemistry.chemical_compoundMolecular dynamicsAdsorptionchemistryChemical engineeringmedicineMoleculeEthylene glycolmedicine.drug
researchProduct

A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging

2020

A novel platform rationally integrating indocyanine green analogues and an arginine-rich dendritic peptide with both nitroreductase (NTR) and glutathione (GSH) reduction responsive linkers was developed. This multifunctional platform can enable selective and efficient gene delivery and specific turn-on fluorescence imaging in tumors.

Indocyanine GreenGlutathione metabolismFluorescence-lifetime imaging microscopyNear-Infrared Fluorescence ImagingInfrared RaysPeptideGene deliveryCatalysischemistry.chemical_compoundNitroreductaseOptical imagingMaterials ChemistryHumansFluorescent Dyeschemistry.chemical_classificationOptical ImagingGene Transfer TechniquesMetals and Alloysfood and beveragesGeneral ChemistryGlutathioneNitroreductasesGlutathioneSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesBiophysicsPeptidesHeLa CellsChemical Communications
researchProduct

P0493 : Selectin-targeting nanoparticles for immunomodulatory therapy of liver diseases

2015

HepatologyChemistryCancer researchSelectinJournal of Hepatology
researchProduct

PeptoSomes for Vaccination: Combining Antigen and Adjuvant in Polypept(o)ide-Based Polymersomes.

2017

In this work, the first vaccine is reported based on a PeptoSome, which contains a model antigen (SIINFEKL) and adjuvant (CpG). PeptoSomes are polypept(o)ide-based polymersomes built of a block-copolymer with polysarcosine (PSar) as the hydrophilic block (X n = 111) and poly(benzyl-glutamic acid) (PGlu(OBn)) as the hydrophobic one (X n = 46). The polypept(o)ide is obtained with low dispersity index of 1.32 by controlled ring-opening polymerization. Vesicle formation by dual centrifugation technique allows for loading of vesicles up to 40 mol%. PeptoSomes are characterized by multiangle dynamic light scattering, static light scattering, and cryogenic transmission electron microscopy (cryoTEM…

Hydrodynamic radiusPolymers and Plasticsmedicine.medical_treatmentT-LymphocytesDispersityGene ExpressionBioengineeringchemical and pharmacologic phenomenaBone Marrow Cells02 engineering and technology010402 general chemistryLymphocyte Activation01 natural sciencesBiomaterialsPeptoidsDynamic light scatteringAntigenAdjuvants ImmunologicMaterials ChemistrymedicineHumansStatic light scatteringAntigensVaccinesChemistryVesicleVaccinationSarcosineDendritic Cells021001 nanoscience & nanotechnologyMolecular biologyCoculture Techniques0104 chemical sciencesOligodeoxyribonucleotidesPolymersomeB7-1 AntigenCytokinesB7-2 Antigen0210 nano-technologyPeptidesAdjuvantBiomarkersBiotechnologyMacromolecular bioscience
researchProduct

Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry

2020

The programming of nanomaterials at molecular length-scales to control architecture and function represents a pinnacle in soft materials synthesis. Although elusive in synthetic materials, Nature has evolutionarily refined macromolecular synthesis with perfect atomic resolution across three-dimensional space that serves specific functions. We show that biomolecules, specifically proteins, provide an intrinsic macromolecular backbone for the construction of anisotropic brush polymers with monodisperse lengths via grafting-from strategy. Using human serum albumin as a model, its sequence was exploited to chemically transform a single cysteine, such that the expression of said functionality is…

chemistry.chemical_classificationChemistryBiomoleculeDispersityBrushSequence (biology)NanotechnologyGeneral ChemistryPolymer010402 general chemistry01 natural sciencesBiochemistryCatalysisArticle0104 chemical scienceslaw.inventionNanomaterialsColloid and Surface ChemistrylawAnisotropyMacromolecule
researchProduct

Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers.

2019

The size control of nanomedicines for tumor diagnosis and therapy is of high importance, since it enables or disables deep and sufficient tumor penetration. Amphiphilic star-shaped block copolypept(o)ides offer substantial promise to precisely adjust the hydrophobic core and the hydrophilic corona, independent of each other, and therefore simultaneously control the size dimension in the interesting size range from 10 to 30 nm. To gain access to core-shell structures of such sizes, 3-arm and 6-arm PeptoStars, based on poly(gamma-tert-butyloxycarbonyl-L-glutamate)-b-polysarcosine (pGlu(OtBu)-b-pSar), were prepared via controlled living ring-opening polymerization (ROP) of the corresponding N-…

Protein Conformation alpha-HelicalMaterials sciencePolymers and PlasticsPolysarcosineSize-exclusion chromatographyBioengineering02 engineering and technology010402 general chemistryBranching (polymer chemistry)01 natural sciencesPolymerizationBiomaterialsPlasmaAmphiphileMaterials ChemistryCopolymerHumanschemistry.chemical_classificationMolecular massSarcosinePolymer021001 nanoscience & nanotechnology0104 chemical sciencesPolymerizationchemistryChemical engineeringNanoparticlesProtein Corona0210 nano-technologyPeptidesOligopeptidesBiomacromolecules
researchProduct

Multidentate Polysarcosine-Based Ligands for Water-Soluble Quantum Dots

2016

We describe the synthesis of heterotelechelic polysarcosine polymers and their use as multidentate ligands in the preparation of stable water-soluble quantum dots (QDs). Orthogonally functionalized polysarcosine with amine and dibenzocyclooctyl (DBCO) end groups is obtained by ring-opening polymerization of N-methylglycine N-carboxyanhydride with DBCO amine as initiator. In a first postpolymerization modification step, the future biological activity of the polymeric ligands is adjusted by modification of the amine terminus. Then, in a second postpolymerization modification step, azide functionalized di- and tridentate anchor compounds are introduced to the DBCO terminus of the polysarcosine…

chemistry.chemical_classificationDenticityPolymers and PlasticsPolysarcosineOrganic Chemistry02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCycloaddition0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryPolymerizationQuantum dotPolymer chemistryMaterials ChemistryAmine gas treatingAzide0210 nano-technologyMacromolecules
researchProduct

Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copoly…

2010

We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights $\overline M _{\rm n}$ ranging from 7 600 to 34 300 g · mol(-1) , with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new …

chemistry.chemical_classificationMaterials scienceRAFT polymerizationPolymers and PlasticssynthesisStereochemistryOrganic ChemistryFluorescence correlation spectroscopyfluorescence correlation spectroscopyPolymerchainMethacrylatebiocompatible block copolymerspolylactide block copolymersTransfer agentchemistryPolymerizationPolymer chemistryAmphiphileHPMA block copolymersMaterials ChemistryCopolymerReversible addition−fragmentation chain-transfer polymerization
researchProduct

Coordinative Binding of Polymers to Metal-Organic Framework Nanoparticles for Control of Interactions at the Biointerface

2019

Metal-organic framework nanoparticles (MOF NPs) are of growing interest in diagnostic and therapeutic applications, and due to their hybrid nature, they display enhanced properties compared to more established nanomaterials. The effective application of MOF NPs, however, is often hampered by limited control of their surface chemistry and understanding of their interactions at the biointerface. Using a surface coating approach, we found that coordinative polymer binding to Zr- fum NPs is a convenient way for peripheral surface functionalization. Different polymers with biomedical relevance were assessed for the ability to bind to the MOF surface. Carboxylic acid and amine containing polymers…

PolymersSurface PropertiesGeneral Physics and AstronomyNanoparticleBiointerfaceNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesNanomaterialsAmphiphileHumansGeneral Materials ScienceMetal-Organic Frameworkschemistry.chemical_classificationChemistryfungiGeneral EngineeringProteinsBiological TransportPolymer021001 nanoscience & nanotechnology0104 chemical sciencesSurface coatingNanoparticlesSurface modificationMetal-organic frameworkZirconium0210 nano-technologyHeLa CellsProtein Binding
researchProduct

