0000000001207402

AUTHOR

Dmitry Budker

showing 194 related works from this author

Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance.

2020

We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<\!\!1$~$\mu$G) magnetic field using a \Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of \carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra. We also identify and observe the zero-field equivalent of a double-quantum transition in ${}^{13}$C$_2$-acetic acid, and show that such transitions are of use in spectral assignment. Two-dimensional spectroscopy further improves the high resolution attained in zero-field NMR since selection rules on the coherence-transfer pathways allow for the separation of otherwise overlappi…

Nuclear and High Energy PhysicsZero field NMRMagnetometerNuclear Magnetic Resonancephysics.chem-phBiophysicsFOS: Physical sciences010402 general chemistry01 natural sciencesBiochemistryMolecular physicsSpectral line030218 nuclear medicine & medical imagingIsotopomerslaw.invention03 medical and health sciences0302 clinical medicineEngineeringquant-phlawPhysics - Chemical PhysicsJ-Spectroscopy2D NMRSpectroscopyPhysicsChemical Physics (physics.chem-ph)Quantum PhysicsCorrelation spectroscopyZero (complex analysis)Zero-field NMRCondensed Matter PhysicsMultiple-quantum NMR3. Good health0104 chemical sciencesMagnetic fieldZULF NMRPhysical SciencesQuantum Physics (quant-ph)Two-dimensional nuclear magnetic resonance spectroscopy
researchProduct

Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond

2019

Nuclear spin ensembles in diamond are promising candidates for quantum sensing applications, including rotation sensing. Here we perform a characterization of the optically detected nuclear-spin transitions associated with the 14N nuclear spin within diamond nitrogen vacancy (NV) centers. We observe nuclear-spin-dependent fluorescence with the contrast of optically detected 14N nuclear Rabi oscillations comparable to that of the NV electron spin. Using Ramsey spectroscopy, we investigate the temperature and magnetic-field dependence of the nuclear spin transitions in the 77.5-420 K and 350-675 G range, respectively. The nuclear quadrupole coupling constant Q was found to vary with temperatu…

Quantum PhysicsMaterials scienceQuantum sensorNuclear TheoryFOS: Physical sciencesDiamondchemistry.chemical_elementengineering.material01 natural sciencesNitrogenMolecular physics010305 fluids & plasmas3. Good healthCharacterization (materials science)chemistryVacancy defect0103 physical sciencesengineeringddc:530Condensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Nuclear Experiment010306 general physics
researchProduct

Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study

2021

Physical review / B 103(3), 035307 (2021). doi:10.1103/PhysRevB.103.035307

PhysicsPhotoluminescenceSpinsBand gapCenter (category theory)Diamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics53001 natural sciences3. Good health0103 physical sciencesengineeringddc:530Atomic physics010306 general physics0210 nano-technologyNitrogen-vacancy centerGround stateSpin (physics)Den kondenserade materiens fysik
researchProduct

Quantitative measurements of non-covalent interactions with diamond based magnetic imaging

2018

We present a technique employing dielectrophoretic (DEP) manipulation of surface immobilized complexes integrated with a magnetic imaging platform based on nitrogen-vacancy (NV) centers in diamond for the quantitative measurements of non-covalent interactions. The interdigitated microelectrodes closely spaced to the functionalized surface of the diamond plate provide a wide range of applied DEP forces for noninvasive manipulation of various molecular interactions, while the NV layer under the surface reports the unbinding dynamics. Given that biological samples do not present significant magnetic background and do not screen magnetic fields, our approach has many advantages over the fluores…

chemistry.chemical_classificationMaterials sciencePhysics and Astronomy (miscellaneous)DiamondNanotechnology02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesSignalFluorescenceMagnetic fieldMicroelectrodeElectrophoresischemistry0103 physical sciencesengineeringNon-covalent interactions010306 general physics0210 nano-technologyhuman activitiesImage resolutionApplied Physics Letters
researchProduct

Fast apparent oscillations of fundamental constants

2019

Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant $\alpha$ and the electron to proton mass ratio $\mu=m_e/m_p$. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when we allow for fast variations of the constants, where "fast" is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevan…

Scale (ratio)Atomic Physics (physics.atom-ph)530 PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyAtomic spectroscopyElectron53001 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsHyperfine structurePhysicsHigh Energy Physics::PhenomenologyAtoms in moleculesFine-structure constantSense (electronics)021001 nanoscience & nanotechnology530 PhysikHigh Energy Physics - PhenomenologyAtomic physics0210 nano-technologyDimensionless quantity
researchProduct

Isotopic variation of parity violation in atomic ytterbium: Description of the measurement method and analysis of systematic effects

2019

We present a detailed description of experimental studies of the parity violation effect in an isotopic chain of atomic ytterbium (Yb), whose results were reported in a recent paper [Antypas et al., Nat. Phys. 15, 120 (2019)]. We discuss the principle of these measurements, made on the Yb $6{s}^{2} {}^{1}{S}_{0}\ensuremath{\rightarrow}5d6s ^{3}D_{1}$ optical transition at 408 nm, describe the experimental apparatus, and give a detailed account of our studies of systematic effects in the experiment. Our results offer a direct observation of the isotopic variation in the atomic parity violation effect, a variation which is in agreement with the prediction of the standard model. These measurem…

YtterbiumPhysicsMeasurement methodchemistryOptical transitionDirect observationchemistry.chemical_elementParity (physics)Atomic physicsBosonPhysical Review A
researchProduct

Searching for Earth/Solar axion halos

2020

We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyCP violationBeyond Standard Modellcsh:QC770-798CP violationHaloEarth (classical element)Astrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)Journal of High Energy Physics
researchProduct

Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer

2019

Physical review letters 122(19), 191302 (2019). doi:10.1103/PhysRevLett.122.191302

PhysicsParticle physicsField (physics)SpinsDark matterGeneral Physics and AstronomyOrder (ring theory)FOS: Physical sciencesCoupling (probability)01 natural sciences530High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNucleonSpin (physics)Axion
researchProduct

Absolute optical chiral analysis using cavity-enhanced polarimetry

2021

Chiral analysis is central for scientific advancement in the fields of chemistry, biology, and medicine. It is also indispensable in the development and quality control of chiral compounds in the chemical and pharmaceutical industries. Current methods for chiral analysis, namely optical polarimetry, mass spectrometry and nuclear magnetic resonance, are either insensitive, have low time resolution, or require preparation steps, and so are unsuited for monitoring chiral dynamics within complex environments: the current need of both research and industry. Here we present the concept of absolute optical chiral analysis, as enabled by cavity-enhanced polarimetry, which allows for accurate unambi…

Chiral column chromatographyChemical mixturesPolarimetryAbsolute (perfumery)NanotechnologyTime resolutionEnantiomerMass spectrometry3. Good healthCharacterization (materials science)
researchProduct

Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon

2019

International audience; We propose a hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be less than 1 pT/ √ Hz. Unlike usual NV center infrared magnetometry, this method would not require an external f…

Materials scienceAbsorption spectroscopyMagnetometerInfraredPhysics::Optics02 engineering and technologyengineering.material01 natural scienceslaw.invention010309 opticsOptics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesPhysics::Atomic PhysicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFar-infrared laserDiamond021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and Optics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessFabry–Pérot interferometer
researchProduct

On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics

2016

We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600–800[Formula: see text]Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18[Formula: see text]W of transmitted power), [Formula: see text] photons s[Formula: see text] sr[Formula: see text] atom[Formula: see text] W[Formula: see text] m2 when circular polarization was employed and [Formula: see text] photons s[Formula: see text] sr[Formula: see text] atom[Formula: see text] W[Formula: see text] m2 with linear polarization. No impro…

PhysicsLinear polarizationbusiness.industryAstronomy and AstrophysicsLaser01 natural scienceslaw.invention010309 opticsLaser guide starOpticsAngular diameterlawDuty cycle0103 physical sciencesLaser power scalingAdaptive opticsbusiness010303 astronomy & astrophysicsInstrumentationCircular polarizationJournal of Astronomical Instrumentation
researchProduct

Direct limits on the interaction of antiprotons with axion-like dark matter

2019

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…

PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)MultidisciplinaryAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsDark matterFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsStandard ModelBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryOrders of magnitude (time)AntiprotonAntimatter0103 physical sciencesPräzisionsexperimente - Abteilung Blaum010306 general physicsAxionParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

2018

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is …

Physics - Instrumentation and DetectorsMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences7. Clean energylaw.inventionPhysics - Atomic Physics010309 opticsMagnetizationPhysics - Space Physicslaw0103 physical sciences010306 general physicsAxionLarmor precessionPhysicsSpinsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Magnetic fluxSpace Physics (physics.space-ph)Magnetic fieldSpace and Planetary SciencePrecessionAtomic physicsPhysics of the Dark Universe
researchProduct

Polarization-driven spin precession of mesospheric sodium atoms

2018

We report experimental results on the first on-sky observation of atomic spin precession of mesospheric sodium driven by polarization modulation of a continuous-wave laser. The magnetic resonance was remotely detected from the ground by observing the enhancement of induced fluorescence when the driving frequency approached the precession frequency of sodium in the mesosphere, between 85 km and 100 km altitude. The experiment was performed at La Palma, and the uncertainty in the measured Larmor frequency ($\approx$260 kHz) corresponded to an error in the geomagnetic field of 0.4 mG. The results are consistent with geomagnetic field models and with the theory of light-atom interaction in the …

Atomic Physics (physics.atom-ph)Sodiumchemistry.chemical_elementFOS: Physical sciences7. Clean energy01 natural scienceslaw.inventionPhysics::GeophysicsPhysics - Atomic Physics010309 opticsOpticslaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)Circular polarizationLarmor precessionPhysicsbusiness.industryLaserPolarization (waves)Atomic and Molecular Physics and OpticsMagnetic fieldEarth's magnetic fieldchemistryPhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAtomic physicsbusiness
researchProduct

Frequency chirped continuous-wave sodium laser guide stars: modeling and optimization

2020

We numerically study a method to increase the photon return flux of continuous-wave laser guide stars using one-dimensional atomic cooling principles. The method relies on chirping the laser towards higher frequencies following the change in velocity of sodium atoms due to recoil, which raises atomic populations available for laser excitation within the Doppler distribution. The efficiency of this effect grows with the average number of atomic excitations between two atomic collisions in the mesosphere. We find the parameters for maximizing the return flux and evaluate the performance of chirping for operation at La Palma. According to our simulations, the optimal chirp rate lies between 0.…

PhysicsPhotonPhysics::OpticsStatistical and Nonlinear PhysicsLaser7. Clean energy01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticssymbols.namesakeStarsRecoillaw0103 physical sciencesPhysics::Atomic and Molecular ClusterssymbolsChirpContinuous wavePhysics::Atomic PhysicsGuide starAtomic physicsDoppler effectJournal of the Optical Society of America B
researchProduct

Production and detection of atomic hexadecapole at Earth's magnetic field

2007

Anisotropy of atomic states is characterized by population differences and coherences between Zeeman sublevels. It can be efficiently created and probed via resonant interactions with light, the technique which is at the heart of modern atomic clocks and magnetometers. Recently, nonlinear magneto-optical techniques have been developed for selective production and detection of higher polarization moments, hexadecapole and hexacontatetrapole, in the ground states of the alkali atoms. Extension of these techniques into the range of geomagnetic fields is important for practical applications. This is because hexadecapole polarization corresponding to the $\Delta M=4$ Zeeman coherence, with maxim…

Angular momentumLightEarth PlanetMagnetometerAtomic Physics (physics.atom-ph)TransducersPopulationFOS: Physical sciencesRadiation Dosagelaw.inventionPhysics - Atomic PhysicsMagneticssymbols.namesakelawPhysical Sciences and MathematicsScattering RadiationComputer SimulationPhysics::Atomic PhysicsRadiometryAnisotropyeducationPhysicseducation.field_of_studyZeeman effectEquipment DesignModels TheoreticalPolarization (waves)Atomic and Molecular Physics and OpticsAtomic clockMagnetic fieldEquipment Failure AnalysisBudker [BRII recipient]symbolsComputer-Aided DesignAtomic physicsEnvironmental Monitoring
researchProduct

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

Overview of the Cosmic Axion Spin Precession Experiment (CASPEr)

2020

An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses \({\lesssim }10^{…

Quantum chromodynamicsPhysicsParticle physicsElectric dipole momentSpinsField (physics)High Energy Physics::PhenomenologyDark matterPrecessionSpin (physics)Axion
researchProduct

Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.

2018

Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciencesPhysics - Atomic Physics3. Good healthStandard ModelNuclear physicsAntiprotonAntimatter0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic Physics010306 general physicsSpin (physics)Antiprotonic heliumHyperfine structureBosonPhysical review letters
researchProduct

Optically Enhanced Electric Field Sensing Using Nitrogen-Vacancy Ensembles

2021

Nitrogen-vacancy (NV) centers in diamond have shown promise as inherently localized electric-field sensors, capable of detecting individual charges with nanometer resolution. Working with NV ensembles, we demonstrate that a detailed understanding of the internal electric field environment enables enhanced sensitivity in the detection of external electric fields. We follow this logic along two complementary paths. First, using excitation tuned near the NV's zero-phonon line, we perform optically detected magnetic resonance (ODMR) spectroscopy at cryogenic temperatures in order to precisely measure the NV center's excited-state susceptibility to electric fields. In doing so, we demonstrate th…

Materials scienceFOS: Physical sciencesGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyengineering.material01 natural sciencesNoise (electronics)Vacancy defectElectric fieldMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesddc:530Sensitivity (control systems)010306 general physicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondCharge (physics)021001 nanoscience & nanotechnologyScaling theoryNitrogenchemistryengineeringOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessPhysical Review Applied
researchProduct

Trapping and sympathetic cooling of single thorium ions for spectroscopy

2018

Precision optical spectroscopy of exotic ions reveals accurate information about nuclear properties such as charge radii and magnetic and quadrupole moments. Thorium ions exhibit unique nuclear properties with high relevance for testing symmetries of nature. We report loading and trapping of single $^{232}$Th$^+$ ions in a linear Paul trap, embedded into and sympathetically cooled by small crystals of trapped $^{40}$Ca$^+$ ions. Trapped Th ions are identified in a non-destructive manner from the voids in the laser-induced Ca fluorescence pattern emitted by the crystal, and alternatively, by means of a time-of-flight signal when extracting ions from the Paul trap and steering them into an ex…

PhysicsQuantum PhysicsSympathetic coolingAtomic Physics (physics.atom-ph)Thoriumchemistry.chemical_elementFOS: Physical sciences01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasIonCrystalchemistry0103 physical sciencesQuadrupoleQuantum efficiencyIon trapPhysics::Atomic PhysicsAtomic physics010306 general physicsSpectroscopyQuantum Physics (quant-ph)
researchProduct

Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons

2014

We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Calculations of parity nonconserving amplitudes and atomic electric dipole moments induced by these fields are performed for H, Li, Na, K, Rb, Cs, Ba+, Tl, Dy, Fr, and Ra+. From these calculations and existing measurements in Dy, Cs and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7*10^(-15) GeV with an electron, a…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)ProtonNuclear TheoryAtomic Physics (physics.atom-ph)Dark matterNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesElectronSpace Physics (physics.space-ph)Physics - Atomic PhysicsNuclear physicsPseudoscalarNuclear Theory (nucl-th)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Physics - Space PhysicsNeutronPseudovectorAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Lower than low: Perspectives on zero- to ultralow-field nuclear magnetic resonance

2021

Abstract The less-traveled low road in nuclear magnetic resonance is discussed, honoring the contributions of Prof. Bernhard Blumich, aspiring towards reaching ‘a new low.’ A history of the subject and its current status are briefly reviewed, followed by an effort to prophesy possible directions for future developments.

PhysicsNuclear and High Energy PhysicsField (physics)BiophysicsZero (complex analysis)Quantum control010402 general chemistryCondensed Matter Physics01 natural sciencesBiochemistry030218 nuclear medicine & medical imaging0104 chemical sciences03 medical and health sciences0302 clinical medicineNuclear magnetic resonanceddc:530Current (fluid)Journal of Magnetic Resonance
researchProduct

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Reso…

2020

This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms f…

Atmospheric physicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionTelescopetechniques: photometricsymbols.namesakeOpticslawAstrophysics::Solar and Stellar AstrophysicsRayleigh scatteringdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesPolarization (waves)Laser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthphotometric methods[SDU]Sciences of the Universe [physics]Space and Planetary SciencesymbolsAstrophysics::Earth and Planetary Astrophysicsmethods: observationalbusinesstechniquesAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Analysis method for detecting topological defect dark matter with a global magnetometer network

2019

Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)Spins010308 nuclear & particles physicsMagnetometerDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesTopological defectlaw.inventionDomain wall (string theory)Space and Planetary Sciencelaw0103 physical sciencesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)GnomeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Erwin Louis Hahn. 9 June 1921—20 September 2016

2019

Erwin Louis Hahn was one of the most innovative physical scientists in recent history, impacting generations of scientists through his work in nuclear magnetic resonance (NMR), optics, and the intersection of these two fields. Starting with his discovery of the spin echo, a phenomenon of monumental significance and practical importance, Hahn launched a revolution in how we think about spin physics, with numerous implications following in many other areas of science. Current students of NMR and coherent optics quickly discover that many of the key concepts and techniques in these fields derive directly from his work.