Macromol. Biosci. 10/2017

2017

BiomaterialsPolymers and PlasticsMaterials ChemistryBioengineeringBiotechnologyMacromolecular Bioscience
researchProduct

Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging

2019

Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11 C-labeled tetrazine ([ 11 C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [ 11 C]AE-1. Howeve…

Nuclear imagingClinical BiochemistryTetrazinePET imagingPharmaceutical ScienceCarbon-1101 natural sciencesBiochemistryTetrazinechemistry.chemical_compoundIn vivoTrans-cycloocteneDrug DiscoveryMolecular BiologyPretargetingPretargeting010405 organic chemistryChemistryOrganic ChemistryRadiosynthesisPet imaging3. Good health0104 chemical sciences010404 medicinal & biomolecular chemistryMolecular MedicineBiomedical engineeringBioorganic & Medicinal Chemistry Letters
researchProduct

Tetrazine- and trans -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation

2020

The inverse electron demand Diets-Alder (IEDDA) reaction-initiated ligation between 1,2,4,5-tetra-zines (Tz) and trans-cyclooctenes (TCO) is one of the fastest bioorthogonal reactions known today and is therefore increasingly used for in vivo click chemistry. Described herein is the synthesis of Tz- and TCO-functionalised polypeptides, polypeptoids and polypeptide-block-polypeptoids (polypept(o) ides) by ring-opening polymerisation of the corresponding N-carboxyanhydrides using Tz- or TCO-functional amine initiators. Despite the reactivity of tetrazines, polymers with low dispersity and high end group integrity can be obtained as observed by gel permeation chromatography (GPC), nuclear magn…

Polymers and PlasticsChemistryOrganic ChemistryBioengineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistry0104 chemical sciencesGel permeation chromatographyMiniemulsionEnd-groupchemistry.chemical_compoundTetrazineCycloocteneClick chemistryReactivity (chemistry)Bioorthogonal chemistry0210 nano-technologyPolymer Chemistry
researchProduct

Back Cover: Macromol. Biosci. 1/2015

2015

BiomaterialsHydrologyPolymers and PlasticsMaterials ChemistryBioengineeringCover (algebra)GeologyBiotechnologyMacromolecular Bioscience
researchProduct

Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles

2016

Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes…

0301 basic medicineBiodistributionMyeloidPolymersCellBiophysicsMice NudeCapsulesBioengineeringSpleen02 engineering and technologyFlow cytometryBiomaterialsMice03 medical and health sciencesNanocapsulesIn vivoMaterials TestingmedicineAnimalsMyeloid CellsTissue DistributionMolecular Targeted TherapyMicrobubblesmedicine.diagnostic_testbusiness.industryMacrophages021001 nanoscience & nanotechnology3. Good healthCell biologyVisceraNanomedicine030104 developmental biologymedicine.anatomical_structureOrgan SpecificityMechanics of Materials2023 OA procedureLiposomesImmunologyDrug deliveryCeramics and CompositesMicrobubblesTargeted delivery0210 nano-technologybusinessBiomaterials
researchProduct

Characterization of Polypeptides and Polypeptoides - Methods and Challenges

2017

ChemistryComputational biologyCharacterization (materials science)
researchProduct

Synthesis and characterization of bisalkylated polysarcosine-based lipopolymers

2019

The use of PEGylated lipids for the synthesis of stealth liposomes and lipid formulations for nucleic acid delivery has promoted the development of nanoparticle based drugs for cancer therapy, and chronic diseases. Moreover, several other nanomedicines based on these materials have advanced into clinical trails. This enormous success, however, has recently been compromised by the occurrence of immune responses towards PEG, which render pharmacokinetics and can substantially reduce the therapeutic efficiency of drugs. Therefore, alternatives for PEGylated lipids with comparable or even identical solution properties are required. In this work, we report the synthesis of polysarcosine based li…

chemistry.chemical_classificationSarcosinePolymers and PlasticsPolysarcosineOrganic ChemistryDispersityGeneral Physics and Astronomy02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCombinatorial chemistryRing-opening polymerization0104 chemical sciencesEnd-groupchemistry.chemical_compoundchemistryPEG ratioMaterials ChemistryLiving polymerization0210 nano-technology
researchProduct

Sekundärstrukturbildung als Triebkraft für die Selbstorganisation reaktiver Polypept(o)ide: Steuerung von Größe, Form und Funktion kernvernetzter Nan…

2017

Prazise Kontrolle uber Morphologie und Funktion polymerer Nanostrukturen im Rahmen der Selbstorganisation stellt nach wie vor eine Herausforderung im Feld der Material- und biomedizinischen Wissenschaften dar, insbesondere wenn unabhangige Kontrolle uber einzelne Partikeleigenschaften erwunscht ist. Hier wird uber Sekundarstruktur-gesteuerte Selbstorganisation von Nanostrukturen basierend auf amphiphilen Blockcopolypept(o)iden berichtet und eine Strategie zur bio-reversiblen Einstellung der Kernpolaritat und –funktion unabhangig von der Partikelpraparation vorgestellt. Der Peptiden eigene Prozess der Sekundarstrukturbildung erlaubt so die Herstellung spharischer und wurmartiger kernvernetzt…

010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Density of conjugated antibody determines the extent of Fc receptor dependent capture of nanoparticles by liver sinusoidal endothelial cells

2021

Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with …

Biodistributionbiologymedicine.diagnostic_testChemistryCellGeneral EngineeringFc receptorGeneral Physics and AstronomyEndothelial CellsDendritic cellReceptors FcFlow cytometryCell biologymedicine.anatomical_structureLiverbiology.proteinmedicineSystemic administrationNanoparticlesGeneral Materials ScienceTissue DistributionAntibodyReceptor
researchProduct

Bioreducible Poly-l-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents

2015

Polylysine-b-p[HPMA] block copolymers containing a redox-responsive disulfide bond between both blocks are synthesized by RAFT polymerization of pentafluorphenyl-methacrylate with a macro-CTA from Nϵ-benzyloxycarbonyl (Cbz) protected polylysine (synthesized by NCA polymerization). This polylysine-b-p[PFMA] precursor block copolymer is converted to polylysine(Cbz)-b-p[HPMA] by postpolymerization modification with 2-hydroxypropylamine. After removal of the Cbz protecting group, cationic polylysine-b-p[HPMA] copolymers with a biosplittable disulfide moiety became available, which can be used as polymeric transfection vectors. These disulfide linked polylysine-S-S-b-p[HPMA] block copolymers sho…

Polymers and PlasticsCationic polymerizationBioengineering02 engineering and technologyTransfection010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBiomaterialschemistry.chemical_compoundchemistryPolymerizationPolylysinePolymer chemistryMaterials ChemistryCopolymerMoietyReversible addition−fragmentation chain-transfer polymerization0210 nano-technologyProtecting groupBiotechnologyMacromolecular Bioscience
researchProduct

Synthesis of Maleimide-Functionalyzed HPMA-Copolymers and in vitro Characterization of the aRAGE- and Human Immunoglobulin (huIgG)-Polymer Conjugates

2012

Herein the synthesis of antibody–polymer conjugates, with a quite narrow dispersity based on the polymer HPMA, are reported. These conjugates are synthesized by coupling antibodies to maleimide-functionalized poly(N-(2-hydroxypropyl)-methacrylamide) (poly-HPMA) copolymers derived through reversible addition-fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate via the intermediate step of an activated ester polymer. We develop a protocol that allows the attachment of two different model antibodies, monoclonal anti-RAGE (receptor for advanced glycation end-products) antibody, and polyclonal human immunoglobulin (huIgG). Modification of the antibody and conjugat…

Polymers and PlasticsbiologyDispersityBioengineeringChain transferRaftBiomaterialschemistry.chemical_compoundchemistryPolymerizationPolyclonal antibodiesPolymer chemistryMaterials Chemistrybiology.proteinMethacrylamideMaleimideBiotechnologyConjugateMacromolecular Bioscience
researchProduct

The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds.