010504 meteorology & atmospheric sciencesmedia_common.quotation_subject010102 general mathematicsArt historyGeneral MedicineArt0101 mathematics01 natural sciences0105 earth and related environmental sciencesmedia_commonBiographical Memoirs of Fellows of the Royal Society
researchProduct

Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization.

2022

Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method…

Analytical ChemistryAnalytical chemistry
researchProduct

Studies towards a directional polychromatic sodium laser guide star

2018

In this work we discuss a mechanism for generation of a coherent source of light from the mesosphere as a new concept of directional laser guide star. In contrast to the near-isotropic spontaneous emission, nonlinear processes in atomic vapors like amplified spontaneous emission can yield highly directional emission in the forward and backward directions. Along with directional emission, excited sodium atoms also radiate at different wavelength creating a polychromatic laser guide star (PLGS). If feasible, a directional PLGS would provide a net gain in the return flux of several orders of magnitude compared to traditional LGS schemes, making possible laser-guided tip/tilt-correction in adap…

0301 basic medicinePhysicsAmplified spontaneous emissionbusiness.industryPhysics::OpticsFlux01 natural sciences010309 optics03 medical and health sciencesWavelength030104 developmental biologyOpticsLaser guide starOrders of magnitude (time)Net gainExcited state0103 physical sciencesSpontaneous emissionbusinessAdaptive Optics Systems VI
researchProduct

Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1- 13 C]Fumarate

2019

Hyperpolarized fumarate can be used as a probe of real-time metabolism in vivo, using carbon-13 magnetic resonance imaging. Dissolution dynamic nuclear polarization is commonly used to produce hyperpolarized fumarate, but a cheaper and faster alternative is to produce hyperpolarized fumarate via PHIP (parahydrogen-induced polarization). In this work, we trans-hydrogenate [1-13C]acetylene dicarboxylate with para-enriched hydrogen using a commercially available Ru catalyst in water to produce hyperpolarized [1-13C]fumarate. We show that fumarate is produced in 89% yield, with succinate as a side product in 11% yield. The proton polarization is converted into 13C magnetization using a constant…

Time FactorsHydrogenNuclear Magnetic Resonancechemistry.chemical_element010402 general chemistrySpin isomers of hydrogenPhotochemistry01 natural sciencesBiochemistryCatalysisFumarate HydrataseCatalysisMagnetizationchemistry.chemical_compoundColloid and Surface ChemistryFumaratesMoleculeCarbon IsotopesMolecular StructureFumarase activityCarbon Isotopes; Fumarate Hydratase; Fumarates; Molecular Structure; Time Factors; Nuclear Magnetic Resonance BiomolecularGeneral Chemistry0104 chemical sciencesAcetylenechemistryFumaraseBiomolecularJournal of the American Chemical Society
researchProduct

A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling

2020

Abstract Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 μHz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth’s density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 1014 kg or greater with an oscillation amplitude of 0.1 re. It may be possible to improve the sensitivity of the search by s…

Physics010308 nuclear & particles physicsGravimeter530 PhysicsInner coreAstronomyEarth tideGeodynamics530 Physik01 natural sciencesAtomic and Molecular Physics and OpticsPhysics::GeophysicsCoupling (physics)Orders of magnitude (time)HarmonicsPhysics::Space Physics0103 physical sciencesAstrophysics::Earth and Planetary Astrophysics010306 general physicsNoise (radio)
researchProduct

Action potentials induce biomagnetic fields in Venus flytrap plants

2020

Upon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electrophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. In the plant kingdom, two types of electrical signals are observed: all-or-nothing APs of similar amplitudes to those seen in humans and animals, and slow-wave potentials of smaller amplitud…

PhysicsSensitive-plantbiologyAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics - Applied PhysicsApplied Physics (physics.app-ph)biology.organism_classificationBiomagnetismPhysics - Atomic PhysicsElectrophysiologyBiological Physics (physics.bio-ph)BiophysicsPlant speciesVenus flytrapRepolarizationPhysics - Biological PhysicsIon channel
researchProduct

Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope

2020

An experimental test at the intersection of quantum physics and general relativity is proposed: measurement of relativistic frame dragging and geodetic precession using intrinsic spin of electrons. The behavior of intrinsic spin in spacetime dragged and warped by a massive rotating body is an experimentally open question, hence the results of such a measurement could have important theoretical consequences. Such a measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth. Under conditions where the rotational angular momentum of a ferromagnet is sufficiently small, a ferromagnet's angular momentum is dominated by atomic electron spins and is predicted to e…

Angular momentumGeneral relativityFOS: Physical sciencesElectronFrame-draggingGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologylaw.inventionPhysics::Geophysicslaw0103 physical sciencesddc:530010306 general physicsSpin (physics)Geodetic effectPhysicsQuantum Physics010308 nuclear & particles physicsGyroscopeQuantum electrodynamicsPhysics::Space PhysicsPrecessionCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)
researchProduct

Magnetic Gradiometer for Detection of Zero- and Ultralow-Field Nuclear Magnetic Resonance

2019

Magnetic sensors are important for detecting nuclear magnetization signals in nuclear magnetic resonance (NMR). As a complementary analysis tool to conventional high-field NMR, zero- and ultralow-field (ZULF) NMR detects nuclear magnetization signals in the sub-microtesla regime. Current ZULF NMR systems are always equipped with high-quality magnetic shieldings to ensure that ambient magnetic field noise does not dwarf the magnetization signal. An alternative approach is to separate the magnetization signal from the noise based on their differing spatial profiles, as can be achieved using a magnetic gradiometer. Here, we present a gradiometric ZULF NMR spectrometer with a magnetic gradient …

PhysicsField (physics)Atomic Physics (physics.atom-ph)Zero (complex analysis)General Physics and AstronomyFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNoise (electronics)Chirality (electromagnetism)Gradiometer3. Good healthMagnetic fieldPhysics - Atomic PhysicsNuclear magnetic resonance0103 physical sciencesFundamental physicsCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyAtomic magnetometer
researchProduct

Low-energy Tests of Fundamental Physics

2018

This article presents a personal perspective on why it is interesting and important to test all kinds of fundamental laws and search for as-yet-undiscovered particles and interactions using laboratory-based non-accelerator techniques. Such room-scale experiments are already spearheading discovery, and can be expected to become even more important as accelerators reach seemingly inevitable limits.

0301 basic medicineComputer scienceGeography Planning and DevelopmentPerspective (graphical)010402 general chemistry01 natural sciences0104 chemical sciencesTest (assessment)03 medical and health sciences030104 developmental biologyLow energyPolitical Science and International RelationsFundamental physicsSystems engineeringEuropean Review
researchProduct

Simulations of continuous-wave sodium laser guide stars with polarization modulation at Larmor frequency

2018

The return flux from a sodium laser guide star suffers, at large angles between the geomagnetic field and the laser beam, from the reduction in optical pumping due to spin-precession of sodium atoms. This detrimental effect can be mitigated by modulating the circular polarization of a continuous-wave laser beam in resonance with the Larmor frequency of sodium atoms in the mesosphere. We present an investigation based on numerical modeling to evaluate the brightness enhancement of a laser guide star with polarization modulation of a continuous-wave laser beam at different observatories.

PhysicsLarmor precessionBrightnessbusiness.industryPhysics::OpticsResonanceLaserlaw.inventionOptical pumpingLaser guide starOpticslawPhysics::Space PhysicsPhysics::Atomic and Molecular ClustersContinuous wavePhysics::Atomic PhysicsbusinessCircular polarizationAdaptive Optics Systems VI
researchProduct

Sodium vapor cell laser guide star experiments for continuous wave model validation

2016

Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon …

Physicsbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsPhysics::OpticsSodium layerLaserPolarization (waves)01 natural scienceslaw.invention010309 opticsLaser linewidthOpticsLaser guide starlaw0103 physical sciencesContinuous wavebusinessAdaptive optics010303 astronomy & astrophysicsCircular polarizationAdaptive Optics Systems V
researchProduct

Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles

2016

We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_\phi \to 0$, our derived limits on the Yukawa-type interaction parameters are: $\Lambda_\gamma \gtrsim 8 \times 10^{19}$ GeV, $\Lam…

Particle physicsGeneral PhysicsPhotonAtomic Physics (physics.atom-ph)General Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesElectron01 natural sciencesphysics.atom-phMathematical SciencesPhysics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)EngineeringHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsSpectroscopyPhysics010308 nuclear & particles physicshep-exScalar (physics)Yukawa potentialhep-phHigh Energy Physics - PhenomenologychemistryPhysical SciencesDysprosiumNucleonScalar field
researchProduct

Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance.

2016

We use low-amplitude, ultralow frequency pulses to drive nuclear spin transitions in zero and ultralow magnetic fields. In analogy to high-field NMR, a range of sophisticated experiments becomes available as these allow narrow-band excitation. As a first demonstration, pulses with excitation bandwidths 0.5–5 Hz are used for population redistribution, selective excitation, and coherence filtration. These methods are helpful when interpreting zero- and ultralow-field NMR spectra that contain a large number of transitions.

education.field_of_studyChemistryPopulationSelective excitation010402 general chemistry7. Clean energy01 natural sciences0104 chemical sciencesMagnetic fieldNMR spectra databaseNuclear magnetic resonanceZero field0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicseducationExcitationCoherence (physics)The journal of physical chemistry. A
researchProduct

Magnetometry with Nitrogen-Vacancy Centers in Diamond

2016

This chapter covers magnetic sensing with nitrogen-vacancy (NV) defect centers in diamond. The NV center fundamentals are introduced and NV optically detected magnetic resonance techniques for dc and ac magnetic sensing are summarized. After reviewing some successful sensing applications, the advantages for using NV magnetometry, as well as some ongoing challenges, are enumerated.

Coherence timeMaterials scienceMagnetic noisebusiness.industrySensing applicationsMagnetometerDiamondchemistry.chemical_element02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMagnetic sensingNitrogenlaw.inventionchemistrylawVacancy defect0103 physical sciencesengineeringOptoelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)

2018

The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…

PhysicsQuantum PhysicsPhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsMagnetometerBandwidth (signal processing)FOS: Physical sciencesAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)01 natural sciencesPhysics - Atomic Physicslaw.inventionStarsData acquisitionSpace and Planetary Sciencelaw0103 physical sciencesGlobal networkQuantum Physics (quant-ph)010306 general physicsAxionTransient signalGnomeRemote sensingPhysics of the Dark Universe
researchProduct

Determination of local defect density in diamond by double electron-electron resonance

2021

Magnetic impurities in diamond influence the relaxation properties and thus limit the sensitivity of magnetic, electric, strain, and temperature sensors based on nitrogen-vacancy color centers. Diamond samples may exhibit significant spatial variations in the impurity concentrations hindering the quantitative analysis of relaxation pathways. Here, we present a local measurement technique which can be used to determine the concentration of various species of defects by utilizing double electron-electron resonance. This method will help to improve the understanding of the physics underlying spin relaxation and guide the development of diamond samples, as well as offering protocols for optimiz…

Quantum PhysicsMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsRelaxation (NMR)FOS: Physical sciencesResonanceDiamond02 engineering and technologyElectronengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsElectron resonanceImpurityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesengineeringddc:530Quantum Physics (quant-ph)010306 general physics0210 nano-technologySpin relaxationPhysical Review B
researchProduct

Singulett‐Kontrast‐Magnetresonanztomographie: Freisetzung der Hyperpolarisation durch den Metabolismus**

2021

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

A machine learning algorithm for direct detection of axion-like particle domain walls

2021

The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) conducts an experimental search for certain forms of dark matter based on their spatiotemporal signatures imprinted on a global array of synchronized atomic magnetometers. The experiment described here looks for a gradient coupling of axion-like particles (ALPs) with proton spins as a signature of locally dense dark matter objects such as domain walls. In this work, stochastic optimization with machine learning is proposed for use in a search for ALP domain walls based on GNOME data. The validity and reliability of this method were verified using binary classification. The projected sensitivity of this new analy…

Space and Planetary SciencePhysics - Data Analysis Statistics and ProbabilityFOS: Physical sciencesddc:530Astronomy and AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Data Analysis Statistics and Probability (physics.data-an)Physics::Geophysics
researchProduct

Coherent axion-photon transformations in the forward scattering on atoms

2018

In certain laboratory experiments the production and/or detection of axions is due to the photon-axion transformations in a strong magnetic field. This process is coherent, and the rate of the transformation is proportional to the length $l$ and magnitude $B$ of the magnetic field squared, $\sim l^2B^2$. In the present paper, we consider coherent production of axions due to the forward scattering of photons on atoms or molecules. This process may be represented as being due to an effective electromagnetic field which converts photons to axions. We present analytical expressions for such effective magnetic and electric fields induced by resonant atomic M0 and M1 transitions, as well as give …

Electromagnetic fieldPhysicsCoupling constantPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesCoupling (probability)01 natural sciencesMagnetic fieldPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Electric field0103 physical sciencesProduction (computer science)Atomic physics010306 general physicsAxionPhysical Review
researchProduct

Resonant detection and production of axions with atoms

2018

The axions and axion-like particles can be detected via a resonant atomic or molecular transition induced by axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant and hence small. In this chapter, it is demonstrated that this signal may become first order in the axion-electron interaction constant if we allow the interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation. Additionally, we show that the conventional scheme of producing axions from photons in a magnetic field may be improved if the field is replaced by an atomic medium in which photons scattering …

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsForward scatterHigh Energy Physics::PhenomenologyAstronomy and Astrophysics01 natural sciencesSignalAtomic and Molecular Physics and OpticsHigh Energy Physics::TheoryInterference (communication)0103 physical sciencesEffective lagrangianAtomic physics010306 general physicsAbsorption (electromagnetic radiation)AxionInternational Journal of Modern Physics A
researchProduct

Singlet‐Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism

2020

Abstract Hyperpolarization‐enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13C, 15N, or 129Xe due to their long spin‐polarization lifetimes and the absence of a proton‐background signal from water and fat in the images. Here we present a novel type of 1H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long‐lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para‐enriched hydrogen gas, and the proton singlet order in fumarate is released a…

Hydrogenchemistry.chemical_elementHyperpolarization; MRI; Metabolism; NMRparahydrogensinglet order010402 general chemistrySpin isomers of hydrogen01 natural sciencesChemical reactionCatalysisNuclear magnetic resonancemedicineMoleculeSinglet stateHyperpolarization (physics)Research Articlesmedicine.diagnostic_test010405 organic chemistryChemistryMagnetic resonance imagingMagnetic Resonance Imaging | Hot PaperGeneral ChemistryMetabolism540NMR0104 chemical sciencesHyperpolarizationMetabolismddc:540Research ArticleMRI
researchProduct

Local Lorentz invariance tests for photons and hadrons at the Gamma Factory

2021

High-precision tests of local Lorentz invariance, via monitoring of the sidereal time variation of the photon energies emitted by ultrarelativistic heavy-ion beams and of the beam momentum, are proposed. This paper includes descriptions of the physics ideas and the concept for the detector. The experiment results will allow high-precision tests of LLI via anisotropy of the maximum attainable speed of a photon and an ion. The projected accuracy for the asymmetries interpreted in the framework of the anisotropic relativistic mechanics corresponds to the limit on sidereal time variation of the one-way maximum attainable speed at the levels between $10^{-14}$ and $10^{-17}$.

PhysicsPhotonHadronGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyGeneral Relativity and Quantum Cosmology (gr-qc)Lorentz covarianceSpecial relativity021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Experiment3. Good healthMomentumHigh Energy Physics - Experiment (hep-ex)Sidereal timeQuantum electrodynamics0103 physical sciencesRelativistic mechanics010306 general physics0210 nano-technologyAnisotropy
researchProduct

Wu et al. Reply:

2019

PhysicsMEDLINECalculusGeneral Physics and AstronomyMathematical physicsPhysical Review Letters
researchProduct

A Precessing Ferromagnetic Needle Magnetometer

2016

A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency $\Omega$ under conditions where its intrinsic spin dominates over its rotational angular momentum, $N\hbar \gg I\Omega$ ($I$ is the moment of inertia of the needle about the precession axis and $N$ is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin $N\hbar$ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of $N$ spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum unce…

Angular momentumMagnetometerPhysics::Medical PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology01 natural scienceslaw.inventionComputer Science::RoboticslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsSpin (physics)PhysicsLarmor precessionQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMoment of inertia021001 nanoscience & nanotechnologyMagnetic fieldMagnetic anisotropyPhysics::Space PhysicsPrecessionQuantum Physics (quant-ph)0210 nano-technology
researchProduct

Continuous-wave mirrorless lasing at 221  μm in sodium vapors

2018

We demonstrate backward-directed continuous-wave (cw) emission at 2.21 {\mu}m generated on the 4P3/2-4S1/2 population-inverted transition in Na vapors two-photon excited with resonant laser light at 589 and 569 nm. Our study of power and atom-number-density threshold characteristics shows that lasing occurs at sub-10 mW total power of the applied laser light. The observed 6 mrad divergence is defined mainly by the aspect ratio of the gain region. We find that mirrorless lasing at 2.21 {\mu}m is magnetic field and polarization dependent that may be useful for remote magnetometry. The presented results could help determine the requirements for obtaining directional return from sodium atoms in…

Quantum PhysicsMaterials scienceMagnetometerbusiness.industrySodiumchemistry.chemical_element01 natural sciencesAspect ratio (image)Atomic and Molecular Physics and OpticsPhysics - Atomic Physicslaw.inventionMagnetic field010309 opticsOpticschemistrylawExcited state0103 physical sciencesContinuous waveSpontaneous emissionAtomic physics010306 general physicsbusinessLasing thresholdOptics Letters
researchProduct

Nonlinear magneto-optical rotation in rubidium vapor excited with blue light

2015

We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2\!S_{1/2}\rightarrow 6^2\!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2\!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a…

PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesNonlinear opticschemistry.chemical_elementRotationAtomic and Molecular Physics and OpticsSpectral linePhysics - Atomic PhysicsMagneto opticalRubidiumNonlinear systemchemistryExcited statePhysics::Atomic PhysicsAtomic physicsOptics (physics.optics)Physics - OpticsBlue lightPhysical Review A
researchProduct

The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

2017

The Cosmic Axion Spin Precession Experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses $ m_{\rm a} \sim 10^{-14}$--$10^{-6}…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsMagnetometerMaterials Science (miscellaneous)Dark matterFOS: Physical sciencesApplied Physics (physics.app-ph)7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)Nuclear magnetic resonancelaw0103 physical sciencesElectrical and Electronic Engineering010306 general physicsAxionPhysicsQuantum PhysicsCOSMIC cancer database010308 nuclear & particles physicsBandwidth (signal processing)RangingInstrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsNuclear magnetic resonance spectroscopyAtomic and Molecular Physics and OpticsBaryonHigh Energy Physics - PhenomenologyPhysics - Data Analysis Statistics and ProbabilityQuantum Physics (quant-ph)Data Analysis Statistics and Probability (physics.data-an)Quantum Science and Technology
researchProduct

Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy

2015

We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed tho…

PhysicsPhotonAtomic Physics (physics.atom-ph)Scalar (mathematics)Dark matterScalar field dark matterFOS: Physical sciencesGeneral Physics and AstronomyAtomic spectroscopyPhysics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Orders of magnitude (time)Quantum mechanicsAtomic physicsSpectroscopyScalar fieldPhysical Review Letters
researchProduct

Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling

2016

In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ∼ 0.7 ms up to ∼ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the conc…

PhysicsCoherence timeDynamical decouplingQuantum decoherenceSpin statesMagnetism02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesComputational physicsQuantum mechanics0103 physical sciencesQuantum information010306 general physics0210 nano-technologyQuantumCoherence (physics)SPIE Proceedings
researchProduct

Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

2015

We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.

TechnologyMaterials sciencePhysics and Astronomy (miscellaneous)Synthetic diamondFOS: Physical sciencesElectronengineering.materiallaw.inventionEngineeringquant-phlawVacancy defectcond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)Applied PhysicsQuantum PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpin polarizationRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)Diamondcond-mat.mtrl-sciTransmission electron microscopyPhysical SciencesengineeringAtomic physicsQuantum Physics (quant-ph)Ground stateApplied Physics Letters
researchProduct

Production and detection of atomic hexadecapole at Earth’s magnetic field

2007

We report a novel method that allows selective creation and detection of a macroscopic long lived hexadecapole polarization in the F = 2 ground state of 87Rb atoms at Earth's magnetic field (510 mG).

PhysicsEarth's magnetic fieldchemistryNonlinear opticschemistry.chemical_elementAtomic physicsGround statePolarization (waves)Magnetic fieldRubidiumFrontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion
researchProduct

Spin Hyperpolarization in Modern Magnetic Resonance.

2023

Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in a number of practical applications, with medical MRI being the most widely-known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the dramatic signal enhancement provided by the rapidly-developing field of spin hyperpolarization. Such techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity compared to other analytical techniques. This provides new impetus for existing applications, and, even more importan…

Detectionscreening and diagnosisChemical SciencesGeneral ChemistryBiotechnology4.1 Discovery and preclinical testing of markers and technologies
researchProduct

Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy

2017

The weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear magnetic resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search for PNC in the \textsuperscript{13}C resonances…

Chemical Physics (physics.chem-ph)PhysicsGeneral PhysicsChemical shiftphysics.chem-phFOS: Physical sciencesParity (physics)Nuclear magnetic resonance spectroscopyWeak interaction010402 general chemistry01 natural sciencesSpectral lineMathematical Sciences0104 chemical sciences3. Good healthPhysics - Chemical Physics0103 physical sciencesPhysical SciencesChemical SciencesPhysics::Atomic PhysicsAtomic physicsEnantiomer010306 general physicsEnantiomeric excessChirality (chemistry)
researchProduct

Search for New Physics with Atoms and Molecules

2017

This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.

Condensed Matter::Quantum GasesPhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsGeneral relativityOrders of magnitude (temperature)Physics beyond the Standard ModelAtoms in moleculesDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMetrologyPhysics - Atomic PhysicsTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesAtomPhysics::Atomic PhysicsEquivalence principle010306 general physics
researchProduct

Suppression of nonlinear Zeeman effect and heading error in earth-field-range alkali-vapor magnetometers

2018

The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in-phase with the precessing magnetization. In an earth-range field, a multi-component asymmetric magnetic-resonance line with ? 60 Hz width collapses into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of th…

MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionPhysics - Atomic Physicssymbols.namesakeMagnetizationOpticslaw0103 physical sciences010306 general physicsPhysicsZeeman effectbusiness.industryLimiting021001 nanoscience & nanotechnologyAlkali metalComputational physicsNonlinear systemAmplitudesymbols0210 nano-technologybusiness
researchProduct

Infrasonic, Acoustic and Seismic Waves Produced by the Axion Quark Nuggets

2022

We advocate an idea that the Axion Quark Nuggets (AQN) hitting the Earth can be detected by analysing the infrasound, acoustic and seismic waves which always accompany the AQN's passage in the atmosphere and underground. Our estimates for the infrasonic frequency $\nu\simeq 5$ ~Hz and overpressure $\delta p\sim 0.3 ~$Pa for relatively large size dark matter (DM) nuggets suggest that sensitivity of presently available instruments is already sufficient to detect very intense (but very rare) events today with existing technology. A study of much more frequent but less intense events requires a new type of instruments. We propose a detection strategy for a systematic study to search for such re…

Earth and Planetary Astrophysics (astro-ph.EP)570Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)General MathematicsFOS: Physical sciencesGeophysics (physics.geo-ph)Physics - GeophysicsHigh Energy Physics - PhenomenologyPhysics - Atmospheric and Oceanic PhysicsHigh Energy Physics - Phenomenology (hep-ph)Chemistry (miscellaneous)ddc:570Atmospheric and Oceanic Physics (physics.ao-ph)Computer Science (miscellaneous)dark matter; axion; quark nuggetsAstrophysics - Cosmology and Nongalactic AstrophysicsAstrophysics - Earth and Planetary AstrophysicsSymmetry
researchProduct

Dependence of atomic parity-violation effects on neutron skins and new physics

2019

We estimate the relative contribution of nuclear structure and new physics couplings to the parity non-conserving spin-independent effects in atomic systems, for both single isotopes and isotopic ratios. General expressions are presented to assess the sensitivity of isotopic ratios to neutron skins and to couplings beyond standard model at tree level. The specific coefficients for these contributions are calculated assuming Fermi distribution for proton and neutron nuclear densities for isotopes of Cs, Ba, Sm, Dy, Yb, Pb, Fr, and Ra. The present work aims to provide a guide to the choice of the best isotopes and pairs of isotopes for conducting atomic PNC measurements.

PhysicsIsotopeAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsPhysics beyond the Standard ModelNuclear TheoryNuclear structureFOS: Physical sciencesParity (physics)7. Clean energy01 natural sciencesPhysics - Atomic PhysicsNuclear physicssymbols.namesake0103 physical sciencessymbolsFermi–Dirac statisticsNeutronPhysics::Atomic Physics010306 general physicsNuclear Experiment
researchProduct

Quantum technologies and the elephants

2021

Extraordinary progress in quantum sensors and technologies opens new avenues for exploring the Universe and testing the assumptions forming the basis of modern physics. This QST focus issue: focus on quantum sensors for new-physics discoveries is a next-decade roadmap on developing a wide range of quantum sensors and new technologies towards discoveries of new physics. It covers the next generation of various technologies, including atomic and nuclear clocks, atomic and diamond-based magnetometers, atom and laser interferometers, control of trapped atoms, ions, and molecules, optomechanical systems, and many others. In this editorial, we outline major problems of fundamental physics we aim …

Quantum technologyPhysics and Astronomy (miscellaneous)Emerging technologiesComputer scienceMaterials Science (miscellaneous)Physics beyond the Standard ModelQuantum sensorFundamental physicsPhysics::Atomic PhysicsElectrical and Electronic EngineeringModern physicsEngineering physicsAtomic and Molecular Physics and OpticsQuantum Science and Technology
researchProduct

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

13C-Decoupled J-Coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Resonance at Zero-Field

2017

We present a two-dimensional method for obtaining 13C-decoupled, 1H-coupled nuclear magnetic resonance (NMR) spectra in zero magnetic field using coherent spin-decoupling. The result is a spectrum determined only by the proton–proton J-coupling network. Detection of NMR signals in zero magnetic field requires at least two different nuclear spin species, but the proton J-spectrum is independent of isotopomer, thus potentially simplifying spectra and thereby improving the analytical capabilities of zero-field NMR. The protocol does not rely on a difference in Larmor frequency between the coupled nuclei, allowing for the direct determination of J-coupling constants between chemically equivalen…

ChemistryCarbon-13 NMR satelliteRelaxation (NMR)Carbon-13 NMR010402 general chemistryJ-coupling01 natural sciences0104 chemical sciencesFree induction decayNuclear magnetic resonance0103 physical sciencesSpin echoGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicsTwo-dimensional nuclear magnetic resonance spectroscopyEarth's field NMRThe Journal of Physical Chemistry Letters
researchProduct

Four-wave mixing in a ring cavity

2014

We investigate a four-wave mixing process in an N interaction scheme in Rb vapor placed inside a low-finesse ring cavity. We observe strong amplification and generation of a probe signal, circulating in the cavity, in the presence of two strong optical pump fields. We study the variations in probe field gain and dispersion as functions of experimental parameters with an eye on potential application of such a system for enhanced rotation measurements. A density-matrix calculation is performed to model the system, and the theoretical results are compared to those of the experiment.

Materials sciencePhotonRaman amplificationField (physics)Atomic Physics (physics.atom-ph)Electromagnetically induced transparencyGeneral EngineeringFOS: Physical sciencesPhysics::OpticsSlow lightAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsOptical pumpingFour-wave mixingDispersion (optics)Atomic physicsOptics (physics.optics)Physics - OpticsOptical Engineering
researchProduct

Photoelectrical detection of electron spin resonance of nitrogen-vacancy centres in diamond

2015

The protocols for the control and readout of Nitrogen Vacancy (NV) centres electron spins in diamond offer an advanced platform for quantum computation, metrology and sensing. These protocols are based on the optical readout of photons emitted from NV centres, which process is limited by the yield of photons collection. Here we report on a novel principle for the detection of NV centres magnetic resonance in diamond by directly monitoring spin-preserving electron transitions through measurement of NV centre related photocurrent. The demonstrated direct detection technique offers a sensitive way for the readout of diamond NV sensors and diamond quantum devices on diamond chips. The Photocurr…

PhotonGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronengineering.material01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlelaw.inventionCondensed Matter::Materials Sciencequant-phlawIonizationcond-mat.mes-hall0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusters010306 general physicsElectron paramagnetic resonancePhysicsPhotocurrentCondensed Matter - Materials ScienceQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondMaterials Science (cond-mat.mtrl-sci)General ChemistryPhotoelectric effect021001 nanoscience & nanotechnologycond-mat.mtrl-sciengineeringOptoelectronicsCharge carrierAtomic physics0210 nano-technologybusinessQuantum Physics (quant-ph)
researchProduct

Resonance photoproduction of pionic atoms at the proposed Gamma Factory

2021

We present a possibility of direct resonance production of pionic atoms (Coulomb bound states of a negative pion and a nucleus) with a rate of up to $\ensuremath{\approx}{10}^{10}$ per second using the gamma-ray beams from the Gamma Factory.

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryResonanceApprox7. Clean energy01 natural sciencesNuclear physicsPion0103 physical sciencesBound stateCoulombPhysics::Accelerator PhysicsProduction (computer science)Physics::Atomic PhysicsNuclear Experiment010306 general physicsNuclear theoryPhysical Review C
researchProduct

A precise photometric ratio via laser excitation of the sodium layer - I. One-photon excitation using 342.78 nm light

2020

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved in upcoming surveys (such as in LSST at the Vera C. Rubin Observatory) via a mountaintop-located laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power (500 W) laser modified from laser guide star studies, this excitation will produce an artificial star (which we term a "laser photometric ratio s…

PhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionPhotometry (optics)techniques: photometricOpticslawAstrophysics::Solar and Stellar Astrophysicsdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industrymethods:observationalAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesLaser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthLaser guide starSpace and Planetary Science[SDU]Sciences of the Universe [physics]instrumentation:miscellaneousmethods: observationalbusinesstechniques:photometricAstrophysics - Instrumentation and Methods for AstrophysicsExcitationVisible spectrumAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Revisiting spin-dependent forces mediated by new bosons : potentials in the coordinate-space representation for macroscopic- and atomic-scale experim…

2019

The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macroscopic objects gives rise to various spin-dependent potentials. We derive the coordinate-space non-relativistic potentials induced by the exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena, and correct for errors and omissions in the literature. We summarise the properties of the potentials and their relevance for various types of experiments. These potentials underpin the interpretation of experiments that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity nonconservation and electric dipole moment experiment…

PhysicsAtomic Physics (physics.atom-ph)Physics beyond the Standard ModelFOS: Physical sciencesParity (physics)Fermion01 natural sciencesAtomic units3. Good health010305 fluids & plasmasPhysics - Atomic PhysicsElectric dipole momentTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCP violationCoordinate space010306 general physicsBoson
researchProduct

Interference-assisted resonant detection of axions

2018

Detection schemes for the quantum chromodynamics axions and other axion-like particles in light-shining-through-a-wall (LSW) experiments are based on the conversion of these particles into photons in a magnetic field. An alternative scheme may involve the detection via a resonant atomic or molecular transition induced by resonant axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant but may become first order if we allow interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation that produces the axions.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsFOS: Physical sciencesInterference (wave propagation)01 natural sciencesSignalElectromagnetic radiationPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsAxionPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsComputational physicsMagnetic fieldHigh Energy Physics - PhenomenologyAmplitudeSpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics of the Dark Universe
researchProduct

Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing

2019

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV center\textquotesing…

PhysicsQuantum PhysicsSpinsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondFOS: Physical sciences02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyPolarization (waves)7. Clean energy01 natural sciencesSpectral line3. Good healthVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringAtomic physics010306 general physics0210 nano-technologySpectroscopyGround stateQuantum Physics (quant-ph)Hyperfine structure
researchProduct

Polychromatic, continuous-wave mirrorless lasing from monochromatic pumping of cesium vapor

2019

We report on studies of simultaneous continuous-wave mirrorless lasing on multiple optical transitions, realized by pumping hot cesium vapor with laser light resonant with the 6$S_{1/2}\rightarrow 8$P$_{3/2}$ transition. The multiplicity of decay paths for the excited atoms to their ground state is responsible for the emergence of lasing in a number of transitions, observed here in at least seven wavelengths in the infrared (IR), and at two wavelengths in the blue. We study the properties of the fields generated in the cesium vapor, such as optical power, directionality and optical linewidth.

Materials scienceInfraredAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::OpticsOptical power02 engineering and technology01 natural sciencesPhysics - Atomic Physics010309 opticsLaser linewidthOptics0103 physical sciencesPhysics::Atomic Physicsbusiness.industry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsWavelengthExcited stateContinuous waveMonochromatic color0210 nano-technologybusinessLasing thresholdOptics (physics.optics)Physics - Optics
researchProduct

Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance.