2021

ABSTRACT With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently id…

DrugIn vivo efficacyTuberculosismedicine.drug_classmedia_common.quotation_subjectAntibioticsAntitubercular AgentsNeuroscience (miscellaneous)Medicine (miscellaneous)Anti-tuberculosis drugsPharmacologyBiologyGeneral Biochemistry Genetics and Molecular BiologyMycobacterium tuberculosisMiceImmunology and Microbiology (miscellaneous)In vivoZebrafish as a Disease ModelmedicineAnimalsTuberculosisZebrafishmedia_commonIn vivo toxicityDrug discoveryMycobacterium tuberculosismedicine.diseasebiology.organism_classificationIn vitroZebrafish tuberculosis modelDrug developmentNanoparticlesResearch Article
researchProduct

Ligand density on nanoparticles: A parameter with critical impact on nanomedicine

2019

Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has b…

0303 health sciencesChemistryLigandPharmaceutical ScienceNanoparticleNanotechnology02 engineering and technologyLigands021001 nanoscience & nanotechnologyEngineered nanoparticlesIn vitro03 medical and health sciencesDrug Delivery SystemsNanomedicineIn vivoAnimalsHumansNanoparticlesNanomedicine0210 nano-technologyReceptor030304 developmental biology
researchProduct

Polypeptoid-block-polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations an…

2013

We report the synthesis of polysarcosine-block-polyglutamic acid benzylester (PSar-block-PGlu(OBn)) and polysarcosine-block-polylysine-ε-N-benzyloxycarbonyl (PSar-block-PLys(Z)) copolymers. The novel polypeptoid-block-polypeptide copolymers (Copolypept(o)ides) have been synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs). Polymerization conditions were optimized regarding protecting groups, block sequence and length. While the degree of polymerization of the PSar block length was set to be around 200 or 400, PGlu(OBn) and PLys(Z) block lengths were varied between 20 to 75. The obtained block copolymers had a total degree of polymerization of 220-475 and dispersity…

Polymers and PlasticsCell SurvivalPolymersSurface PropertiesChemistry PharmaceuticalDispersityBioengineeringDegree of polymerizationBiomaterialsPeptoidsStructure-Activity RelationshipSurface-Active AgentsColloidCell Line TumorBlock (telecommunications)AmphiphilePolymer chemistryMaterials ChemistryCopolymerHumansParticle SizeDose-Response Relationship DrugChemistryMiniemulsionHEK293 CellsPolymerizationEmulsionsPeptidesBiomacromolecules
researchProduct

Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages.

2021

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparti…

PolymersIronBiomedical EngineeringMacrophage polarizationIron oxidePharmaceutical Science02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMiceImmune systemDihydrolipoic acidMacrophageAnimalsMicellesInflammationMacrophages021001 nanoscience & nanotechnologyControlled release0104 chemical scienceschemistryBiophysics0210 nano-technologyIron oxide nanoparticlesIntracellularAdvanced healthcare materials
researchProduct

Exploring new activating groups for reactive cysteine NCAs

2016

Abstract Due to its ability to reversibly crosslink proteins, cysteine has a unique role as an amino acid in nature. For controlled, asymmetric formation of disulfides from two thiols, one thiol needs to be activated. While few activating groups for cysteine have been proposed, they are usually not stable against amines making them unsuitable for solid phase peptide synthesis or amine initiated polymerization of α-amino acid-N-carboxy-anhydrides (NCAs). In this Letter we describe a series of new thiol activated cysteines, as well as their NCAs and explore the link between electron deficiency of the leaving group and control over NCA polymerization.

chemistry.chemical_classificationOrganic ChemistryLeaving group02 engineering and technologyElectron deficiency010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistry0104 chemical sciencesAmino acidchemistry.chemical_compoundchemistryPolymerizationDrug DiscoveryThiolPeptide synthesisOrganic chemistryAmine gas treating0210 nano-technologyCysteineTetrahedron Letters
researchProduct

Integration of Indocyanine Green Analogs as Near‐Infrared Fluorescent Carrier for Precise Imaging‐Guided Gene Delivery

2020

Codelivery of diagnostic probes and therapeutic molecules often suffers from intrinsic complexity and premature leakage from or degradation of the nanocarrier. Inspired by the "Y" shape of indocyanine green (ICG), the dye is integrated in an amphiphilic lipopeptide (RNF). The hydrophilic segment is composed of arginine-rich dendritic peptides, while cyanine dyes are modified with two long carbon chains and employed as the hydrophobic moiety. They are linked through a disulfide linkage to improve the responsivity in the tumor microenvironment. After formulation with other lipopeptides at an optimized ratio, the theranostic system (RNS-2) forms lipid-based nanoparticles with slight positive z…

Indocyanine Green02 engineering and technologyGene delivery010402 general chemistry01 natural sciencesBiomaterialsMicechemistry.chemical_compoundAmphiphileAnimalsGeneral Materials ScienceCyanineFluorescent DyesChemistryOptical ImagingGene Transfer TechniquesGeneral Chemistry021001 nanoscience & nanotechnologyFluorescence0104 chemical sciencesFörster resonance energy transferLipofectamineBiophysicsNanoparticlesNanocarriers0210 nano-technologyIndocyanine greenBiotechnologySmall
researchProduct

HPMA copolymers as surfactants in the preparation of biocompatible nanoparticles for biomedical application.

2012

In this work we describe the application of amphiphilic N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymers as polymeric surfactants in miniemulsion techniques. HPMA-based copolymers with different ratios of HPMA (hydrophilic) to laurylmethacrylate (LMA; hydrophobic) units were synthesized by RAFT polymerization and postpolymerization modification. The amphiphilic polymers can act as detergents in both the miniemulsion polymerization of styrene and the miniemulsion process in combination with solvent evaporation, which was applied to polystyrene and polylactide. Under optimized conditions, monodisperse colloids can be prepared. The most promising results could be obtained by using the…

Polymers and PlasticsPolymersPolyestersDispersityBioengineeringBiocompatible MaterialsPolymerizationBiomaterialschemistry.chemical_compoundSurface-Active AgentsPolymer chemistryAmphiphileMaterials ChemistryCopolymerMethacrylamideHumansReversible addition−fragmentation chain-transfer polymerizationColloidsMicroscopy ConfocalChemistryMiniemulsionPolymerizationMethacrylatesNanoparticlesPolystyreneHydrophobic and Hydrophilic InteractionsHeLa CellsBiomacromolecules
researchProduct

Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics

2018

Abstract Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus , Klebsiella pneumoniae or Enterococcus faecalis . Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentia…

ChemieMedizinBiophysicsBioengineeringMicrobial Sensitivity Tests02 engineering and technologymedicine.disease_causeEnterococcus faecalisMicrobiologyBiomaterials03 medical and health sciencesAntibiotic resistanceListeria monocytogenesDrug Resistance Multiple BacterialEscherichia colimedicine030304 developmental biologychemistry.chemical_classification0303 health sciencesMicrobial ViabilitybiologyBiomolecule021001 nanoscience & nanotechnologybiology.organism_classificationAnti-Bacterial AgentschemistryMechanics of MaterialsStaphylococcus aureusCeramics and CompositesNanoparticlesNanomedicineAdsorption0210 nano-technologyAntibacterial activityBacteriaBiomaterials
researchProduct

Macromol. Rapid Commun. 17/2010

2010

Polymers and PlasticsOrganic ChemistryMaterials ChemistryMacromolecular Rapid Communications
researchProduct

Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers.

2018

In protein or peptide chemistry, thiols are frequently chosen as a chemical entity for chemoselective modification reactions. Although it is a well-established methodology to address cysteines and homocysteines in aqueous media to form S-C bonds, possibilities for the chemoselective formation of asymmetric disulfides have been less approached. Focusing on bioreversibility in conjugation chemistry, the formation of disulfide bonds is highly desirable for the attachment of thiol-containing bioactive agents to proteins or in cross-linking reactions, because disulfide bonds can combine stability in blood with degradability inside cells. In this Concept article, recent approaches in the field of…

Free RadicalsPolymersPeptide02 engineering and technologyConjugated system010402 general chemistryMicroscopy Atomic Force01 natural sciencesCatalysisPolymerizationReactivity (chemistry)DisulfidesSulfhydryl CompoundsProtecting groupSolid-Phase Synthesis Techniqueschemistry.chemical_classificationAqueous mediumOrganic ChemistryGeneral ChemistryPolymer021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryThiolQuantum TheorySelf-assembly0210 nano-technologyPeptidesChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Multistage rocket: integrational design of a prodrug-based siRNA delivery system with sequential release for enhanced antitumor efficacy.