2019

&lt;div&gt;&lt;br&gt;&lt;/div&gt;&lt;div&gt;&lt;table&gt;&lt;tr&gt;&lt;td&gt;We show that in a spin system of two magnetically inequivalent protons coupled to a heteronucleus such as 13C, an adiabatic magnetic field sweep, passing through zero field, transfers proton singlet order into magnetization of the coupled heteronucleus. This effect is potentially useful in parahydrogen-enhanced nuclear magnetic resonance, and is demonstrated on singlet-hyperpolarized [1-13C]maleic acid, which is prepared via the reaction between [1-13C]acetylene dicarboxylic acid and para-enriched hydrogen gas. The magnetic field sweeps are of microtesla amplitudes, and have durations on the order of seconds. We sh…

Zero field NMRMaterials science010304 chemical physicsMaleic acidHydrogenField (physics)ProtonGeneral Physics and Astronomychemistry.chemical_element010402 general chemistryPolarization (waves)Spin isomers of hydrogen01 natural sciences0104 chemical sciencesMagnetic fieldchemistry.chemical_compoundMagnetizationNuclear magnetic resonancechemistry0103 physical sciencesSinglet statePhysical and Theoretical ChemistryThe Journal of chemical physics
researchProduct

Imaging the local charge environment of nitrogen-vacancy centers in diamond

2018

Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning over two orders of magnitude. Motivated by this understanding, we propose an…

General PhysicsGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesquant-phElectric fieldVacancy defect0103 physical sciencescond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)Diamond cubic010306 general physicsSpin (physics)PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsDiamondCharge (physics)021001 nanoscience & nanotechnologyDark statePhysical Sciencesengineering0210 nano-technologyQuantum Physics (quant-ph)Order of magnitude
researchProduct

Atomic and molecular transitions induced by axions via oscillating nuclear moments

2020

The interaction of standard model's particles with the axionic Dark Matter field may generate oscillating nuclear electric dipole moments (EDMs), oscillating nuclear Schiff moments and oscillating nuclear magnetic quadrupole moments (MQMs) with a frequency corresponding to the axion's Compton frequency. Within an atom or a molecule an oscillating EDM, Schiff moment or MQM can drive transitions between atomic or molecular states. The excitation events can be detected, for example, via subsequent fluorescence or photoionization. Here we calculate the rates of such transitions. If the nucleus has octupole deformation or quadrupole deformation then the transition rate due to Schiff moment and M…

PhysicsPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesPhotoionization01 natural sciences530Physics - Atomic PhysicsDipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesQuadrupoleMoment (physics)Atomddc:530Physics::Atomic PhysicsAtomic physics010306 general physicsAxionExcitation
researchProduct

Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting li…

2014

We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with our calculations to directly place …

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesPhysics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Physics - Space Physics0103 physical sciencesNeutron010306 general physicsNuclear ExperimentPseudovectorPhysics010308 nuclear & particles physicsSpace Physics (physics.space-ph)PseudoscalarDipoleHigh Energy Physics - PhenomenologyNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Photochemically induced dynamic nuclear polarization of heteronuclear singlet order

2021

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions. Irradiating a sample containing tetraphenylporphyrin and para-benzoquinone for several seconds with light-emitting diodes produces strong hyperpolarization of 1H and 13C nuclear spins, enhancing the NMR signals more than 200 times. The hyperpolarized spin states at th…

Chemical Physics (physics.chem-ph)Materials scienceSpin statesSpinsField (physics)CIDNPPhysics::Medical PhysicsFOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPolarization (waves)7. Clean energy01 natural sciences0104 chemical sciencesMagnetic fieldHeteronuclear moleculePhysics - Chemical Physicsddc:530General Materials ScienceSinglet statePhysical and Theoretical ChemistryAtomic physics0210 nano-technology
researchProduct

Sidebands in Optically Detected Magnetic Resonance Signals of Nitrogen Vacancy Centers in Diamond

2013

We study features in the optically detected magnetic resonance (ODMR) signals associated with negatively charged nitrogen-vacancy (NV) centers coupled to other paramagnetic impurities in diamond. Our results are important for understanding ODMR line shapes and for optimization of devices based on NV centers. We determine the origins of several side features to the unperturbed NV magnetic resonance by studying their magnetic field and microwave power dependences. Side resonances separated by around 130 MHz are due to hyperfine coupling between NV centers and nearest-neighbor C-13 nuclear spins. Side resonances separated by approximately {40, 260, 300} MHz are found to originate from simultan…

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesPhysics - Atomic PhysicsVacancy defect0103 physical sciences010306 general physicsSpin (physics)Line (formation)PhysicsQuantum PhysicsSpinsMicrowave powerDiamond021001 nanoscience & nanotechnologyCondensed Matter PhysicsNitrogen3. Good healthElectronic Optical and Magnetic MaterialsMagnetic fieldchemistryengineeringAtomic physics0210 nano-technologyQuantum Physics (quant-ph)
researchProduct

Optically detected magnetic resonances of nitrogen-vacancy ensembles inC13-enriched diamond

2016

We present an experimental and theoretical study of the optically detected magnetic resonance signals for ensembles of negatively charged nitrogen-vacancy (NV) centers in a $^{13}\mathrm{C}$ isotopically enriched single-crystal diamond. We observe four broad transition peaks with superimposed sharp features at zero magnetic field and study their dependence on an applied magnetic field. A theoretical model that reproduces all qualitative features of these spectra is developed. Understanding the magnetic-resonance spectra of NV centers in an isotopically enriched diamond is important for emerging applications in nuclear magnetic resonance.

Materials sciencechemistry.chemical_elementDiamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesNitrogenSpectral lineMagnetic fieldchemistryVacancy defect0103 physical sciencesengineeringAtomic physics010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Chapter 23. Singlet Order in Heteronuclear Spin Systems

2020

The concept of heteronuclear Long-Lived spin States (LLSs) is introduced. In the simplest case of a pair of heteronuclei, such states are given by the singlet order of the spin pair, which can be efficiently sustained under Zero or Ultra-Low Field (ZULF) conditions. Here we describe two possible ways of detecting long-lived singlet order of heteronuclei: detection at ZULF conditions and NMR (Nuclear Magnetic Resonance) detection at high field utilising fast field-cycling. A theoretical description of the underlying spin dynamics is presented for both cases; the discussion is supported by experimental examples of LLSs in 13CH groups. The generality of these phenomena is discussed, as well as…

PhysicsHeteronuclear moleculeSpin statesField (physics)Spin dynamicsQuantum mechanicsOrder (ring theory)Condensed Matter::Strongly Correlated ElectronsHigh fieldSinglet stateSpin-½
researchProduct

Fundaments of photoelectric readout of spin states in diamond

2021

Abstract The chapter “Fundaments of photoelectric readout of spin states in diamond” deals with the detection of NV centre spins in diamond using the photoelectric detection of magnetic resonances (PDMR) method, introduced in a series of recent publications. It provides in particular insights into the physics of electronic transitions of the NV center, leading to the free carrier generation, and discusses methodologies how to implement the photocurrent detection principles in the dynamically evolving field of quantum technologies. Recent results on the single electron and the single nuclear spin qubits photoelectric readout are presented, along with a microwave-free NV magnetometry techniqu…

PhysicsSpin statesSpinsPhysics::Instrumentation and DetectorsMagnetometerbusiness.industryDiamondPhotoelectric effectengineering.materiallaw.inventionQuantum technologylawQubitengineeringOptoelectronicsbusinessSpin (physics)
researchProduct

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

2018

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

Materials scienceMagnetometerGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciences010305 fluids & plasmaslaw.inventionCrystalsymbols.namesakeZero fieldlawAmbient fieldVacancy defectElectric field0103 physical sciences010306 general physicsQuantum PhysicsZeeman effectCondensed matter physicsZero (complex analysis)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyNitrogenMagnetic fieldchemistryengineeringsymbols0210 nano-technologyQuantum Physics (quant-ph)Ground stateMicrowaveExcitationSymposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications
researchProduct

Eddy current imaging with an atomic radio-frequency magnetometer

2016

We use a radio-frequency $^{85}$Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

Frequency responseTechnologyMaterials sciencePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Atomic Physics (physics.atom-ph)MagnetometerAcousticsFOS: Physical sciences02 engineering and technology01 natural sciencesphysics.atom-phlaw.inventionPhysics - Atomic PhysicsEngineeringlaw0103 physical sciencesEddy currentInductive sensorElectrical conductorphysics.ins-detApplied Physics010302 applied physicsInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyElectromagnetic coilPhysical SciencesRadio frequencyElectric current0210 nano-technology
researchProduct

Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)

2014

We propose an experiment to search for QCD axion and axionlike-particle dark matter. Nuclei that are interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of nuclear spins in a material sample in the presence of an electric field. Precision magnetometry can be used to search for such precession. An initial phase of this experiment could cover many orders of magnitude in axionlike-particle parameter space beyond the current astrophysical and laboratory limits. And with established techniques, the proposed experimental scheme has sensitivity to …

PhysicsParticle physicsCOSMIC cancer database010308 nuclear & particles physicsPhysicsQC1-999Dark matterGeneral Physics and Astronomy7. Clean energy01 natural sciencesElectric field0103 physical sciencesPrecession010306 general physicsSpin (physics)AxionBosonPhysical Review X
researchProduct

Towards Large-Scale Steady-State Enhanced Nuclear Magnetization with In Situ Detection

2021

Signal Amplification By Reversible Exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale, however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop NMR spectrometer). Moreover, (iii) continuous parahydrogen bubbling accele…

IMesMagnetizationchemistry.chemical_compoundZero field NMRMaterials scienceSpectrometerchemistryYield (chemistry)EvaporationAnalytical chemistryHyperpolarization (physics)Spin isomers of hydrogen
researchProduct

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.

2021

Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802

Quantum chromodynamicsPhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Coupling (probability)01 natural sciences530High Energy Physics - ExperimentCondensed Matter - Other Condensed MatterHigh Energy Physics - Experiment (hep-ex)Electric dipole moment0103 physical sciencesddc:530Atomic physics010306 general physicsSpin (physics)AxionExcitationOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Molecular parity nonconservation in nuclear spin couplings

2017

The weak interaction does not conserve parity, which is apparent in many nuclear and atomic phenomena. However, thus far, parity nonconservation has not been observed in molecules. Here we consider nuclear-spin-dependent parity nonconserving contributions to the molecular Hamiltonian. These contributions give rise to a parity nonconserving indirect nuclear spin-spin coupling which can be distinguished from parity conserving interactions in molecules of appropriate symmetry, including diatomic molecules. We estimate the magnitude of the coupling, taking into account relativistic corrections. Finally, we propose and simulate an experiment to detect the parity nonconserving coupling using liqu…

PhysicsChemical Physics (physics.chem-ph)Antisymmetric relationAtomic Physics (physics.atom-ph)FOS: Physical sciencesParity (physics)010402 general chemistry01 natural sciences5300104 chemical sciencesPhysics - Atomic PhysicsQuantum mechanicsPhysics - Chemical Physics0103 physical sciencesddc:530Physics::Atomic Physics010306 general physics
researchProduct

Axion quark nuggets and how a global network can discover them

2020

We advocate an idea that the presence of the daily and annual modulations of the axion flux on the Earth surface may dramatically change the strategy of the axion searches. Our computations are based on the so-called Axion Quark Nugget (AQN) dark matter model which was originally put forward to explain the similarity of the dark and visible cosmological matter densities $\Omega_{\rm dark}\sim \Omega_{\rm visible}$. In our framework, the population of galactic axions with mass $ 10^{-6} {\rm eV}\lesssim m_a\lesssim 10^{-3}{\rm eV}$ and velocity $\sim 10^{-3} c$ will be always accompanied by the axions with typical velocities $\sim 0.6 c$ emitted by AQNs. We formulate the broadband detection …

PhysicsQuarkeducation.field_of_studyParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)PopulationFOS: Physical sciences01 natural sciencesOmega530Physics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicseducationAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Ferromagnetic gyroscopes for tests of fundamental physics

2020

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…

Angular momentumgyroscopePhysics and Astronomy (miscellaneous)Field (physics)Atomic Physics (physics.atom-ph)Materials Science (miscellaneous)physics beyond the standard modelFOS: Physical sciencesApplied Physics (physics.app-ph)01 natural sciences530Physics - Atomic Physics010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesLibrationddc:530Electrical and Electronic Engineering010306 general physicsLarmor precessionSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMeissner effectFerromagnetism gyroscope physics beyond the standard model Meissner effectPhysics - Applied PhysicsferromagnetismAtomic and Molecular Physics and OpticsMagnetic fieldMeissner effectFerromagnetismPrecessionQuantum Physics (quant-ph)
researchProduct

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

2021

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)Dark matterFOS: Physical sciences01 natural sciencesNoise (electronics)010305 fluids & plasmasNuclear magnetic resonanceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAxionQuantumElectrical impedanceSpin-½PhysicsQuantum PhysicsSpinsInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - PhenomenologyQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Light-induced polarization effects in atoms with partially resolved hyperfine structure and applications to absorption, fluorescence, and nonlinear m…

2009

The creation and detection of atomic polarization is examined theoretically, through the study of basic optical-pumping mechanisms and absorption and fluorescence measurements, and the dependence of these processes on the size of ground- and excited-state hyperfine splittings is determined. The consequences of this dependence are studied in more detail for the case of nonlinear magneto-optical rotation in the Faraday geometry (an effect requiring the creation and detection of rank-two polarization in the ground state) with alkali atoms. Analytic formulas for the optical rotation signal under various experimental conditions are presented.

PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesPolarization (waves)FluorescenceAtomic and Molecular Physics and Opticslaw.inventionPhysics - Atomic PhysicsNonlinear systemlawLight inducedPhysics::Atomic PhysicsOptical rotationAtomic physicsFaraday cageGround stateHyperfine structure
researchProduct

Real Time Nuclear Magnetic Resonance Detection of Fumarase Activity using Parahydrogen-Hyperpolarized [1-13C]fumarate

2019

Hyperpolarized fumarate can be used as a probe of real-time metabolism in vivo, using carbon-13 magnetic resonance imaging. Dissolution dynamic nuclear polarization is commonly used to produce hyperpolarized fumarate, but a cheaper and faster alternative is to produce hyperpolarized fumarate via PHIP (parahydrogen induced polarization). In this work we trans-hydrogenate [1-13C]acetylene dicarboxylate with para-enriched hydrogen using a commercially available Ru catalyst in water to produce hyperpolarized [1-13C]fumarate. We show that fumarate is produced in 89% yield, with succinate as a side product in 11% yield. The proton polarization is converted into 13C magnetization using a constant …

Magnetizationchemistry.chemical_compoundProtonHydrogenchemistryAcetyleneYield (chemistry)chemistry.chemical_elementSpin isomers of hydrogenPhotochemistryPolarization (electrochemistry)Catalysis
researchProduct

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

2015

We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation ${T}_{1}$ effects and DD microwave pulses are used to increase the transverse coherence time ${T}_{2}$ from $\ensuremath{\sim}0.7\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$ up to $\ensuremath{\sim}30\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we c…

PhysicsCoherence timeQuantum PhysicsDynamical decouplingSpin statesDiamondFOS: Physical sciencesPulse sequenceengineering.materialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum mechanicsengineeringQuantum Physics (quant-ph)QuantumMicrowaveCoherence (physics)
researchProduct

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

2019

The nature of dark matter, the invisible substance making up over $80\%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, w…

Particle physicsPhotonField (physics)Atomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)Computer Science::Emerging TechnologiesNuclear magnetic resonancePhysics - Chemical Physics0103 physical sciences010306 general physicsSpin (physics)AxionResearch ArticlesBosonPhysicsChemical Physics (physics.chem-ph)MultidisciplinarySpins010308 nuclear & particles physicsPhysicsSciAdv r-articlesHaloddc:500Research Article
researchProduct

Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond

2018

We demonstrate microwave-free eddy-current imaging using nitrogen-vacancy centers in diamond. By detecting the eddy-current induced magnetic field of conductive samples, we can distinguish between different materials and shapes and identify structural defects. Our technique allows for the discrimination of different materials according to their conductivity. The sensitivity of the measurements is calculated as 8$\times 10 ^{5}$\,S/m\,$\sqrt[]{\textrm{Hz}}$ at 3.5\,MHz, for a cylindrical sample with radius $r_0$\,=\,1\,mm and height $h$\,=\,0.1\,mm (volume $\sim$\,0.3\,mm$^3$), at a distance of 0.5\,mm. In comparison with existing technologies, the diamond-based device exhibits a superior ba…

Materials scienceFOS: Physical sciencesGeneral Physics and AstronomyApplied Physics (physics.app-ph)02 engineering and technologyengineering.material01 natural scienceslaw.inventionlawVacancy defectNondestructive testing0103 physical sciencesEddy current010306 general physicsImage resolutionQuantum Physicsbusiness.industryBandwidth (signal processing)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyEngineering physicsengineeringQuantum Physics (quant-ph)0210 nano-technologybusinessPhysical Review Applied
researchProduct

Sensitive magnetometry in challenging environments

2020

State-of-the-art magnetic field measurements performed in shielded environments under carefully controlled conditions rarely reflect the realities of those applications envisioned in the introductions of peer-reviewed publications. Nevertheless, significant advances in magnetometer sensitivity have been accompanied by serious attempts to bring these magnetometers into the challenging working environments in which they are often required. This review discusses the ways in which various (predominantly optically pumped) magnetometer technologies have been adapted for use in a wide range of noisy and physically demanding environments.

Quantum PhysicsComputer Networks and CommunicationsMagnetometerComputer scienceAtomic Physics (physics.atom-ph)FOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasElectronic Optical and Magnetic Materialslaw.inventionPhysics - Atomic PhysicsComputational Theory and Mathematicslaw0103 physical sciencesSystems engineeringddc:530Electrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsQuantum Physics (quant-ph)
researchProduct

The Revised SI: Fundamental Constants, Basic Physics and Units

2019

PhysicsTheoretical physicsGeneral Physics and AstronomyAnnalen der Physik
researchProduct

Comparison between observation and simulation of sodium LGS return flux with a 20W CW laser on Tenerife

2016

We report on the comparison between observations and simulations of a completed 12-month field observation campaign at Observatorio del Teide, Tenerife, using ESO's transportable 20 watt CW Wendelstein laser guide star system. This mission has provided sodium photon return flux measurements of unprecedented detail regarding variation of laser power, polarization and sodium D2b repumping. The Raman fiber laser and projector technology are very similar to that employed in the 4LGSF/AOF laser facility, recently installed and commissioned at the VLT in Paranal. The simulations are based on the open source LGSBloch density matrix simulation package and we find good overall agreement with experim…

PhysicsPhoton010504 meteorology & atmospheric sciencesComputer simulationbusiness.industryPolarization (waves)Laser01 natural scienceslaw.inventionsymbols.namesakeLaser guide starOpticslawFiber laser0103 physical sciencessymbolsLaser power scalingbusinessRaman spectroscopy010303 astronomy & astrophysics0105 earth and related environmental sciencesAdaptive Optics Systems V
researchProduct

New Atomic Methods for Dark Matter Detection

2015

We calculate the parity and time-reversal violating effects that are induced in atoms, nuclei, and molecules by their interaction with various background cosmic fields, such as axion dark matter or dark energy.

PhysicsHistoryParticle physicsAxion Dark Matter ExperimentHot dark matterHigh Energy Physics::PhenomenologyDark matterScalar field dark matterAstrophysics::Cosmology and Extragalactic AstrophysicsComputer Science ApplicationsEducationMixed dark matterWarm dark matterLight dark matterDark fluidJournal of Physics: Conference Series
researchProduct

Optical polarization of nuclear ensembles in diamond

2012

We report polarization of a dense nuclear-spin ensemble in diamond and its dependence on magnetic field and temperature. The polarization method is based on the transfer of electron spin polarization of negatively charged nitrogen vacancy color centers to the nuclear spins via the excited-state level anti-crossing of the center. We polarize 90% of the 14N nuclear spins within the NV centers, and 70% of the proximal 13C nuclear spins with hyperfine interaction strength of 13-14 MHz. Magnetic-field dependence of the polarization reveals sharp decrease in polarization at specific field values corresponding to cross-relaxation with substitutional nitrogen centers, while temperature dependence o…

PhysicsQuantum PhysicsCondensed matter physicsSpinsFOS: Physical sciencesDiamondOptical polarizationengineering.materialCondensed Matter PhysicsPolarization (waves)Electronic Optical and Magnetic MaterialsMagnetic fieldVacancy defectengineeringInsensitive nuclei enhanced by polarization transferAtomic physicsQuantum Physics (quant-ph)Hyperfine structure
researchProduct

Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor

2018

Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting …

SuperconductivityPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsQuantum limitGeneral Physics and AstronomyFOS: Physical sciencesPhysics - Applied Physics02 engineering and technologyApplied Physics (physics.app-ph)021001 nanoscience & nanotechnology01 natural sciencesPhysics::Fluid DynamicsFerromagnetismCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PrecessionLevitationTorque010306 general physics0210 nano-technologyMicroscale chemistry
researchProduct

Coherent population oscillations with nitrogen-vacancy color centers in diamond

2015

We present results of our research on two-field (two-frequency) microwave spectroscopy in nitrogen-vacancy (NV-) color centers in a diamond. Both fields are tuned to transitions between the spin sublevels of the NV- ensemble in the 3A2 ground state (one field has a fixed frequency while the second one is scanned). Particular attention is focused on the case where two microwaves fields drive the same transition between two NV- ground state sublevels (ms=0 -&gt; ms=+1). In this case, the observed spectra exhibit a complex narrow structure composed of three Lorentzian resonances positioned at the pump-field frequency. The resonance widths and amplitudes depend on the lifetimes of the levels in…

Physicseducation.field_of_studyField (physics)Atomic Physics (physics.atom-ph)PopulationRelaxation (NMR)ResonanceFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral linePhysics - Atomic Physics0103 physical sciencesRotational spectroscopyAtomic physics010306 general physics0210 nano-technologyGround stateeducationSpin (physics)
researchProduct

Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

2018

Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -&gt; 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

PhysicsField (physics)business.industryAtomic Physics (physics.atom-ph)media_common.quotation_subjectFOS: Physical sciences01 natural sciencesAsymmetryAtomic and Molecular Physics and OpticsPhysics - Atomic Physics010309 opticsStanding waveTransverse planeResonatorOpticsExcited stateDistortion0103 physical sciencesPhysics::Atomic PhysicsAtomic physics010306 general physicsbusinessPhase modulationmedia_common
researchProduct

Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond

2011

We present an experimental study of the longitudinal electron-spin relaxation time (T1) of negatively charged nitrogen-vacancy (NV) ensembles in diamond. T1 was studied as a function of temperature from 5 to 475 K and magnetic field from 0 to 630 G for several samples with various NV and nitrogen concentrations. Our studies reveal three processes responsible for T1 relaxation. Above room temperature, a two-phonon Raman process dominates, and below, we observe an Orbach-type process with an activation energy, 73(4) meV, which closely matches the local vibrational modes of the NV center. At yet lower temperatures, sample dependent cross relaxation processes dominate, resulting in temperature …

Materials scienceNitrogenFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyActivation energyengineering.materialSpectrum Analysis Raman01 natural sciencessymbols.namesakeVacancy defect0103 physical sciences010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsTemperatureSpin–lattice relaxationMaterials Science (cond-mat.mtrl-sci)DiamondModels Theoretical021001 nanoscience & nanotechnologyMagnetic fieldMagnetic FieldsMolecular vibrationengineeringsymbolsDiamond0210 nano-technologyRaman spectroscopyOrder of magnitudePhysical Review Letters
researchProduct

Microwave-free magnetometry with nitrogen-vacancy centers in diamond

2016

We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$\sqrt{\text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical acces…

TechnologyPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)MagnetometerFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionEngineeringlaw0103 physical sciencescond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsphysics.ins-detApplied PhysicsPhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyNoise floorMagnetic fieldPhysical SciencesengineeringOptoelectronicsMagnetic induction tomographyphysics.optics0210 nano-technologybusinessGround stateNoise (radio)MicrowavePhysics - OpticsOptics (physics.optics)
researchProduct

Battery characterization via eddy-current imaging with nitrogen-vacancy centers in diamond

2021

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries in a noninvasive detection. We demonstrate a microwave-free AC magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between NV centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructive solid-state battery imaging. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolut…

Battery (electricity)Materials scienceMagnetometerFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.materiallcsh:Technology01 natural scienceslaw.inventionlcsh:ChemistrylawVacancy defecteddy current imaging0103 physical sciencesEddy currentGeneral Materials Science010306 general physicsNV-centers in diamondlcsh:QH301-705.5Instrumentationnondestructive evaluationFluid Flow and Transfer Processeslcsh:Tbusiness.industryProcess Chemistry and TechnologyGeneral EngineeringDiamond600Physics - Applied Physics021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science ApplicationsMagnetic fieldlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Electrodebattery diagnosticsengineeringOptoelectronicslcsh:Engineering (General). Civil engineering (General)0210 nano-technologyAlternating currentbusinessddc:600lcsh:Physics
researchProduct

Prospects of SPIN Gyroscopes Based on Nitrogen-Vacancy Centers in Diamond

2019

This project aims to develop solid-state gyroscopes based on ensembles of negatively charged nitrogen-vacancy (NV) centers in diamond [1], [2]. The NV center is a defect formed in diamond by one substitutional nitrogen atom and an adjacent vacancy. The NV- center features a ground state with electronic spin $\mathrm{S}=1$ , which can be initialized, manipulated, and detected via convenient optical, microwave and radiofrequency transitions (Fig. 1). Nuclear spins are appealing in the context of gyroscopes because they have much smaller gyromagnetic ratios than that of the electron (by a factor of about 1000), reducing the requirements on static magnetic-field stability and homogeneity. The l…

PhysicsSagnac effectSpinsDiamondGyroscopeOptical polarizationElectronengineering.materiallaw.inventionGeometric phaselawVacancy defectHomogeneity (physics)engineeringPhysics::Atomic PhysicsPhysics::Chemical PhysicsAtomic physicsSpin (physics)Ground stateHyperfine structureMicrowave2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)
researchProduct

Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip

2017

We demonstrate nuclear magnetic resonance (NMR) spectroscopy of picoliter-volume solutions with a nanostructured diamond chip. Using optical interferometric lithography, diamond surfaces were nanostructured with dense, high-aspect-ratio nanogratings, enhancing the surface area by more than a factor of 15 over mm^2 regions of the chip. The nanograting sidewalls were doped with nitrogen-vacancy (NV) centers so that more than 10 million NV centers in a (25 micrometer)^2 laser spot are located close enough to the diamond surface (5 nm) to detect the NMR spectrum of 1 pL of fluid lying within adjacent nanograting grooves. The platform was used to perform 1H and 19F NMR spectroscopy at room tempe…

Magnetic Resonance SpectroscopyPhysics - Instrumentation and DetectorsScienceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlelaw.inventionMicrometrelawPhysics - Chemical Physics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physical Sciences and Mathematics010306 general physicsSpectroscopyPhysicsChemical Physics (physics.chem-ph)Quantum PhysicsMultidisciplinarySpinsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDopingQDiamondGeneral ChemistryNuclear magnetic resonance spectroscopyInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyLaserJarmola [BRII recipient]3. Good healthMagnetic fieldNanostructuresengineeringOptoelectronicsddc:500Diamond0210 nano-technologybusinessQuantum Physics (quant-ph)
researchProduct

Dichroic atomic vapor laser lock with multi-gigahertz stabilization range

2016

A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the $^{85}$Rb ground state…

Record lockingMaterials sciencePhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Buffer gasFOS: Physical sciencesDichroic glass01 natural sciencesphysics.atom-phlaw.inventionPhysics - Atomic Physics010309 opticsEngineeringlaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsInstrumentationHyperfine structurephysics.ins-detApplied PhysicsRange (particle radiation)business.industryInstrumentation and Detectors (physics.ins-det)LaserAtomic vaporPhysical SciencesChemical SciencesOptoelectronicsphysics.opticsGround statebusinessPhysics - OpticsOptics (physics.optics)
researchProduct

A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves

2019

Maxwell–Proca electrodynamics corresponding to finite photon mass causes a substantial change in the Maxwell stress tensor, and under certain circumstances, may cause electromagnetic stresses to act effectively as "negative pressure." This paper describes a model where this negative pressure imitates gravitational pull and may produce forces comparable to gravity and may even become dominant. The effect is associated with random magnetic fields with correlation lengths exceeding the photon Compton wavelength. The stresses act predominantly on the interstellar gas and cause an additional force pulling the gas toward the center and toward the galactic plane. Stars do not experience any signif…

PhysicsRotation period010504 meteorology & atmospheric sciencesDark matterAstronomy and AstrophysicsAstrophysicsGalactic planeRotation01 natural sciencesGalaxyGravitationStarsSpace and Planetary Science0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy rotation curve0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Correlation of high-field and zero- to ultralow-field NMR properties using 2D spectroscopy

2021

The field of zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is currently experiencing a rapid growth, owing to the progress in optical magnetometry, and also attractive features of ZULF NMR, such as low hardware cost and excellent spectral resolution achieved under ZULF conditions. In this work, an approach is proposed and demonstrated for simultaneous acquisition of ZULF-NMR spectra of individual 13C-containing isotopomers of chemical compounds in a complex mixture. The method makes use of fast field cycling, so that the spin evolution takes place at ZULF conditions, whereas signal detection is performed in a high-field NMR spectrometer. This method has excellent sensitivi…

Chemical Physics (physics.chem-ph)Materials science010304 chemical physicsField (physics)SpectrometerMagnetometerGeneral Physics and AstronomyFOS: Physical sciences010402 general chemistry01 natural sciencesMolecular physicsSpectral line0104 chemical sciencesIsotopomerslaw.inventionHeteronuclear moleculelawPhysics - Chemical Physics0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistrySpectral resolutionSpectroscopy
researchProduct

Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

2017

© 2017 Author(s). Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

inorganic chemicalsAtomic Physics (physics.atom-ph)MagnetometerAnalytical chemistryFOS: Physical sciencesGeneral Physics and Astronomyengineering.material01 natural sciences7. Clean energyphysics.atom-phMathematical Scienceslaw.inventionPhysics - Atomic Physics010309 opticsEngineeringCoatinglaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin relaxationApplied PhysicsPhysicsVapour densitySpin polarizationRelaxation (NMR)Cesium vaporCharacterization (materials science)Physical SciencesengineeringAtomic physics
researchProduct

Polarization-driven spin precession of mesospheric sodium atoms: publisher's note.

2018

This publisher's note corrects an error in the author listing of Opt. Lett.43, 5825 (2018)OPLEDP0146-959210.1364/OL.43.005825.

010309 opticsPhysicsOpticsbusiness.industryQuantum electrodynamics0103 physical sciences02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyPolarization (waves)business01 natural sciencesAtomic and Molecular Physics and OpticsOptics letters
researchProduct

Nuclear-spin comagnetometer based on a liquid of identical molecules

2018

Atomic comagnetometers are used in searches for anomalous spin-dependent interactions. Magnetic field gradients are one of the major sources of systematic errors in such experiments. Here we describe a comagnetometer based on the nuclear spins within an ensemble of identical molecules. The dependence of the measured spin-precession frequency ratio on the first-order magnetic field gradient is suppressed by over an order of magnitude compared to a comagnetometer based on overlapping ensembles of different molecules. Our single-species comagnetometer is shown to be capable of measuring the hypothetical spin-dependent gravitational energy of nuclei at the $10^{-17}$ eV level, comparable to the…

PhysicsSpinsAtomic Physics (physics.atom-ph)Frequency ratioGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyMagnetic field gradient021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMolecular physicsGravitational energyPhysics - Atomic Physics0103 physical sciencesMolecule010306 general physics0210 nano-technologyNucleonOrder of magnitude
researchProduct

Spectral signatures of axionlike dark matter

2022

We derive spectral line shapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these line shapes is needed to optimize an experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to the directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earth's rotational and o…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesddc:530530Astrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

Rubidium dimers in paraffin-coated cells

2010

Measurements were made to determine the density of rubidium dimer vapor in paraffin-coated cells. The number density of dimers and atoms in similar paraffin-coated and uncoated cells was measured by optical spectroscopy. Due to the relatively low melting point of paraffin, a limited temperature range of 43-80 deg C was explored, with the lower end corresponding to a dimer density of less than 10^7 cm^(-3). With one-minute integration time, a sensitivity to dimer number density of better than 10^6 cm^(-3) was achieved. No significant difference in dimer density was observed between the cells.

Time delay and integrationPhysicsQuantum PhysicsNumber densityAtomic Physics (physics.atom-ph)DimerSignificant differenceAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementLow melting pointFOS: Physical sciences02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesPhysics - Atomic PhysicsRubidiumchemistry.chemical_compoundchemistry0103 physical sciences010306 general physics0210 nano-technologySpectroscopyQuantum Physics (quant-ph)
researchProduct

Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?