2018

An integrated peptide-camptothecin prodrug (RSC) system was designed as a nano-sized multistage rocket for the efficient complexation and controlled sequential release of siRNA and anticancer drug under tumor-relevant reductive and esterase-enriched conditions, which facilitated the avoidance of negative interactions and maximized the synergistic effect.

ChemistryGeneral EngineeringGeneral Materials ScienceBioengineeringGeneral ChemistryDelivery systemProdrugAnticancer drugCombinatorial chemistryAtomic and Molecular Physics and OpticsMultistage rocketNanoscale advances
researchProduct

The Influence of Block Ionomer Microstructure on Polyplex Properties: Can Simulations Help to Understand Differences in Transfection Efficiency?

2017

Gene therapies enable therapeutic interventions at gene transcription and translation level, providing enormous potential to improve standards of care for multiple diseases. Nonviral transfection agents and in particular polyplexes based on block ionomers are-besides viral vectors and cationic lipid formulations-among the most promising systems for this purpose. Block ionomers combine a hydrophilic noncharged block, e.g., polyethylene glycol (PEG), with a hydrophilic cationic block. For efficient transfection, however, endosomolytic moieties, e.g., imidazoles, are additionally required to facilitate endosomal escape, which raises the general question how to distribute these functionalities …

Materials scienceCationic polymerization02 engineering and technologyGeneral ChemistryTransfectionPolyethylene glycol010402 general chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural sciences0104 chemical sciencesBiomaterialschemistry.chemical_compoundchemistryBlock (telecommunications)PEG ratioBiophysicsOrganic chemistryGeneral Materials Science0210 nano-technologyIonomerBiotechnologySmall
researchProduct

Poly(S-ethylsulfonyl-l-homocysteine): An α-Helical Polypeptide for Chemoselective Disulfide Formation

2018

Homocysteine and cysteine are the only natural occurring amino acids that are capable of disulfide bond formations in peptides and proteins. The chemoselective formation of asymmetric disulfide bonds, however, is chemically challenging and requires an activating group combining stability against hard nucleophiles, e.g., amines, with reactivity toward thiols and soft nucleophiles. In light of these considerations, we introduced the S-alkylsulfonyl cysteines in our previous work. Here, we present the synthesis and ring-opening polymerization of S-ethylsulfonyl-l-homocysteine N-carboxyanhydrides. We demonstrate that the polymerization leads to narrowly distributed polypeptides (Đ = 1.1–1.3) wi…

chemistry.chemical_classificationPolymers and Plastics010405 organic chemistryStereochemistryChemistryOrganic ChemistryPolymerDegree of polymerization010402 general chemistry01 natural sciences0104 chemical sciencesAmino acidInorganic ChemistryNucleophilePolymerizationMaterials ChemistryReactivity (chemistry)SolubilityCysteineMacromolecules
researchProduct

From Polymers to Functional Biomaterials.

2017

Polymers and PlasticsChemistryPolymersMEDLINEBioengineeringBiocompatible Materials02 engineering and technologyComputational biology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesModels Biological0104 chemical sciencesBiomaterialsDrug Delivery SystemsMaterials ChemistryAnimalsHumansNanoparticlesRNA Interference0210 nano-technologyBiotechnologyIntroductory Journal ArticleMacromolecular bioscience
researchProduct

Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes

2021

Core cross-linking of polymeric micelles has been demonstrated to contribute to enhanced stability that can improve the therapeutic efficacy. Photochemistry has the potential to provide spatial resolution and on-demand drug release. In this study, light-sensitive polypyridyl-ruthenium(II) complexes were combined with polypept(o)ides for photocleavable core cross-linked polymeric micelles. Block copolymers of polysarcosine-block-poly(glutamic acid) were synthesized by ring-opening N-carboxyanhydride polymerization and modified with aromatic nitrile-groups on the glutamic acid side chain. The modified copolymers self-assembled into micelles and were cross-linked by cis-diaquabis(2,2'-bipyridi…

NitrileCell SurvivalPolymersBiomedical Engineeringchemistry.chemical_elementMicelleChorioallantoic MembraneGel permeation chromatographychemistry.chemical_compoundMicroscopy Electron TransmissionCell Line TumorPolymer chemistrySide chainCopolymerAnimalsHumansGeneral Materials ScienceMicellesPhotolysisCryoelectron MicroscopyGeneral ChemistryGeneral MedicineRutheniumchemistryPolymerizationRuthenium CompoundsPeptidesChickensLinker
researchProduct

Back Cover: Macromol. Biosci. 5/2014

2014

BiomaterialsHydrologyPolymers and PlasticsMaterials ChemistryBioengineeringCover (algebra)GeologyBiotechnologyMacromolecular Bioscience
researchProduct

Evaluating chemical ligation techniques for the synthesis of block copolypeptides, polypeptoids and block copolypept(o)ides: a comparative study

2015

In this work, we describe the synthesis of block copolypeptides, polypeptoids and block copolypept(o)ides by chemical ligation techniques. Polysarcosine (PSar), poly(N-e-trifluoroacetyl-L-lysine) (PLys(TFA)) and poly(γ-benzyl-L-glutamate) (PGlu(OBzl)) homopolymers of different polarities and end group functionalities but with similar average degrees of polymerization (Xn = 50 and 100) could be obtained by ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) and postpolymerization modification reactions. In the next step, these polymers were applied to copper(I)-catalyzed azide–alkyne coupling (CuAAC), strain-promoted azide–alkyne coupling (SPAAC) and native chemical l…

chemistry.chemical_classificationPolymers and PlasticsOrganic ChemistryBioengineeringPolymerNative chemical ligationBiochemistryCombinatorial chemistryRing-opening polymerizationchemistry.chemical_compoundEnd-groupPolymerizationchemistryPeptide synthesisChemical ligationLigationPolymer Chemistry
researchProduct

From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates

2008

This paper describes the synthesis of functional amphiphilic poly( N-(2-hydroxypropyl) methacrylamide)-block-poly(lauryl methacrylate) copolymers by RAFT polymerization via the intermediate step of activated ester block copolymers (pentafluoro-phenyl methacrylate). Block copolymers with molecular weights from 12000-28000 g/mol and PDIs of about 1.2 have been obtained. The amphiphilic diblock copolymers form stable super structures (nanoaggregates) by self-organization in aqueous solution. The diameters of these particles are between 100 and 200 nm and depend directly on the molecular weight of the block copolymer. Furthermore, we investigated the impact of these nanoaggregates on cell viabi…

Hydrodynamic radiusPolymers and PlasticsCell SurvivalPolymersRadical polymerizationBiocompatible MaterialsBioengineeringMethacrylateCell LineBiomaterialschemistry.chemical_compoundDogsCell MovementMaterials TestingPolymer chemistryAmphiphileMaterials ChemistryCopolymerAnimalsMethacrylamideReversible addition−fragmentation chain-transfer polymerizationCell ShapeLauric AcidsChain transferMolecular WeightchemistryMethacrylatesNanoparticlesBiomacromolecules
researchProduct

Growth of fibrous aggregates of silica nanoparticles: Fibre growth by mimicking the biogenic silica patterning processes