2004

Noise properties of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement are considered. Such a magnetometer measures spin precession of $N$ atomic spins by detecting optical rotation of far-detuned light. Fundamental noise sources include the quantum projection noise and the photon shot-noise. For measurement times much shorter than the spin-relaxation time observed in the absence of light ($\tau_{\rm rel}$) divided by $\sqrt{N}$, the optimal sensitivity of the magnetometer scales as $N^{-3/4}$, so an advantage over the usual sensitivity scaling as $N^{-1/2}$ can be achieved. However, at longer measurement times, the optimi…

Quantum nondemolition measurementPhysicsPhotonMagnetometerAtomic Physics (physics.atom-ph)Shot noiseGeneral Physics and AstronomyFOS: Physical sciencesNoise (electronics)Physics - Atomic Physicslaw.inventionlawQuantum mechanicsHeisenberg limitPhysics::Atomic PhysicsSpin (physics)QuantumPhysical review letters
researchProduct

Miniature Cavity-Enhanced Diamond Magnetometer

2017

We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042\,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$\sqrt{\rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$\sqrt{\rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$\sqrt{\rm{Hz}}$ with the sensing volume of $\sim$ 390 $\mu$m $\times$ 4500 $\mu$m$^{2}$. The presented miniaturized device is the basis for an e…

Physics - Instrumentation and DetectorsPhotonMaterials scienceMagnetometerGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesSignallaw.inventionlaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAbsorption (electromagnetic radiation)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Highly sensitiveOptical cavityengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)Sensitivity (electronics)
researchProduct

Probing fast oscillating scalar dark matter with atoms and molecules

2021

Light scalar Dark Matter with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies $<$ 1 Hz). In a recent experiment \mbox{[Phys. Rev. Lett. 123, 141102 (2019)]} called WReSL (Weekend Relaxion-Search Laboratory), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particu…

PhysicsPhysics and Astronomy (miscellaneous)Atomic Physics (physics.atom-ph)010308 nuclear & particles physicsMaterials Science (miscellaneous)Dark matterAtoms in moleculesScalar (mathematics)FOS: Physical sciencesObservableAtomic spectroscopyElectron53001 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciencesModulation (music)ddc:530Electrical and Electronic Engineering010306 general physicsConstant (mathematics)Quantum Science and Technology
researchProduct

Continuous-wave cavity ring-down polarimetry

2020

We present a new cavity-based polarimetric scheme for highly sensitive and time-resolved measurements of birefringence and dichroism, linear and circular, that employs rapidly pulsed single-frequency continuous wave (CW) laser sources and extends current cavity-based spectropolarimetric techniques. We demonstrate how the use of a CW laser source allows for gains in spectral resolution, signal intensity, and data acquisition rate compared to traditional pulsed-based cavity ring-down polarimetry (CRDP). We discuss a particular CW-CRDP modality that is different from intensity-based cavity-enhanced polarimetric schemes as it relies on the determination of the polarization rotation frequency du…

Physics - Instrumentation and DetectorsPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesApplied Physics (physics.app-ph)010402 general chemistry01 natural scienceslaw.inventionFinessesymbols.namesakeOpticslawPhysics - Chemical Physics0103 physical sciencesFaraday effectddc:530Physical and Theoretical ChemistrySpectral resolutionPhysicsChemical Physics (physics.chem-ph)Birefringence010304 chemical physicsbusiness.industryPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)LaserPolarization (waves)0104 chemical sciencesPhysics - Atmospheric and Oceanic PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)symbolsContinuous wavebusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system

2021

The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins co…

PhysicsField (physics)General Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpin isomers of hydrogenPolarization (waves)01 natural sciencesInduced polarization0104 chemical sciencesMagnetic fieldPhysics - Chemical PhysicsChemical additionProton spin crisisPhysical and Theoretical ChemistryAtomic physics0210 nano-technologySpin-½Physical Chemistry Chemical Physics
researchProduct

Zero- to Ultralow-Field Nuclear Magnetic Resonance $J$-Spectroscopy with Commercial Atomic Magnetometers

2019

Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many groups, because operating the optical magnetometers needed for signal detection requires some expertise in atomic physics and optics. Commercially available magnetometers offer a solution to this problem. Here we describe a simple ZULF NMR configuration employing commercial magnetometers, and demonstrate sufficient functionality to measure samples with nuclear spins prepolarized in a permanent magnet or initialized using parahydrogen. This opens …

Nuclear and High Energy PhysicsMaterials scienceZero field NMRPhysics - Instrumentation and DetectorsMagnetometerBiophysicsFOS: Physical sciences010402 general chemistrySpin isomers of hydrogen01 natural sciencesBiochemistry030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineNuclear magnetic resonancelawPhysics - Chemical PhysicsHyperpolarization (physics)SpectroscopyChemical Physics (physics.chem-ph)SpinsInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics0104 chemical sciencesMagnetic fieldMagnet
researchProduct

Stand-Off Magnetometry with Directional Emission from Sodium Vapors

2021

International audience; Stand-off magnetometry allows measuring magnetic field at a distance, and can be employed in geophysical research, hazardous environment monitoring, and security applications. Stand-off magnetometry based on resonant scattering from atoms or molecules is often limited by the scarce amounts of detected light. The situation would be dramatically improved if the light emitted by excited atoms were to propagate towards the excitation light source in a directional manner. Here, we demonstrate that this is possible by means of mirrorless lasing. In a tabletop experiment, we detect free-precession signals of ground-state sodium spins under the influence of an external magne…

Materials scienceField (physics)MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmaslaw.inventionPhysics - Atomic Physics03 medical and health sciencesOpticslaw0103 physical sciencesddc:530030304 developmental biology0303 health sciencesSpins[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]business.industryScalar (physics)Magnetic field[SDU]Sciences of the Universe [physics]Excited statebusinessLasing thresholdExcitation
researchProduct

Optical quenching and recovery of photoconductivity in single-crystal diamond

2017

We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. This work was supported by AFOSR and the DARPA QuASAR program, by NSF Grant No. ECCS-1202258, and by DFG through the DIP program (FO 703/2-1).

TechnologyPhysics and Astronomy (miscellaneous)FOS: Physical sciencesPhysics::Optics02 engineering and technologyengineering.material01 natural sciencesEngineeringOpticsImpuritycond-mat.mes-hall0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsApplied PhysicsPhotocurrentPhysicsQuenchingCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCondensed Matter::OtherPhotoconductivityDiamondPulse durationQuantum PhysicsNanosecond021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWavelengthPhysical SciencesengineeringOptoelectronicsphysics.optics0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

Level anti-crossing magnetometry with color centers in diamond

2017

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4\,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042\,nm laser beam. This leads to an …

PhotoluminescenceMaterials scienceMagnetometerMagnetismchemistry.chemical_elementFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionNuclear magnetic resonancelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAbsorption (electromagnetic radiation)Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamond021001 nanoscience & nanotechnologyMeitneriumLaserchemistryengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)MicrowaveSlow Light, Fast Light, and Opto-Atomic Precision Metrology X
researchProduct

Efficient polarization of high-angular-momentum systems

2016

We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched stat…

Spontaneous decayPhysicsAngular momentumeducation.field_of_studyPhotonAtomic Physics (physics.atom-ph)Atoms in moleculesPopulationPhysics::OpticsFOS: Physical sciencesQuantum number01 natural sciencesphysics.atom-phPhysics - Atomic PhysicsComputational physics010309 opticsOptical pumpingDark stateTotal angular momentum quantum numberAtom0103 physical sciencesAtomic physics010306 general physicsAdiabatic processeducation
researchProduct

Investigation of antirelaxation wall coatings beyond melting temperatures

2017

We investigate vapor cells with antirelaxation wall coatings by measuring their relaxation properties beyond the melting temperatures and compare with the melting behavior of the coating material as observed with differential scanning calorimetry.

0301 basic medicineMaterials scienceMaterials processingCondensed matter physicsDepolarizationCalorimetryengineering.materialMagnetic field03 medical and health sciences030104 developmental biologyDifferential scanning calorimetryCoatingengineeringPolarization (electrochemistry)Conference on Lasers and Electro-Optics
researchProduct

Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

2015

Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile…

Atomic Physics (physics.atom-ph)Fluids & Plasmasphysics.chem-phFOS: Physical sciences010402 general chemistryJ-couplingphysics.atom-ph01 natural sciencesPhysics - Atomic Physicssymbols.namesakeEngineeringNuclear magnetic resonancequant-phPhysics - Chemical Physics0103 physical sciencesMagnetization transfer010306 general physicsChemical Physics (physics.chem-ph)PhysicsQuantum PhysicsZeeman effectCondensed matter physicsCondensed Matter Physics0104 chemical sciences3. Good healthElectronic Optical and Magnetic MaterialsMagnetic fieldSolid-state nuclear magnetic resonanceResidual dipolar couplingPhysical SciencesChemical SciencessymbolsQuantum Physics (quant-ph)Two-dimensional nuclear magnetic resonance spectroscopyMagnetic dipole–dipole interaction
researchProduct

Color centers in diamond as novel probes of superconductivity

2018

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

010302 applied physicsSuperconductivityMaterials scienceField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerCondensed Matter - SuperconductivityDiamondFOS: Physical sciencesNanotechnologyengineering.materialCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSuperconductivity (cond-mat.supr-con)Magnetic imaginglawHigh pressure0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineering010306 general physicsImage resolution
researchProduct

Surpassing the Energy Resolution Limit with Ferromagnetic Torque Sensors

2021

We discuss the fundamental noise limitations of a ferromagnetic torque sensor based on a levitated magnet in the tipping regime. We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit (SQL). We find that the Energy Resolution Limit (ERL), pointed out in recent literature as a relevant benchmark for most classes of magnetometers, can be surpassed by many orders of magnitude. Moreover, similarly to the case of a ferromagnetic gyroscope, it is also possible to surpass the standard quantum limit for magnetometry with independent spins, arising from spin-projection noise. Our finding indica…

PhysicsQuantum PhysicsPhysics - Instrumentation and DetectorsMagnetometerOrders of magnitude (temperature)Quantum limitFOS: Physical sciencesGeneral Physics and AstronomyGyroscopeInstrumentation and Detectors (physics.ins-det)01 natural sciencesNoise (electronics)010305 fluids & plasmaslaw.inventionMagnetic fieldComputational physicslawMagnet0103 physical sciencesTorque sensorddc:530Quantum Physics (quant-ph)010306 general physics
researchProduct

Heading-Error-Free Optical Atomic Magnetometry in the Earth-Field Range

2023

Alkali-metal atomic magnetometry is widely used due to its high sensitivity and cryogen-free operation. However, when operating in geomagnetic field, it suffers from heading errors originating from nonlinear Zeeman (NLZ) splittings and magnetic resonance asymmetries, which lead to difficulties in mobile-platform measurements. We demonstrate an alignment based $^{87}$Rb magnetometer, which, with only a single magnetic resonance peak and well-separated hyperfine transition frequencies, is insensitive or even immune to NLZ-related heading errors. It is shown that the magnetometer can be implemented for practical measurements in the geomagnetic environments and the photon-shot-noise-limited sen…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyPhysics::Atomic PhysicsPhysics - Atomic PhysicsPhysical Review Letters
researchProduct

Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells

2020

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materia…

LI-IONBattery (electricity)MultidisciplinaryMaterials sciencebusiness.industryMagnetometer//purl.org/becyt/ford/1.3 [https]Characterization (materials science)law.inventionIonMagnetic field//purl.org/becyt/ford/1 [https]State of chargeFAILURESlawPhysical SciencesOptoelectronicsTransient (oscillation)BATTERIESbusinessCapacity lossProceedings of the National Academy of Sciences
researchProduct

Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids

2018

AbstractOver the last decades, the use of magnetic nanoparticles in research and commercial applications has increased dramatically. However, direct detection of trace quantities remains a challenge in terms of equipment cost, operating conditions and data acquisition times, especially in flowing conditions within complex media. Here we present the in-line, non-destructive detection of magnetic nanoparticles using high performance atomic magnetometers at ambient conditions in flowing media. We achieve sub-picomolar sensitivities measuring ~30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for biomedical and industrial applications, under flowing conditions in water and who…

Materials scienceMagnetometerScienceMagnetic separationchemistry.chemical_elementNanoparticleFOS: Physical sciencesNanotechnology02 engineering and technologyApplied Physics (physics.app-ph)010402 general chemistryNanoparticles; Other nanotechnology; Techniques and instrumentation01 natural sciencesArticlelaw.inventionData acquisitionlawComplex fluidMultidisciplinaryQRPhysics - Applied Physics021001 nanoscience & nanotechnology0104 chemical sciences3. Good healthchemistryFerromagnetismMedicineMagnetic nanoparticles0210 nano-technologyCobaltScientific Reports
researchProduct

Is light narrowing possible with dense-vapor paraffin coated cells for atomic magnetometers?

2017

We investigated the operation of an all-optical rubidium-87 atomic magnetometer with amplitude-modulated light. To study the suppression of spin-exchange relaxation, three schemes of pumping were implemented with room-temperature and heated paraffin coated vacuum cells. Efficient pumping and accumulation of atoms in the F=2 ground state were obtained. However, the sought-for narrowing of the resonance lines has not been achieved. A theoretical analysis of the polarization degree is presented to illustrate the absence of light narrowing due to radiation trapping at high temperature.

Materials scienceMagnetometerGeneral Physics and AstronomyPolarization (waves)01 natural sciencesMolecular physicslcsh:QC1-999law.invention010309 opticslaw0103 physical sciencesRadiation trappingPhysics::Atomic Physics010306 general physicsGround stateAtomic magnetometerlcsh:PhysicsAIP Advances
researchProduct

Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution

2020

Significance Magnetic resonance imaging is hindered by inherently low sensitivity, which limits the method for the most part to observing water molecules in the body. Hyperpolarized molecules exhibit strongly enhanced MRI signals which opens the door for imaging low-concentration species in vivo. Biomolecules can be hyperpolarized and injected into a patient allowing for metabolism to be tracked in real time, greatly expanding the information available to the radiologist. Parahydrogen-induced polarization (PHIP) is a hyperpolarization method renowned for its low cost and accessibility, but is generally limited by low polarization levels, modest molecular concentrations, and contamination by…

Molar concentrationparahydrogen02 engineering and technologyBiosensing Techniques010402 general chemistry01 natural sciencesChemical reaction41003 medical and health sciences0302 clinical medicineFumaratesHyperpolarization (physics)Carbon-13 Magnetic Resonance SpectroscopyPolarization (electrochemistry)DissolutionhyperpolarizationBiomarker; Hyperpolarization; Metabolism; MRI; Parahydrogen; Fumarates; Molecular Imaging; Solutions; Water; Biosensing Techniques; Carbon-13 Magnetic Resonance Spectroscopychemistry.chemical_classificationParahydrogenMultidisciplinaryAqueous solutionChemistryBiomolecule500WaterBiomarker021001 nanoscience & nanotechnologyCombinatorial chemistryMolecular Imaging0104 chemical sciencesSolutionsSolventChemistryHyperpolarizationMetabolism030220 oncology & carcinogenesisReagentPhysical Sciencesbiomarkerddc:5000210 nano-technologymetabolismBiosensorMRI
researchProduct

Zero- to Ultralow-Field NMR Spectroscopy of Small Biomolecules.

2021

Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-field NMR spectroscopy necessitates advanced infrastructure, and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, J-spectra of small representative biomolecules [13C]-formic acid, [1-13C]-glycine, [2,3-13C]-fumarate, and [1-13C]-d-glucose were acquired, and an approach relying on the prese…

chemistry.chemical_classificationRelaxometryAqueous solutionMagnetic Resonance SpectroscopySpectrometerBiomolecule010401 analytical chemistryRelaxation (NMR)Analytical techniqueAnalytical chemistryNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryMagnetic FieldschemistrySpectroscopyAnalytical chemistry
researchProduct

Rapid online solid-state battery diagnostics with optically pumped magnetometers

2020

Applied Sciences 10(21), 7864 (2020). doi:10.3390/app10217864

Battery (electricity)Physics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Power storageComputer scienceMagnetometerFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistrymagnetization01 natural scienceslcsh:Technologylaw.inventionPhysics - Atomic Physicslcsh:Chemistrylawrapid online diagnosticsGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesatomic magnetometerbusiness.industrylcsh:TProcess Chemistry and TechnologyGeneral EngineeringElectrical engineering600Instrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnologylcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsState of chargelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Solid-state batterysolid-state battery0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)ddc:600Atomic magnetometerlcsh:Physicsmagnetic susceptibility
researchProduct

System for control of polarization state of light and generation of light with continuously rotating linear polarization

2019

We present a technique for generating light in an arbitrary polarization state. The technique is based on interference of two orthogonally polarized light beams, whose amplitudes and phases are controlled with a Mach-Zehnder inteferometer with acousto-optic modulators (AOMs) placed in each arm. We demonstrate that via control over amplitudes, phases, and frequencies of acoustic waves driving the AOMs, any polarization state can be synthesized. In particular, we demonstrate generation of linearly polarized light, whose polarization plane continuously rotates at a rate from 1 kHz to 1 MHz. Such light finds applications in science (e.g., investigations of Bloch-Siegert effect) and technology (…

010302 applied physicsPhysicsPolarization planebusiness.industryLinear polarizationMagnetometerLinearly polarized lightFOS: Physical sciencesAcoustic wavePhysics - Applied PhysicsApplied Physics (physics.app-ph)Polarization (waves)01 natural sciences010305 fluids & plasmaslaw.inventionAmplitudeOpticslaw0103 physical sciencesOptical rotationbusinessInstrumentationPhysics - OpticsOptics (physics.optics)
researchProduct

Relaxion Stars and their detection via Atomic Physics

2019

The cosmological relaxion can address the hierarchy problem, while its coherent oscillations can constitute dark matter in the present universe. We consider the possibility that the relaxion forms gravitationally bound objects that we denote as relaxion stars. The density of these stars would be higher than that of the local dark matter density, resulting in enhanced signals in table-top detectors, among others. Furthermore, we raise the possibility that these objects may be trapped by an external gravitational potential, such as that of the Earth or the Sun. This leads to formation of relaxion halos of even greater density. We discuss several interesting implications of relaxion halos, as …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)media_common.quotation_subjectDark matterGeneral Physics and AstronomyFOS: Physical scienceslcsh:AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCompact star01 natural sciencesCosmologyPhysics - Atomic PhysicsGravitational potentialHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical sciences010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHierarchy problemlcsh:QC1-999UniverseHigh Energy Physics - PhenomenologyStarsHaloAtomic physicslcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Probing New Long-Range Interactions by Isotope Shift Spectroscopy

2018

We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca[superscript +] data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magn…

PhysicsGeneral Physics010308 nuclear & particles physicsNuclear structureGeneral Physics and AstronomyElementary particlehep-phphysics.atm-clus7. Clean energy01 natural sciencesMathematical SciencesMassless particleEngineeringquant-ph0103 physical sciencesAtomPhysical Sciencesddc:550Effective field theoryNeutronddc:530Atomic physics010306 general physicsSpectroscopyBosonPhysical Review Letters
researchProduct

Constraining exotic interactions

2018

Beyond-the-standard-model interactions mediated by an exchange of virtual "new" bosons result in a finite set of possible effective interaction potentials between standard-model particles such as electrons and nucleons. We discuss the classification of such potentials and briefly review recent experiments searching for such exotic interactions at spatial scales from sub-nanometers to tens of thousand kilometers.

PhysicsParticle physicsDark matterGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Hadron spectroscopy0103 physical sciencesExperimental methods010306 general physics0210 nano-technologyNucleonFinite setBoson
researchProduct

Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond

2019

Sensing vector magnetic fields is critical to many applications in fundamental physics, bioimaging, and material science. Magnetic-field sensors exploiting nitrogen-vacancy (NV) centers are particularly compelling as they offer high sensitivity and spatial resolution even at nanoscale. Achieving vector magnetometry has, however, often required applying microwaves sequentially or simultaneously, limiting the sensors' applications under cryogenic temperature. Here we propose and demonstrate a microwave-free vector magnetometer that simultaneously measures all Cartesian components of a magnetic field using NV ensembles in diamond. In particular, the present magnetometer leverages the level ant…

MagnetometerGeneral Physics and AstronomyFOS: Physical sciencesField (mathematics)02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciencesImaging phantomlaw.inventionlawVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Sensitivity (control systems)010306 general physicsPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyMagnetic fieldengineeringAtomic physics0210 nano-technologyGround state
researchProduct

Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging

2019

A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.

Materials sciencePhysics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and AstronomyApplied Physics (physics.app-ph)02 engineering and technologyengineering.material01 natural scienceslaw.inventionMagnetizationlaw0103 physical sciencesPhysics - Biological PhysicsSpectroscopyMassively parallelNanoscopic scale010302 applied physicsQuantum Physicsbusiness.industryForce spectroscopyDiamondInstrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnology3. Good healthBiological Physics (physics.bio-ph)engineeringOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessRealization (systems)
researchProduct

Rapid parameter estimation of discrete decaying signals using autoencoder networks

2021

Machine learning: science and technology 2(4), 045024 (2021). doi:10.1088/2632-2153/ac1eea

Signal Processing (eess.SP)FOS: Computer and information sciencesAccuracy and precisionComputer Science - Machine LearningComputer scienceddc:621.3FOS: Physical sciences01 natural sciencesSignalMachine Learning (cs.LG)010309 opticsExponential growthArtificial Intelligence0103 physical sciencesFOS: Electrical engineering electronic engineering information engineeringLimit (mathematics)Neural and Evolutionary Computing (cs.NE)Electrical Engineering and Systems Science - Signal Processing010306 general physicsSignal processingArtificial neural networkEstimation theoryComputer Science - Neural and Evolutionary ComputingAutoencoder621.3Human-Computer InteractionPhysics - Data Analysis Statistics and ProbabilityAlgorithmSoftwareData Analysis Statistics and Probability (physics.data-an)Machine Learning: Science and Technology
researchProduct

Extreme nuclear magnetic resonance: Zero field, single spins, dark matter….

2019

An unusual regime for liquid-state nuclear magnetic resonance (NMR) where the magnetic field strength is so low that the $J$-coupling (intramolecular spin-spin) interactions dominate the spin Hamiltonian opens a new paradigm with applications in spectroscopy, quantum control, and in fundamental-physics experiments, including searches for well-motivated dark-matter candidates. An interesting possibility is to bring this kind of "extreme NMR" together with another one---single nuclear spin detected with a single-spin quantum sensor. This would enable single-molecule $J$-spectroscopy.

Nuclear and High Energy PhysicsAtomic Physics (physics.atom-ph)Dark matterBiophysicsFOS: Physical sciencesQuantum controlApplied Physics (physics.app-ph)010402 general chemistry01 natural sciences7. Clean energyBiochemistryPhysics - Atomic Physics030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineNuclear magnetic resonanceZero fieldMesoscale and Nanoscale Physics (cond-mat.mes-hall)SpectroscopyPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpinsQuantum sensorPhysics - Applied PhysicsCondensed Matter Physics0104 chemical sciencesMagnetic fieldIntramolecular forceCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Journal of magnetic resonance (San Diego, Calif. : 1997)
researchProduct

Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer

2016

We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

PhysicsNuclear and High Energy PhysicsRelaxometryZero field NMRBiophysicsMagnetic resonance force microscopy010402 general chemistryCondensed Matter Physics01 natural sciencesBiochemistry0104 chemical sciencesFree induction decayNuclear magnetic resonanceSolid-state nuclear magnetic resonance0103 physical sciencesSpin echoCondensed Matter::Strongly Correlated Electrons010306 general physicsNuclear magnetic resonance decouplingEarth's field NMRJournal of Magnetic Resonance
researchProduct

Towards large‐scale steady‐state enhanced nuclear magnetization with in situ detection

2021

Magnetic resonance in chemistry 59(12), 1208 - 1215 (2021). doi:10.1002/mrc.5161

540 Chemistry and allied sciencesMagnetic Resonance Spectroscopy530 PhysicsEvaporation010402 general chemistrySpin isomers of hydrogen01 natural sciences530Catalysischemistry.chemical_compoundMagnetizationGeneral Materials Scienceddc:530Hyperpolarization (physics)Steady stateSpectrometer010405 organic chemistryGeneral Chemistry530 PhysikMagnetic Resonance Imaging0104 chemical sciencesIMeschemistryChemical physics540 ChemieYield (chemistry)
researchProduct

Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance

2017

Zero-field nuclear magnetic resonance (NMR) provides complementary analysis modalities to those of high-field NMR and allows for ultra-high-resolution spectroscopy and measurement of untruncated spin-spin interactions. Unlike for the high-field case, however, universal quantum control -- the ability to perform arbitrary unitary operations -- has not been experimentally demonstrated in zero-field NMR. This is because the Larmor frequency for all spins is identically zero at zero field, making it challenging to individually address different spin species. We realize a composite-pulse technique for arbitrary independent rotations of $^1$H and $^{13}$C spins in a two-spin system. Quantum-inform…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesQuantum simulator02 engineering and technology01 natural sciencesPhysics - Atomic PhysicsNuclear magnetic resonanceControlled NOT gatePhysics - Chemical Physics0103 physical sciencesQuantum metrology010306 general physicsSpin (physics)Chemical Physics (physics.chem-ph)Larmor precessionPhysicsQuantum PhysicsMultidisciplinarySpins500Nuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyCondensed Matter::Strongly Correlated Electronsddc:500Quantum Physics (quant-ph)0210 nano-technologyRealization (systems)
researchProduct

Evidence for degenerate mirrorless lasing in alkali metal vapor: forward beam magneto-optical experiment

2018

We report an experimental observation of degenerate mirrorless lasing in forward direction under excitation of a dilute atomic Rb vapor with a single linearly polarized cw laser light resonant with cycling Fe &gt; Fg atomic D2 transitions. Light polarized orthogonally to the laser light is generated for the input light intensity exceeding a threshold value of about 3 mW/cm^2. Application of a transverse magnetic field directed along the input light polarization reveals a sharp about 20 mG wide magnetic resonance centered at B = 0. Increasing the incident light intensity from 3 to 300 mW/cm^2, the generated light undergoes rapid amplitude increase followed by a decline and resonance broadeni…

PhysicsAtomic Physics (physics.atom-ph)Linear polarizationFOS: Physical sciencesResonanceCondensed Matter PhysicsPopulation inversionLaserPolarization (waves)01 natural sciencesRayAtomic and Molecular Physics and OpticsPhysics - Atomic Physicslaw.invention010309 opticsLight intensitylaw0103 physical sciencesAtomic physics010306 general physicsLasing thresholdJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Search for axion-like dark matter with spin-based amplifiers

2021

Ultralight axion-like particles (ALPs) are well-motivated dark matter candidates introduced by theories beyond the standard model. However, the constraints on the existence of ALPs through existing laboratory experiments are hindered by their current sensitivities, which are usually weaker than astrophysical limits. Here, we demonstrate a new quantum sensor to search for ALPs in the mass range that spans about two decades from 8.3 feV to 744 feV. Our sensor makes use of hyperpolarized long-lived nuclear spins as a pre-amplifier that effectively enhances coherently oscillating axion-like dark-matter field by a factor of &gt;100. Using spin-based amplifiers, we achieve an ultrahigh magnetic s…

PhysicsParticle physicsQuantum PhysicsPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Physics beyond the Standard ModelQuantum sensorDark matterGeneral Physics and AstronomyFOS: Physical sciencesParameter space7. Clean energy01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNucleonSpin (physics)Quantum Physics (quant-ph)Axion
researchProduct

Spiking dynamics of frequency up-converted field generated in continuous-wave excited rubidium vapours

2020

We report on spiking dynamics of frequency up-converted emission at 420 nm generated on the 6P3/2-5S1/2 transition in Rb vapour two-photon excited to the 5D5/2 level with laser light at 780 and 776 nm. The spike duration is less than the natural lifetime of any excited level involved in the interaction with both continuous and pulsed pump radiation. The spikes at 420 nm are attributed to temporal properties of the directional emission at 5.23 {\mu}m generated on the population inverted 5D5/2-6P3/2 transition. A link between the spiking regime and cooperative effects is discussed. We suggest that the observed stochastic behaviour is due to the quantum-mechanical nature of the cooperative eff…

Materials scienceField (physics)Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciencesRadiation01 natural sciencesRubidiumlaw.inventionPhysics - Atomic Physics010309 opticslaw0103 physical sciencesQuantum PhysicsDynamics (mechanics)Statistical and Nonlinear PhysicsLaserAtomic and Molecular Physics and OpticschemistryExcited stateContinuous waveAtomic physicsQuantum Physics (quant-ph)Visible spectrumOptics (physics.optics)Physics - Optics
researchProduct

Atomic physics studies at the gamma factory at CERN

2020

The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…

Photonradiation: secondaryAtomic Physics (physics.atom-ph)atomic spectroscopyGeneral Physics and Astronomy02 engineering and technology01 natural sciences7. Clean energyPhysics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)propagation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]particle sourcePhysicsLarge Hadron Collidercollimatorhep-phsecondary beam021001 nanoscience & nanotechnologyion: excited stateLHC storage ringsHigh Energy Physics - PhenomenologyCERN LHC CollSPS storage rings0210 nano-technologyParticle Physics - ExperimentAccelerator Physics (physics.acc-ph)CERN LabOrders of magnitude (temperature)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]gamma–ray productionOther Fields of PhysicsFOS: Physical sciencesAtomic spectroscopyion: beamgamma ray: burstpartially stripped ionsphysics.atom-phIonNuclear physics0103 physical sciencesddc:530010306 general physicsSpectroscopyphoton: beamphysics.acc-phParticle Physics - PhenomenologyAccelerator physicsparticle source: proposedhep-exCERN SPSAccelerators and Storage Rings[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laser* Automatic Keywords *ion: storage ringatomic physics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics::Accelerator PhysicsPhysics - Accelerator PhysicsStorage ring
researchProduct

Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in an external magnetic field

2020

In this paper cross-relaxation between nitrogen-vacancy (NV) centers and substitutional nitrogen in a diamond crystal was studied. It was demonstrated that optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully. The ODMR were detected at axial magnetic field values around 51.2~mT in a diamond sample with a relatively high (200~ppm) nitrogen concentration. We observed transitions that involve magnetic sublevels that are split by the hyperfine interaction. Microwaves in the frequency ranges from 1.3 GHz to 1.6 GHz ($m_S=0\longrightarrow m_S=-1$ NV transitions) and from 4.1 to 4.6 GHz ($m_S=0\longrightarrow m_S=+1$ NV transitions) were used. To u…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondFOS: Physical sciences02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringMoleculeHyperpolarization (physics)Atomic physics010306 general physics0210 nano-technologyQuantum Physics (quant-ph)QuantumHyperfine structureMicrowave
researchProduct

Spin-lattice relaxation of individual solid-state spins

2018

Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given…

PhysicsThermal equilibriumQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsPhononSpin–lattice relaxationFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeQuantum master equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencessymbolsQuantum metrologyPhysics::Atomic and Molecular ClustersQuantum informationQuantum Physics (quant-ph)010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)
researchProduct

Sawtooth-wave adiabatic-passage slowing of dysprosium

2018

We report on sawtooth wave adiabatic passage (SWAP) slowing of bosonic and fermionic dysprosium isotopes by using a 136 kHz wide transition at 626 nm. A beam of precooled atoms is further decelerated in one dimension by the SWAP force and the amount of atoms at near zero velocity is measured. We demonstrate that the SWAP slowing can be twice as fast as in a conventional optical molasses operated on the same transition. In addition, we investigate the parameter range for which the SWAP force is efficiently usable in our set-up, and relate the results to the adiabaticity condition. Furthermore, we add losses to the hyperfine ground-state population of fermionic dysprosium during deceleration …

Atomic Physics (physics.atom-ph)PopulationFOS: Physical scienceschemistry.chemical_elementSawtooth wave01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmas0103 physical sciencesPhysics::Atomic Physics010306 general physicsAdiabatic processeducationHyperfine structurePhysicsQuantum PhysicsRange (particle radiation)education.field_of_studychemistryQuantum Gases (cond-mat.quant-gas)Optical molassesDysprosiumAtomic physicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesBeam (structure)Physical Review A
researchProduct

Search for exotic spin-dependent interactions with a spin-based amplifier

2021

Description

PhysicsParticle physicsQuantum PhysicsMultidisciplinaryPhysicsPhysics beyond the Standard ModelAmplifier500FOS: Physical sciencesSciAdv r-articles01 natural sciences010305 fluids & plasmas0103 physical sciencesPhysical and Materials Sciencesddc:500Quantum Physics (quant-ph)010306 general physicsResearch ArticleSpin-½
researchProduct

Searching for axion stars and $Q$-balls with a terrestrial magnetometer network

2018

Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudos…

Atomic Physics (physics.atom-ph)media_common.quotation_subjectScalar (mathematics)Dark matterFOS: Physical sciencesAstrophysicsParameter space01 natural sciencesPhysics - Atomic PhysicsQ-ballHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonPhysicsQuantum Physics010308 nuclear & particles physicsAstronomyUniversePseudoscalarStarsHigh Energy Physics - PhenomenologyAstrophysics - Instrumentation and Methods for AstrophysicsQuantum Physics (quant-ph)
researchProduct

Zero-field nuclear magnetic resonance spectroscopy of viscous liquids

2014

Abstract We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin–spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.

Nuclear and High Energy PhysicsZero field NMRzero-field NMRBiophysicsAnalytical chemistryNMR spectroscopy; low field nmr; Density functional calculationsViscous liquidBiochemistrychemistry.chemical_compoundViscosityMolecular dynamicsNMR spectroscopyMoleculePhysics::Chemical Physicsdensity functional theoryCoupling constantlow field nmrtechnology industry and agricultureZero-field NMRNuclear magnetic resonance spectroscopyviscous liquidsCondensed Matter PhysicsScalar couplingDensity functional calculationschemistryChemical physicsDensity functional theoryscalar couplingEthylene glycolViscous liquidsJournal of Magnetic Resonance
researchProduct

Millicharged dark matter detection with ion traps

2022

We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties which make them ideal detectors for such a signal. First, ion traps have demonstrated significant isolation of the ions from the environment, greatly reducing the background heating and event rates. Second, ion traps can have low thresholds for detection of energy deposition, down to $\sim \text{neV}$. Third, since the ions are charged, they naturally have large cross sections for scattering with the millicharged particles, further enhanced by t…

Quantum PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)General EngineeringFOS: Physical sciences530Physics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)General Earth and Planetary Sciencesddc:530Quantum Physics (quant-ph)General Environmental ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Zero-field nuclear magnetic resonance of chemically exchanging systems.

2019

Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [15N]ammonium (15N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_4^ +$$\end{document}H4+) as a model syst…

0301 basic medicineReaction kinetics and dynamicsSciencePhysics::Medical PhysicsGeneral Physics and AstronomyModel system02 engineering and technologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesNuclear magnetic resonanceZero fieldHyperpolarization (physics)lcsh:ScienceDissolutionQuantitative Biology::Biomolecules3403 Macromolecular and Materials ChemistryMultidisciplinaryAqueous solution34 Chemical SciencesChemical exchangeQ500Diagnostic markersGeneral ChemistryNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyequipment and supplies030104 developmental biologylcsh:Qddc:5000210 nano-technologyhuman activitiesSolution-state NMR51 Physical Sciences
researchProduct

Deep neural networks to recover unknown physical parameters from oscillating time series.

2022

PLOS ONE 17(5), e0268439 (2022). doi:10.1371/journal.pone.0268439

FOS: Computer and information sciencesComputer Science - Machine LearningMultidisciplinaryTime FactorsPhysics610FOS: Physical sciencesSignal Processing Computer-AssistedNumerical Analysis (math.NA)Machine Learning (cs.LG)KnowledgePhysics - Data Analysis Statistics and ProbabilityFOS: MathematicsHumansMathematics - Numerical Analysisddc:610Neural Networks ComputerData Analysis Statistics and Probability (physics.data-an)PloS one
researchProduct

Demonstration of diamond nuclear spin gyroscope

2021

Description

Physics - Instrumentation and DetectorsFOS: Physical sciencesengineering.materiallaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physical and Materials SciencesApplied PhysicsPhysicsQuantum PhysicsMultidisciplinarySpinsCondensed Matter - Mesoscale and Nanoscale PhysicsRotation sensorbusiness.industryPhysicsDiamond500SciAdv r-articlesGyroscopeOptical polarizationInstrumentation and Detectors (physics.ins-det)engineeringOptoelectronicsddc:500businessQuantum Physics (quant-ph)Research ArticleScience Advances
researchProduct

Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating.

2016

The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence …

Materials scienceDouble bondphysics.chem-phFOS: Physical sciencesGeneral Physics and Astronomyengineering.material010402 general chemistry01 natural sciencessymbols.namesakeEngineeringCoatingPhysics - Chemical Physics0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsSpin relaxationCuring (chemistry)Chemical Physics (physics.chem-ph)chemistry.chemical_classificationPhysicochemical ProcessesCondensed Matter - Materials ScienceChemical PhysicsAlkeneMaterials Science (cond-mat.mtrl-sci)Alkali metalcond-mat.mtrl-sci0104 chemical sciences3. Good healthchemistryChemical engineeringPhysical SciencesChemical SciencessymbolsengineeringRaman spectroscopyBiotechnologyThe Journal of chemical physics
researchProduct

On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries

2018

Micromachines 9(6), 276 (2018). doi:10.3390/mi9060276

Materials scienceMagnetometerInfraredlcsh:Mechanical engineering and machineryPhysics::Optics02 engineering and technologyengineering.material01 natural sciencesWaveguide (optics)Articlelaw.inventioncompact sensorlawNV-centers0103 physical sciencesMiniaturizationlcsh:TJ1-1570Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMechanical EngineeringDiamond021001 nanoscience & nanotechnology620Magnetic fielddiamond-based magnetometerControl and Systems EngineeringengineeringOptoelectronicsdiamond-based magnetometer; NV-centers; compact sensorddc:6200210 nano-technologybusinessMicromachines
researchProduct

Scalar Dark Matter in the Radio-Frequency Band: Atomic-Spectroscopy Search Results

2019

Among the prominent candidates for dark matter are bosonic fields with small scalar couplings to the Standard-Model particles. Several techniques are employed to search for such couplings and the current best constraints are derived from tests of gravity or atomic probes. In experiments employing atoms, observables would arise from expected dark-matter-induced oscillations in the fundamental constants of nature. These studies are primarily sensitive to underlying particle masses below $10^{-14}$ eV. We present a method to search for fast oscillations of fundamental constants using atomic spectroscopy in cesium vapor. We demonstrate sensitivity to scalar interactions of dark matter associate…

PhysicsAtomic Physics (physics.atom-ph)Dark matterScalar (physics)FOS: Physical sciencesGeneral Physics and AstronomyObservableAtomic spectroscopy01 natural sciencesCesium vaporPhysics - Atomic Physics3. Good healthGravitationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Particle mass0103 physical sciencesRadio frequencyAtomic physics010306 general physicsPhysical Review Letters
researchProduct

Emergent hydrodynamics in a strongly interacting dipolar spin ensemble.

2021

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent "classical" properties of a system (e.g. diffusivity, viscosity, compressibility) from a generic microscopic quantum Hamiltonian. Here, we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometer length scales. In particular, the combination of positional di…

PhysicsQuantum PhysicsMultidisciplinaryRandom fieldCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum simulatorFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksFick's laws of diffusionDipolesymbols.namesakeClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin diffusionsymbolsddc:500Spin (physics)Hamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumNature
researchProduct

Search for topological defect dark matter with a global network of optical magnetometers

2021

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Particle physicsGeneral Physics and AstronomyFOS: Physical sciences53001 natural sciencesArticleHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesDark energy and dark matterddc:530Atomic and molecular physics010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond

2018

Understanding the mechanisms behind high-$T_{c}$ Type-II superconductors (SC) is still an open task in condensed matter physics. One way to gain further insight into the microscopic mechanisms leading to superconductivity is to study the magnetic properties of the SC in detail, for example by studying the properties of vortices and their dynamics. In this work we describe a new method of wide-field imaging magnetometry using nitrogen-vacancy (NV) centers in diamond to image vortices in an yttrium barium copper oxide (YBCO) thin film. We demonstrate quantitative determination of the magnetic field strength of the vortex stray field, the observation of vortex patterns for different cooling fi…

Magnetic domainMagnetismFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyElectronengineering.material01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials ScienceCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsPhysicsSuperconductivityCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsCondensed Matter - SuperconductivitySkyrmionDiamond021001 nanoscience & nanotechnologyMagnetic fieldengineering0210 nano-technologyPhysical Review Applied
researchProduct

Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

2014

We demonstrate an all-optical 133Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/Hz and measure a technical noise floor of 40fT/Hz. These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

PhysicsPhysics and Astronomy (miscellaneous)Magnetic energyNeutron magnetic momentCondensed matter physicsMagnetometerElectron magnetic dipole momentMagnetic fieldComputational physicslaw.inventionDipolelawSpin echoPhysics::Atomic PhysicsMagnetic dipoleApplied Physics Letters
researchProduct

Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy

2020

We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.

Materials scienceKerr effectMagnetometer530 PhysicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics02 engineering and technologyApplied Physics (physics.app-ph)01 natural scienceslaw.inventionOpticslawMagnetic imaging0103 physical sciencesMicroscopyddc:530Physics::Atomic Physics010306 general physicsSpin (physics)Condensed Matter - Materials ScienceMagnetic momentbusiness.industryMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics021001 nanoscience & nanotechnology530 PhysikMagnetic fieldFerromagnetism0210 nano-technologybusiness
researchProduct

A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance.

2017

We present a method which allows for the extraction of physical quantities directly from zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) data. A numerical density matrix evolution is used to simulate ZULF NMR spectra of several molecules in order to fit experimental data. The method is utilized to determine the indirect spin-spin couplings ($J$-couplings) in these, which is achieved with precision of $10^{-2}$--$10^{-4}$ Hz. The simulated and measured spectra are compared to earlier research. Agreement and precision improvement for most of the $J$-coupling estimates are achieved. The availability of an efficient, flexible fitting method for ZULF NMR enables a new generation of…

Chemical Physics (physics.chem-ph)Nuclear and High Energy PhysicsZero field NMRField (physics)ChemistryBiophysicsFOS: Physical sciences010402 general chemistryCondensed Matter Physics01 natural sciences7. Clean energyBiochemistrySpectral line0104 chemical sciences3. Good healthNMR spectra databaseMatrix (mathematics)Nuclear magnetic resonancePhysics - Chemical Physics0103 physical sciencesTransverse relaxation-optimized spectroscopy010306 general physicsSpin (physics)Two-dimensional nuclear magnetic resonance spectroscopyJournal of magnetic resonance (San Diego, Calif. : 1997)
researchProduct

Pseudovector and pseudoscalar spin-dependent interactions in atoms

2019

Hitherto unknown elementary particles can be searched for with atomic spectroscopy. We conduct such a search using a potential that results from the longitudinal polarization of a pseudovector particle. We show that such a potential, inversely proportional to the boson's mass squared, $V \propto 1/M^2$, can stay finite at $M \to 0$ if the theory is renormalizable. We also look for a pseudoscalar boson, which induces a contact spin-dependent potential that does not contribute to new forces searched for in experiments with macroscopic objects, but may be seen in atomic spectroscopy. We extract limits on the interaction constants of these potentials from the experimental spectra of antiprotoni…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Atomic Physics (physics.atom-ph)FOS: Physical sciencesddc:530Physics::Atomic PhysicsPhysics - Atomic Physics
researchProduct

Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

2017

Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles) with masses ${10}^{\ensuremath{-}2}\ensuremath{\lesssim}m\ensuremath{\lesssim}{10}^{4}\mathrm{eV}$ are improved by a factor of $\ensuremath{\sim}100$. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

General PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesElectron01 natural sciencesphysics.atom-phMathematical SciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)SpectroscopyAxionBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phPseudoscalarHigh Energy Physics - PhenomenologyExcited statePhysical SciencesChemical SciencesAtomic physicsEnergy (signal processing)
researchProduct

Chemical Reaction Monitoring Using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers

2020

Abstract We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero‐field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two‐step hydrogenation of dimethyl acetylenedicarboxylate with para‐enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero‐field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heteroge…

Chemical substanceMaterials scienceHydrogenAnalytical chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesChemical reaction7. Clean energyCatalysisNMR spectroscopyHyperpolarization (physics)Research Articleshyperpolarization010405 organic chemistryReaction MonitoringGeneral MedicineGeneral ChemistryNuclear magnetic resonance spectroscopyequipment and suppliesMagnetic susceptibility0104 chemical sciencesMagnetic fieldzero-fieldchemistryddc:540Electromagnetic shieldingResearch Article
researchProduct

Intensity-correlated spiking of infrared and ultraviolet emission from sodium vapors

2021

The directional spiking infrared and ultraviolet emission from sodium vapors excited to the 4D5/2 level by a continuous-wave resonant laser pump, that constitute a novel feature of the cooperative effects, has been analyzed. Cascade mirrorless lasing at 2207 and 2338 nm on population-inverted transitions and ultraviolet radiation at 330 nm that is generated due to four-wave mixing process demonstrate a high degree of intensity correlation.

Materials scienceInfraredAtomic Physics (physics.atom-ph)FOS: Physical sciencesLaser pumpingRadiationmedicine.disease_cause01 natural sciencesPhysics - Atomic Physics010309 opticsOptics0103 physical sciencesmedicineSpontaneous emission010306 general physicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]business.industryAtomic and Molecular Physics and Optics3. Good healthCascadeExcited stateAtomic physicsbusinessQuantum Physics (quant-ph)Lasing thresholdUltravioletOptics (physics.optics)Physics - OpticsOptics Letters
researchProduct

Dynamic effects in nonlinear magneto-optics of atoms and molecules: review

2004

A brief review is given of topics relating to dynamical processes arising in nonlinear interactions between light and resonant systems (atoms or molecules) in the presence of a magnetic field.

Quantum opticsPhysicsZeeman effectCondensed matter physicsAtomic Physics (physics.atom-ph)business.industryAtoms in moleculesFOS: Physical sciencesNonlinear opticsStatistical and Nonlinear PhysicsAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsMagnetic fieldNonlinear systemsymbols.namesakeOpticsQuantum beatssymbolsbusinessMagnetoJournal of the Optical Society of America B
researchProduct

Stochastic fluctuations of bosonic dark matter

2021

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)530 PhysicsScienceQFOS: Physical sciences500Astrophysics::Cosmology and Extragalactic Astrophysics530 PhysikCharacterization and analytical techniquesArticlePhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy and dark matterddc:500Astrophysics - Cosmology and Nongalactic AstrophysicsNature Communications
researchProduct

Intensity interferometry for ultralight bosonic dark matter detection

2023

Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesAstrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

Fiberized diamond-based vector magnetometers

2021

Frontiers 2, 732748 (2021). doi:10.3389/fphot.2021.732748

Quantum Physics530 PhysicsComputer Science::Networking and Internet Architectureddc:300FOS: Physical sciencesGeneral MedicineQuantum Physics (quant-ph)530 Physik300
researchProduct

All-Optical Spin Locking in Alkali-Vapor Magnetometers

2018

The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. We demonstrate a scheme to suppress the nonlinear Zeeman effect all optically based on spin locking. Spin locking is achieved with an effective oscillating magnetic field provided by the AC Stark-shift of an intensity-modulated and polarization-modulated laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line with about 100 Hz width in the Earth-field range into a peak with a central component width of 25Hz. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensit…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics - Atomic Physics
researchProduct

Battery Diagnostics with Sensitive Magnetometry

2019

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, or for sensing capacity loss mechanisms. Here, we demonstrate the use of atomic magnetometry to map the weak induced magnetic fields around a Li-ion battery cell as a function of state of charge and upon introducing mechanical defects. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In addition, the measurements reveal hitherto unknown long time-scale transient inte…

Chemical Physics (physics.chem-ph)Physics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Physics - Chemical PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Instrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsPhysics - Atomic Physics
researchProduct

Detection of missing low-lying atomic states in actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s^27p 2P^o_1/2, 7s^27p 2P^o_3/2, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) cm^-1 and 12 276.59(2) cm^-1. The lifetimes of these states were determined as 668(11) ns and 255(7) ns, respectively. In addition, these properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods in good agreement. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficient laser-cooling and ionization schemes for actinium, with possible applications for high-purity…

Quantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesQuantum Physics (quant-ph)Physics - Atomic Physics
researchProduct

Opportunities for Fundamental Physics Research with Radioactive Molecules

2023

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

Nuclear Theory (nucl-th)nucl-thNuclear TheoryAtomic Physics (physics.atom-ph)Nuclear Physics - TheoryOther Fields of PhysicsFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)nucl-exphysics.atom-phNuclear ExperimentPhysics - Atomic Physics
researchProduct

Zero-Field J-spectroscopy of Quadrupolar Nuclei

2020

Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is a version of NMR that allows studying molecules and their transformations in the regime dominated by intrinsic spin-spin interactions. While spin dynamics at zero magnetic field can be probed indirectly, J-spectra can also be measured at zero field by using non-inductive sensors, for example, optically-pumped magnetometers (OPMs). A J-spectrum can be detected when a molecule contains at least two different types of magnetic nuclei (i.e., nuclei with different gyromagnetic ratios) that are coupled via J-coupling. Up to date, no pure J-spectra of molecules featuring the coupling to quadrupolar nuclei were reported. Here we sho…

Chemical Physics (physics.chem-ph)Physics - Chemical Physicsphysics.chem-phFOS: Physical sciences
researchProduct

Dark matter searches using accelerometer-based networks

2021

Quantum science and technology 6(3), 034004 (2021). doi:10.1088/2058-9565/abef4f

QuarkPhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsMaterials Science (miscellaneous)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAccelerometer53001 natural sciencesAtomic and Molecular Physics and OpticsDomain (software engineering)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Electrical and Electronic Engineering010306 general physicsAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Oscillating nuclear electric dipole moments inside atoms

2019

Interaction with the axion dark matter (DM) field generates an oscillating nuclear electric dipole moment (EDM) with a frequency corresponding to the axion's Compton frequency. Within an atom, an oscillating EDM can drive electric dipole transitions in the electronic shell. In the absence of radiation, and if the axion frequency matches a dipole transition, it can promote the electron into the excited state. The excitation events can be detected, for example, via subsequent uorescence or photoionization. Here we calculate the rates of such transitions. For a single light atom and an axion Compton frequency resonant with a transition energy corresponding to 1 eV, the rate is on the order of …

Nuclear Theory (nucl-th)Nuclear TheoryAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Atomic Physics
researchProduct

A network of precision gravimeters as a detector of matter with feeble nongravitational coupling

2019

Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 $\mu$Hz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth's density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 10$^{14}$ kg or greater with an oscillation amplitude of 0.1 $r_e$. It may be possible to improve the sensitivity of the search by…

Earth and Planetary Astrophysics (astro-ph.EP)Physics::Space PhysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics - Earth and Planetary AstrophysicsPhysics::Geophysics
researchProduct

Electrical readout microwave-free sensing with diamond

2022

While nitrogen-vacancy (NV-) centers have been extensively investigated in the context of spin-based quantum technologies, the spin-state readout is conventionally performed optically, which may limit miniaturization and scalability. Here, we report photoelectric readout of ground-state cross-relaxation features, which serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments and also for microwave-free sensing. As a proof of concept, by systematically tuning NV centers into resonance with the target electronic system, we extracted the spectra for the P1 electronic spin bath in diamond. Such detection may enable probing optically inactive defects …

Quantum PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct

Infrared laser magnetometry with a NV doped diamond intracavity etalon

2018

We propose an hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be around $250~\mathrm{fT/\sqrt{Hz}}$. Unlike usual NV center infrared magnetometry, this method would not require an external frequency …

Quantum PhysicsFOS: Physical sciencesPhysics::OpticsPhysics::Atomic PhysicsQuantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct

Photoluminescence at the ground state level anticrossing of the nitrogen-vacancy center in diamond

2020

The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables to have an effect on the NV center's luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. …

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences
researchProduct

Improved Bounds on Ultralight Scalar Dark Matter in the Radio-Frequency Range

2022

We present a search for fundamental constant oscillations in the range $20$~kHz-$100$ MHz, that may arise within models for ultralight dark matter (UDM). Using two independent, significantly upgraded optical-spectroscopy apparatus, we achieve up to $\times$1000 greater sensitivity in the search relative to previous work. We report no observation of UDM and thus constrain respective couplings to electrons and photons within the investigated UDM particle mass range $8\cdot 10^{-11}-4\cdot 10^{-7}$ eV. The constraints significantly exceed previously set bounds, and as we show, may surpass in future experiments those provided by equivalence-principle experiments in a specific case regarding the…

Quantum PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and Astronomy530 Physik530Physics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)ddc:530Quantum Physics (quant-ph)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Data File 1.csv

2019

This table contains information regarding maximal observed power, divergence and linewidth for the observed mirrorless lasing components

Physics::Optics
researchProduct