2009

We describe the self-assembly of discrete SiO2 nanofibers via grafting of silicatein side chains to a polymer backbone. The covalent binding of silicatein to the backbone of the polymer is based on the affinity of the nitrilotriacetic acid (NTA) side chain, which serves as a ligand for the immobilization of His-tagged silicatein. The surface charge and the bulkiness of the protein moieties prevent the entropically favoured coil formation of the polymer and force it to adopt an open chain structure after hydrolysis of the silica precursors. The probes were characterized by scanning force microscopy (SFM) and optical light microscopy. Surface complexation of the resulting silica nanoparticles…

chemistry.chemical_classificationLigandNitrilotriacetic acidGeneral ChemistryPolymerCondensed Matter Physicschemistry.chemical_compoundchemistryChemical engineeringNanofiberPolymer chemistryMicroscopySide chainSurface chargeHigh-resolution transmission electron microscopySoft Matter
researchProduct

Immunomodulatory Therapy of Inflammatory Liver Disease Using Selectin-Binding Glycopolymers

2017

Immunotherapies have the potential to significantly advance treatment of inflammatory disease and cancer, which are in large part driven by immune cells. Selectins control the first step in immune cell adhesion and extravasation, thereby guiding leukocyte trafficking to tissue lesions. We analyzed four different highly specific selectin-binding glycopolymers, based on linear poly(2-hydroxypropyl)-methacrylamide (PHPMA) polymers. These glycopolymers contain either the tetrasaccharide sialyl-LewisX (SLeX) or the individual carbohydrates fucose, galactose, and sialic acids mimicking the complex SLeX binding motive. The glycopolymers strongly bind to primary human macrophages, without activatin…

0301 basic medicinemedicine.medical_treatmentGeneral Physics and Astronomy02 engineering and technologyFucoseImmunomodulationMice03 medical and health scienceschemistry.chemical_compoundImmune systemPolysaccharidesmedicineAnimalsHumansGeneral Materials ScienceCell adhesionCells CulturedInflammationBinding SitesbiologyChemistryLiver DiseasesGeneral EngineeringImmunotherapy021001 nanoscience & nanotechnologyDynamic Light ScatteringExtravasationIn vitro3. Good healthMice Inbred C57BLDisease Models Animal030104 developmental biologyBiochemistryConcanavalin ASelectinsbiology.proteinCancer researchCytokines0210 nano-technologySelectinACS Nano
researchProduct

Pathogen-Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells

2009

Here, design of the first pathogen-mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced …

PhosphoramiditeMaterials scienceOligonucleotideNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsRhodaminechemistry.chemical_compoundchemistryCancer cellElectrochemistryBiophysicsSurface modification0210 nano-technologyDrug carrierBiosensorAdvanced Functional Materials
researchProduct

A controlled and versatile NCA polymerization method for the synthesis of polypeptides

2013

A versatile and simple methodology for the preparation of well-defined polyglutamate nanocarriers is described. For the first time ammonium salts with non-nucleophilic tetrafluoroborate anions are used as initiators for the ring opening polymerization of alpha-N-carboxyanhydrides (NCAs) allowing a multigram scale polyglutamate synthesis with defined molecular weight (up to 800 units), low polydispersity (<1.2), controlled chain end functionality and adequate stereoselectivity and absence of any trace of toxic impurity to allow biomedical applications.

TetrafluoroboratePolymers and PlasticsPolyglutamateChemistryOrganic ChemistryDispersityBioengineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryRing-opening polymerization0104 chemical scienceschemistry.chemical_compoundPolymerizationOrganic chemistryStereoselectivityNanocarriers0210 nano-technology
researchProduct

Complexity and simplification in the development of nanomedicines.

2015

Materials scienceDrug Delivery SystemsNanomedicineBiomedical EngineeringMedicine (miscellaneous)NanomedicineAnimalsNanoparticlesGeneral Materials ScienceBioengineeringNanotechnologyDevelopmentNanomedicine (London, England)
researchProduct

Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides

2021

Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine-block-poly(S-ethylsulfonyl-dl-cysteine) (pSar-b-p(dl)Cys), enantiopure polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) (pSa…

Polymers and PlasticsPolymersChemistryBioengineeringAntiparallel (biochemistry)MicelleArticleProtein Structure SecondaryPolymerizationBiomaterialsCrystallographyEnantiopure drugPolymerizationAmphiphileMaterials ChemistryCopolymerSulfhydryl CompoundsSelf-assemblyProtein secondary structureMicellesBiomacromolecules
researchProduct

Investigation of α-amino acid N-carboxyanhydrides by X-ray diffraction for controlled ring-opening polymerization

2019

Abstract The need for a scalable synthesis of not sequence defined polypeptides as biomaterials is met by the ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). Even though this polymerization technique appears straight forward, it holds pitfalls in terms of reproducibility and overall control over the polymerization conditions, which depends, beside choice of solvent or initiator, significantly on reagent purity. In addition, the synthesis of monomers can lead to the formation of racemic amino acids. Thus, in this work, we describe the benefits of highly pure monomers in order to control nucleophilic ring-opening polymerization NCAs. Hereby, monomer purity is investiga…

chemistry.chemical_classificationOrganic ChemistrySequence (biology)BiochemistryRing-opening polymerizationAmino acidchemistry.chemical_compoundMonomerchemistryNucleophilePolymerizationReagentDrug DiscoveryX-ray crystallographyPolymer chemistryTetrahedron Letters
researchProduct

Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars

2017

tar-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerizat…

Hydrodynamic radiusPolymers and PlasticsPolymersBioengineeringBiodegradable Plastics02 engineering and technologyDegree of polymerization010402 general chemistry01 natural sciencesRing-opening polymerizationBiomaterialsDrug Delivery SystemsDynamic light scatteringNucleophilePolymer chemistryMaterials ChemistryCopolymerHumansAmino Acidschemistry.chemical_classificationPolymer021001 nanoscience & nanotechnologyGlutathione0104 chemical sciencesAmino acidHEK293 CellschemistryNanoparticlesPeptides0210 nano-technologyHeLa CellsBiotechnologyMacromolecular Bioscience
researchProduct

Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery

2020

Polysarcosine (pSar) is a polypeptoid based on the endogenous amino acid sarcosine (N-methylated glycine), which has previously shown potent stealth properties. Here, lipid nanoparticles (LNPs) for therapeutic application of messenger RNA were assembled using pSarcosinylated lipids as a tool for particle engineering. Using pSar lipids with different polymeric chain lengths and molar fractions enabled the control of the physicochemical characteristics of the LNPs, such as particle size, morphology, and internal structure. In combination with a suited ionizable lipid, LNPs were assembled, which displayed high RNA transfection potency with an improved safety profile after intravenous injection…

chemistry.chemical_classificationMessenger RNAchemistry.chemical_compoundSarcosineBiochemistryChemistryGlycineDrug deliveryNanoparticleGeneral Materials ScienceEndogenyGene deliveryAmino acid
researchProduct

Delivery of siHIF‐1α to Reconstruct Tumor Normoxic Microenvironment for Effective Chemotherapeutic and Photodynamic Anticancer Treatments

2021

The tumor hypoxic microenvironment not only induces genetic and epigenetic changes in tumor cells, immature vessels formation for oxygen demand, but also compromises the efficiency of therapeutic interventions. On the other hand, conventional therapeutic approaches which kill tumor cells or destroy tumor blood vessels to block nutrition and oxygen supply usually facilitate even harsher microenvironment. Thus, simultaneously relieving the strained response of tumor cells and blood vessels represents a promising strategy to reverse the adverse tumor hypoxic microenvironment. In the present study, an integrated amphiphilic system (RSCD) is designed based on Angiotensin II receptor blocker cand…

medicine.medical_treatmentPhotodynamic therapy02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsNeovascularizationchemistry.chemical_compoundIn vivoCell Line TumorTumor MicroenvironmentmedicineHumansGeneral Materials ScienceRNA Small InterferingHypoxiaChemotherapyTumor microenvironmentGeneral ChemistryHypoxia-Inducible Factor 1 alpha Subunit021001 nanoscience & nanotechnologyCell HypoxiaIn vitro0104 chemical sciencesOxygenchemistryDrug deliveryCancer researchmedicine.symptomGrowth inhibition0210 nano-technologyBiotechnologySmall
researchProduct

Core-shell functionalized zirconium-pemetrexed coordination nanoparticles as carriers with a high drug content

2019

Selected drug molecules with Lewis base functions can be assembled into coordinative nanoparticles (NPs) by linking them with suitable metal ions. Such nanomaterials exhibit a high material economy due to high drug contents and minor amounts of inactive additives. The antifolate pemetrexed (PMX) which is used for the treatment of lung cancers contains two carboxy functions that are able to undergo coordinative binding of metal ions. This study presents the development of a multilayer PMX NP system where each layer serves a distinct purpose. The metal-drug NP core is assembled in a bottom-up approach by coordinative interactions between zirconium (IV) ions and PMX molecules. Since the NP cor…

PharmacologyChemistryMetal ions in aqueous solutionBiochemistry (medical)Pharmaceutical ScienceMedicine (miscellaneous)NanoparticleCombinatorial chemistryNanomaterialsDrug deliveryClick chemistryMoleculePharmacology (medical)Lewis acids and basesNanocarriersGenetics (clinical)
researchProduct

Orthogonally reactive amino acids and end groups in NCA polymerization

2017

Functional amino acids whose reactivity is compatible with the polymerization of α-amino acid-N-carboxyanhydrides (NCAs) have received a lot of attention in recent years. The appeal of these reactive monomers lies in the fact that the resulting polymers can be easily modified in one controlled post-polymerization step, leading to a variety of polypeptidic materials like helical non-natural polycations or glycopeptides. This review highlights recent developments in the field and focuses on the different reactive groups like alkynes, alkenes, azides, chlorides and S-alkylsulfonyls. Furthermore, the modifications after polymerization are discussed, pointing out advantages and challenges. Besid…

chemistry.chemical_classificationPolymers and PlasticsChemistryOrganic ChemistryNew materialsBioengineering02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistry0104 chemical sciencesAmino acidchemistry.chemical_compoundMonomerPolymerizationSide chainOrganic chemistryReactivity (chemistry)0210 nano-technologyHybrid materialPolymer Chemistry
researchProduct

The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells

2009

A series of well-defined, fluorescently labelled homopolymers, random and block copolymers based on N-(2-hydroxypropyl)-methacrylamide were prepared by reversible addition–fragmentation chain transfer polymerization (RAFT polymerization). The polydispersity indexes for all polymers were in the range of 1.2–1.3 and the number average of the molar mass (Mn) for each polymer was set to be in the range of 15–30 kDa. The cellular uptake of these polymers was investigated in the human multi-drug resistant breast adenocarcinoma cell line MCF7/ADR. The uptake greatly depended on the polymer molecular mass and structure. Specifically, smaller polymers (approx. 15 kDa) were taken up by the cells at m…

chemistry.chemical_classificationMolar massMaterials scienceDispersityBiophysicsBioengineeringChain transferPolymerBiomaterialschemistry.chemical_compoundchemistryPolymerizationMechanics of MaterialsPolymer chemistryCeramics and CompositesCopolymerReversible addition−fragmentation chain-transfer polymerizationN-(2-Hydroxypropyl) methacrylamideBiomaterials
researchProduct

Macromol. Rapid Commun. 9-10/2011

2011

Polymers and PlasticsOrganic ChemistryMaterials ChemistryMacromolecular Rapid Communications
researchProduct

From Polymers to Nanomedicines: New Materials for Future Vaccines

2013

Nanomedicine is the medical application of nanotechnology and therefore covers various kinds of nanoparticles. In this chapter, we would like to provide a brief introduction and overview of nanoparticles for the modulation of the immune system. In general, these nano-sized objects can be inorganic colloids, organic colloids (synthesized by emulsion polymerization or mini-/nanoemulsion techniques), polymeric aggregates (micelles or polymersomes), core cross-linked aggregates (nanohydrogels, crosslinked micelles, or polyplexes), multifunctional polymer coils, dendritic polymers or perfect dendrimers. A special focus is set on polymeric materials, because the chemical composition of the partic…

chemistry.chemical_classificationParticle aggregationMaterials sciencechemistryDendrimerPolymersometechnology industry and agricultureParticleNanomedicineEmulsion polymerizationNanoparticleNanotechnologyPolymer
researchProduct

Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin.

2021

Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline fromiin silico/ito analytical andiin vitro/ito overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion cha…

General Physics and AstronomyAntineoplastic Agentschemistry.chemical_compoundIn vivoCell Line TumorNeoplasmsmedicineHumansGeneral Materials ScienceDoxorubicinProspective StudiesPrecision MedicineCisplatinbusiness.industryHead and neck cancerGeneral EngineeringMembrane Proteinsmedicine.diseasePaclitaxelchemistryDrug Resistance NeoplasmCancer cellCancer researchNanomedicineNanoparticlesPersonalized medicineCisplatinbusinessmedicine.drugACS nano
researchProduct

Racemic S ‐(ethylsulfonyl)‐ dl ‐cysteine N ‐Carboxyanhydrides Improve Chain Lengths and Monomer Conversion for β‐Sheet‐Controlled Ring‐Opening Polyme…

2020

The secondary structure formation of polypeptides not only governs folding and solution self-assembly but also affects the nucleophilic ring-opening polymerization of alpha-amino acid-N-carboxyanhydrides (NCAs). Whereby helical structures are known to enhance polymerization rates, beta-sheet-like assemblies reduce the propagation rate or may even terminate chain growth by precipitation or gelation. To overcome these unfavorable properties, racemic mixtures of NCAs can be applied. In this work, racemicS-(ethylsulfonyl)-dl-cysteine NCA is investigated for the synthesis of polypeptides, diblock and triblock copolypept(o)ides. In contrast to the polymerization of stereoregularS-(ethylsulfonyl)-…

Polymers and PlasticsChemistryOrganic ChemistryBeta sheet02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesRing-opening polymerizationPolymerization0104 chemical scienceschemistry.chemical_compoundMonomerReaction rate constantPolymerizationNucleophileYield (chemistry)Polymer chemistryMaterials ChemistryCopolymerProtein Conformation beta-StrandCysteineAmino AcidsPeptides0210 nano-technologyMacromolecular Rapid Communications
researchProduct

Nanoparticles and the immune system: challenges and opportunities

2016

Chemistrymedicine.medical_treatmentBiomedical EngineeringMedicine (miscellaneous)Bioengineering02 engineering and technologyDevelopment010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesImmune toleranceImmune systemCancer immunotherapyImmune SystemNeoplasmsImmunologyImmune TolerancemedicineNanoparticlesGeneral Materials ScienceImmunotherapy0210 nano-technologyNanomedicine
researchProduct

Quo vadis nanomedicine?

2015

The interdisciplinary workshop ‘Quo Vadis Nanomedicine?’ was held on 10–11 April 2014 at the University of Exeter (Exeter, UK), coorganized by the Schumpeter-Research Group ‘Innovations in Nanomedicine’, funded by the VolkswagenStiftung at Exeter University, and the Sonderforschungsbereich (STB; collaborative research centre) 1066 ‘Nanodimensional Polymer Therapeutics for Tumor Therapy’, funded by the German Research Council (DFG) at the Johannes Gutenberg-University (Mainz, Germany). This international workshop brought together scientists, philosophers and social scientists in order to reflect, discuss and rethink the practices, concepts, methods, models and metaphors, as well as the medi…

business.industryBiomedical EngineeringMedicine (miscellaneous)Library scienceTumor therapyBioengineeringNanotechnologyDevelopmentlanguage.human_languageGermanNanomedicineResearch councilResearch centreGermanylanguageMedicineGeneral Materials SciencebusinessNanomedicine (London, England)
researchProduct

Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications

2018

Although the first polysarcosine (pSar) synthesis by Wesseley et al. was reported almost a century ago, it was only recently that pSar gained broader attention and is considered a potential alternative of poly(ethylene glycol) (PEG). In contrast to polyethers, such as PEG, pSar is a polypeptoid based on the amino acid sarcosine, i.e. N-methylated glycine. As a polymer, pSar combines PEG-like properties, e.g., excellent solubility in water, protein resistance, low cellular toxicity and a non-immunogenic character, while being based on endogenous material. Sarcosine can be obtained in a simple one-step reaction of bromoacetic acid and methylamine, easily transferred into the sarcosine N-(thio…

chemistry.chemical_classificationSarcosinePolymers and PlasticsOrganic Chemistry02 engineering and technologySurfaces and InterfacesPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCombinatorial chemistry0104 chemical sciencesPolyesterchemistry.chemical_compoundchemistryBromoacetic acidPolymerizationMaterials ChemistryCeramics and CompositesCopolymerSelf-assembly0210 nano-technologyEthylene glycol
researchProduct

A head-to-head comparison of poly(sarcosine) and poly(ethylene glycol) in peptidic, amphiphilic block copolymers

2015

Abstract In this work we compare chemical and solution properties, like critical aggregate concentrations (CAC) and hydrodynamic radii of aggregates based on either poly(ethylene glycol) or poly(sarcosine) block copolymers in aqueous solution. The amine functionalized, hydrophilic polymers poly(sarcosine) (degree of polymerization, X n  = 100 and 200) and PEG (X n  = 121 and 242) of comparable hydrodynamic volume were used to initiate the ring opening polymerization of α-amino acid- N -carboxyanhydrides based on ɣ-benzyl- l -glutamate (Glu(OBn)) or e-carboxybenzyl- l -lysine (Lys(Z)). The second, hydrophobic block was kept at a degree of polymerization of 25 and 50 to enable a direct compar…

SarcosineAqueous solutionMaterials sciencePolymers and PlasticsOrganic ChemistryDegree of polymerizationRing-opening polymerizationMicellechemistry.chemical_compoundchemistryAmphiphilePolymer chemistryMaterials ChemistryCopolymerEthylene glycolPolymer
researchProduct

Polymere Selectinliganden als komplexe Glykomimetika: von Selectinbindung bis zur Modifizierung der Makrophagenmigration

2016

Bei neuartigen polymeren Inhibitoren der Zelladhasion wird das Selectin-bindende Tetrasaccharid Sialyl-LewisX (SLeX) multivalent auf einem biokompatiblen Poly(2-hydroxypropyl)methacrylamid (PHPMA) entweder alleine (P1) oder in Kombination mit O-sulfatierten Tyramin-Seitenketten (P2) prasentiert. Zum Vergleich wurden entsprechende polymere Glykomimetika hergestellt, in denen die entscheidenden Fucose-, Galactose und Sialinsaure-Seitenketten statistisch verteilt im PHPMA-Ruckgrat (P3 oder P4 (O-sulfatiertes Tyramin) vorliegen. Alle Polymere haben den gleichen Polymerisationsgrad, da sie vom selben Ausgangspolymer abstammen. Assays fur die Bindung an Selectine, aktivierte Endothelzellen und Ma…

010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Interactions Between Blood Proteins and Nanoparticles Investigated Using Molecular Dynamics Simulations

2019

In the development of new therapeutic agents based on nanoparticles it is of fundamental importance understanding how these substances interact with the underlying biological milieu. Our research is focussed on simulating in silico these interactions using accurate atomistic models, and gather from these information general pictures and simplified models of the underlying phenomena. Here we report results about the interactions of blood proteins with promising hydrophilic polymers used for the coating of therapeutic nanoparticles, about the salt dependent behavior of one of these polymers (poly-(ethylene glycol)) and about the interactions of blood proteins with silica, one of the most used…

chemistry.chemical_classificationIn silicoNanoparticleSalt (chemistry)Polymerengineering.materialBlood proteinschemistry.chemical_compoundMolecular dynamicschemistryCoatingChemical engineeringengineeringEthylene glycol
researchProduct

Synthesis of Amphiphilic Block Copolypept(o)ides by Bifunctional Initiators: Making PeptoMicelles Redox Sensitive.

2015

In this work, the synthesis of polypeptoid-block-polypeptide copolymers (block copolypept(o)ides) based on bifunctional initiators is described, which introduces a distinct chemical entity at the connection between both blocks. With a view towards redox-sensitive block copolypept(o)ides, a cystamine-based initiator was used to synthesize polysarcosine macroinitiators with degrees of polymerization (Xn) between 100 and 200 displaying monomodal molecular weight distributions and dispersities (Đ) around 1.1 as determined by size exclusion chromatography. Block copolypept(o)ides with a poly(γ-t-butyloxycarbonyl-L-glutamate) (PGlu(O(t) Bu)) block (Xn = 25 or 50) were synthesized by controlled N-…

Materials sciencePolymers and PlasticsOrganic ChemistrySize-exclusion chromatographyMicellechemistry.chemical_compoundchemistryPolymerizationCystamineBlock (telecommunications)Polymer chemistryAmphiphileMaterials ChemistryCopolymerBifunctionalPeptidesMicellesMacromolecular rapid communications
researchProduct

Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers.

2016

Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth”) liposomes. While poly-(ethylene glycol) (PEG) can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar) is based on the endogenous amino acid sarcosine (N-methylated glycine), but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end g…

polysarcosine; polypeptoids; surfactants; lipids; NCA polymerization; PSarcosinylated lipidsPolymers and PlasticsDispersity02 engineering and technologypolysarcosineDegree of polymerization010402 general chemistry01 natural sciencesMicelleRing-opening polymerizationLangmuir–Blodgett filmArticlesurfactantslipidslcsh:QD241-441PSarcosinylated lipidslcsh:Organic chemistryMonolayerPolymer chemistryOrganic chemistrypolypeptoidsNCA polymerizationChemistryGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesEnd-groupCritical micelle concentrationlipids (amino acids peptides and proteins)0210 nano-technologyPolymers
researchProduct

Poly-sarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations

2018

Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the…

SarcosineBiocompatibilityPoly-peptoidlcsh:BiotechnologyBiophysicsFOS: Physical sciencesNanoparticle02 engineering and technologyCondensed Matter - Soft Condensed MatterProtein aggregation010402 general chemistry01 natural sciencesBiochemistryNanoparticle protein coronachemistry.chemical_compoundMolecular dynamicsAdsorptionStructural Biologylcsh:TP248.13-248.65GeneticsmedicinePhysics - Biological Physicschemistry.chemical_classificationBiomolecules (q-bio.BM)MD simulationPolymer021001 nanoscience & nanotechnologyHuman serum albuminPEG0104 chemical sciencesComputer Science ApplicationsQuantitative Biology - BiomoleculeschemistryChemical engineeringBiological Physics (physics.bio-ph)FOS: Biological sciencesSoft Condensed Matter (cond-mat.soft)Poly-sarcosine0210 nano-technologyResearch ArticleBiotechnologymedicine.drug
researchProduct

Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures.

2017

Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple y…

NanostructureMaterials sciencePolarity (physics)Nanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMicelleCatalysis0104 chemical sciencesAmphiphileCopolymerParticleSelf-assembly0210 nano-technologyBlock (data storage)Angewandte Chemie (International ed. in English)
researchProduct

18F-Radiolabeling, Preliminary Evaluation of Folate-pHPMA Conjugates via PET

2014

The synthesis of a 10.5 kDa and a 52.5 kDa polymer, based on pHPMA functionalized with tyramine for (18) F-labeling and a folate derivative as targeting moiety, is reported. FCS studies are conducted using Oregon Green-labeled conjugates. No aggregation is observed for the 10.5 kDa conjugate, but strong aggregation for the 52.5 kDa conjugate. In vivo studies are conducted using Walker-256 mammary carcinoma model to determine body distribution as function of size and especially targeting unit. These in vivo studies show a higher short time (2 h) accumulation for both conjugates in the tumor than for untargeted pHPMA, confirmed by blockade studies. The 10.5 kDa polymer accumulates with 0.46% …

Polymers and PlasticsBioengineeringTyramineWalker 256 carcinomaBiomaterialsMammary carcinomachemistry.chemical_compoundchemistryBiochemistryIn vivoMaterials ChemistryDistribution (pharmacology)MoietyBiotechnologyConjugateMacromolecular Bioscience
researchProduct

HPMA Based Amphiphilic Copolymers Mediate Central Nervous Effects of Domperidone

2011

In this study we give evidence that domperidone encapsulated into amphiphilic p(HPMA)-co-p(laurylmethacrylate) (LMA) copolymer aggregates is able to cross the blood-brain barrier, since it affected motor behaviour in animals, which is a sensitive measure for CNS actions. Carefully designed copolymers based on the clinically approved p(HPMA) were selected and synthesized by a combination of controlled radical polymerization and post-polymerization modification. The hydrodynamic radii (R(h) ) of amphiphilic p(HPMA)-co-p(LMA) alone and loaded with domperidone were determined by fluorescence correlation spectroscopy.

Materials sciencePolymers and PlasticsStereochemistryOrganic ChemistryRadical polymerizationMotor behaviourDomperidoneAmphiphileMaterials ChemistrymedicineCopolymerBiophysicsCns activitymedicine.drugAmphiphilic copolymerMacromolecular Rapid Communications
researchProduct

Tuning the pH-Switch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH

2017

The preparation of histidine enriched dendritic peptide amphiphiles and their self-assembly into multicomponent pH-switchable supramolecular polymers is reported. Alternating histidine and phenylalanine peptide synthons allow the assembly/disassembly to be adjusted in a physiologically relevant range of pH 5.3-6.0. Coassembly of monomers equipped with dendritic tetraethylene glycol chains with monomers bearing peripheral primary amine groups leads to nanorods with a tunable cationic surface charge density. These surface functional supramolecular polycations are able to reversibly bind short interfering RNA (siRNA). The nanorod-like supramolecular polymers, their complexation with siRNA, and…

DendrimersCircular dichroismPolymers and PlasticsStereochemistryPhenylalanineStatic ElectricitySupramolecular chemistryBioengineeringPeptide02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsBiomaterialschemistry.chemical_compoundCationsAmphiphileMaterials ChemistryHistidineRNA Small Interferingchemistry.chemical_classificationDrug CarriersNanotubesGene Transfer Techniquestechnology industry and agricultureCationic polymerizationHydrogen-Ion Concentration021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesSupramolecular polymersMonomerchemistrySelf-assemblyPeptides0210 nano-technologyBiotechnology
researchProduct

Synthesis and In Vitro Evaluation of Defined HPMA Folate Conjugates: Influence of Aggregation on Folate Receptor (FR) Mediated Cellular Uptake

2010

In this article we report the synthesis and in vitro evaluation of well-defined, folate functionalized and fluorescently labeled polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA). The polymers were prepared applying the RAFT polymerization method as well as the reactive ester approach. The molecular weights of the polymers synthesized were around 15 and 30 kDa. The total content of conjugated folate varied from 0, 5, and 10 mol %. The cellular uptake of these polymers was investigated in the folate receptor (FR)-positive human nasopharyngeal epidermal carcinoma (KB-3-1) and FR-negative human lung epithelial carcinoma (A549) cancer cell lines. In FR-positive…

Lung NeoplasmsMagnetic Resonance SpectroscopyPolymers and PlasticsCell SurvivalPolymersCellBioengineeringIn Vitro TechniquesEndocytosisPolymerizationBiomaterialsFolic AcidCell Line TumorMaterials ChemistrymedicineFluorescence microscopeHumansFolate Receptor 1CytotoxicityMolecular massChemistryColocalizationNasopharyngeal NeoplasmsIn vitromedicine.anatomical_structureBiochemistryFolate receptorMethacrylates
researchProduct

Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential.

2019

RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in s…

Small RNAGene knockdownDrug CarriersPolymers and PlasticsChemistryCationic polymerizationBioengineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesIn vitro0104 chemical sciencesBiomaterialschemistry.chemical_compoundCytosolRNA interferencePolylysineMaterials ChemistryBiophysicsHistidineRNA Small Interfering0210 nano-technologyHistidineBiotechnologyMacromolecular bioscience
researchProduct

Site-specific DBCO modification of DEC205 antibody for polymer conjugation

2018

The design of multifunctional polymer-based vectors, forming pDNA vaccines, offers great potential in cancer immune therapy. The transfection of dendritic immune cells (DCs) with tumour antigen-encoding pDNA leads to an activation of the immune system to combat tumour cells. In this work, we investigated the chemical attachment of DEC205 antibodies (aDEC205) as DC-targeting structures to polyplexes of P(Lys)-b-P(HPMA). The conjugation of a synthetic block copolymer and a biomacromolecule with various functionalities (aDEC205) requires bioorthogonal techniques to avoid side reactions. Click chemistry and in particular the strain-promoted alkyne-azide cycloaddition (SPAAC) can provide the req…

540 Chemistry and allied sciencesRAFT polymerizationpDNA polyplexvaccinationbioorthogonal chemistryArticleDEC205 antibodylcsh:QD241-441strain-promoted alkyne-azide cycloaddition (SPAAC)lcsh:Organic chemistry540 Chemiecancer immune therapydendritic cells (DCs)targeting
researchProduct

CCDC 1874607: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3-methyl-13-oxazolidine-25-dione
researchProduct

CCDC 1874606: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

N-epsilon-t-butyloxycarbonyl-L-lysine N-carboxyanhydrideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1858028: Experimental Crystal Structure Determination

2018

Related Article: Christian Muhl, Olga Schäfer, Tobias Bauer, Hans-Joachim Räder, Matthias Barz|2018|Macromolecules|51|8188|doi:10.1021/acs.macromol.8b01442

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D CoordinatesS-[2-(25-dioxo-13-oxazolidin-4-yl)ethyl] ethanesulfonothioate
researchProduct

CCDC 1440862: Experimental Crystal Structure Determination

2017

Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-azaniumyl-3-((isopropylsulfonyl)sulfanyl)propanoate
researchProduct

CCDC 1976456: Experimental Crystal Structure Determination

2020

Related Article: Christian Muhl, Lydia Zengerling, Jonathan Groß, Paul Eckhardt, Till Opatz, Pol Besenius, Matthias Barz|2020|Polym.Chem.|11|6919|doi:10.1039/D0PY01055C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-methyl-4-[2-(methylsulfanyl)ethyl]-13-oxazolidine-25-dioneExperimental 3D Coordinates
researchProduct

CCDC 1858027: Experimental Crystal Structure Determination

2018

Related Article: Christian Muhl, Olga Schäfer, Tobias Bauer, Hans-Joachim Räder, Matthias Barz|2018|Macromolecules|51|8188|doi:10.1021/acs.macromol.8b01442

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersS-Ethylsulfonyl-L-homocysteineExperimental 3D Coordinates
researchProduct

CCDC 1440861: Experimental Crystal Structure Determination

2017

Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391

2-azaniumyl-3-((ethylsulfonyl)sulfanyl)propanoateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1874603: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyS-[(25-dioxo-13-oxazolidin-4-yl)methyl] ethanesulfonothioateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1874604: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyCrystal SystemS-[(25-dioxo-13-oxazolidin-4-yl)methyl] propane-2-sulfonothioateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1976455: Experimental Crystal Structure Determination

2020

Related Article: Christian Muhl, Lydia Zengerling, Jonathan Groß, Paul Eckhardt, Till Opatz, Pol Besenius, Matthias Barz|2020|Polym.Chem.|11|6919|doi:10.1039/D0PY01055C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters34-dimethyl-13-oxazolidine-25-dioneExperimental 3D Coordinates
researchProduct

CCDC 2002425: Experimental Crystal Structure Determination

2021

Related Article: Tobias Bauer, Christian Muhl, Dieter Schollmeyer, Matthias Barz|2020|Macromol.Rapid Commun.||2000470|doi:10.1002/marc.202000470

Space GroupCrystallographyS-[(25-dioxo-13-oxazolidin-4-yl)methyl] ethanesulfonothioateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct