0000000000000298

AUTHOR

Manuel Martínez-corral

0000-0002-1449-8976

Apodization of imaging systems by means of a random spatially nonstationary absorbing screen

The amplitude impulse response (AIR) of coherent imaging systems with random binary apodizers is analyzed. Formulas for the mean value and the variance of the AIR are derived for two statistical one-dimensional models of apodizers: (1) nonuniform low-density shot noise and (2) a nonuniform unipolar synchronous random process. We show that for both models a high signal-to-noise ratio is achieved within the central peak and the low-order sidelobes of the AIR. Apodizers based on the second model permit higher values of the signal-to-noise ratio than those based on the first one.

research product

Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system

One of the main limitations of integral imaging is the narrow viewing angle. This drawback comes from the limited field of view of microlenses during the pickup and display. We propose a novel all-optical technique which allows the substantial increase of the field of view of any microlens and therefore of the viewing angle of integral-imaging displays.

research product

Binarization of a super-resolving graytone pupil filter by digital halftoning

— Six digital-halftoning procedures, including one algorithm proposed by us, are compared to determine which one is best suited to binarization of a parabolic super-resolving pupil filter. The procedures we deal with include iterative, error-diffusion, error-convergence, and 1-pixel algorithms. We carry out a numerically simulated experiment in which an object that consists of either one point source or two coherent point sources is imaged in a 4f imaging system with either a continuous super-resolving parabolic filter or one of its six different binary versions. The performance of binary filters is examined in terms of two parameters: the resemblance of their amplitude impulse response (AI…

research product

Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens.

Quantitative phase measurements obtained with digital holographic microscopes are strongly dependent on the optical arrangement of the imaging system. The nontelecentric operation provides phase measurements affected by a parabolic phase factor and requires numerical postprocessing, which does not always remove all the perturbation. Accurate phase measurements are achieved by using the imaging system in telecentric mode. Unfortunately, this condition is not accomplished when a commercial microscope is used as the imaging system. In this paper, we present an approach for obtaining accurate phase measurements in nontelecentric imaging systems without the need for numerical postprocessing. The…

research product

Axial resonance of periodic patterns by using a Fresnel biprism.

This paper proposes a method for the generation of high-contrast localized sinusoidal fringes with spatially noncoherent illumination and relatively high light throughput. The method, somehow similar to the classical Lau effect, is based on the use of a Fresnel biprism. It has some advantages over previous methods for the noncoherent production of interference fringes. One is the flexibility of the method, which allows the control of the fringe period by means of a simple axial shift of the biprism. Second is the rapid axial fall-off in visibility around the high-contrast fringe planes. And third is the possibility of creating fringes with increasing or with constant period as the light bea…

research product

Area-Based Depth Estimation for Monochromatic Feature-Sparse Orthographic Capture

With the rapid development of light field technology, depth estimation has been highlighted as one of the critical problems in the field, and a number of approaches have been proposed to extract the depth of the scene. However, depth estimation by stereo matching becomes difficult and unreliable when the captured images lack both color and feature information. In this paper, we propose a scheme that extracts robust depth from monochromatic, feature-sparse scenes recorded in orthographic sub-aperture images. Unlike approaches which rely on the rich color and texture information across the sub-aperture views, our approach is based on depth from focus techniques. First, we superimpose shifted …

research product

Compact and Field Portable Biophotonic Sensors for Automated Cell Identification (Plenary Address)

In this Plenary address paper, we overview recently published work for automated cell identification using 3D optical imaging in compact and field portable biophotonic sensors. Digital holographic microscopy systems and lensless pseudorandom phase encoding systems capture 3D information of biological cells and make highly accurate automated cell identification possible. Overviewed systems include sickle cell disease diagnosis based on spatio-temporal cell dynamics in a field-portable 3D-printed shearing digital holography as well as lensless cell identification of both single and multicell samples using pseudorandom phase encoding.

research product

Optical implementation of micro-zoom arrays for parallel focusing in integral imaging.

We report 3D integral imaging with an electronically tunable-focal-length lens for improved depth of field. The micro-zoom arrays are generated and implemented based on the concept of parallel apodization. To the best of our knowledge, this is the first report of parallel dynamic focusing in integral imaging based on the use of micro-zoom arrays.

research product

Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination.

A novel and efficient architecture of a structured-illumination digital holographic microscope (DHM) is presented. As the DHM operates at the diffraction limit, its spatial resolution on label-free imaging of transparent samples is improved by illuminating the sample with a structured illumination produced by a Fresnel's biprism. The theoretical analysis of the method forecasts a twofold improvement of the spatial resolution. The proposed method requires only two images to improve the spatial resolution, which eases the process of unmixing the high-resolution components by means of an unknown phase-shift procedure. Numerical modeling and experimental results validate the theoretical finding…

research product

Zero axial irradiance by annular screens with angular variation

For optical alignment, it may be convenient to use a three-dimensional diffraction pattern with zero irradiance along the optical axis. This pattern is created here by using annular screens in the form of a phase daisy, a daisy flower, or a pie, with an even number of slices of an equal central angle and with every other slice with a phase retardation of 180 degrees . We recognize this form of angular variation as a particular solution of a wider set of functions that are able to produce zero axial irradiance.

research product

Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy.

Scattering scanning near-field optical microscopy (s-SNOM) has been demonstrated as a valuable tool for mapping the optical and optoelectronic properties of materials with nanoscale resolution. Here we report experimental evidence that trapped electric charges injected by an electron beam at the surface of dielectric samples affect the sample-dipole interaction, which has direct impact on the s-SNOM image content. Nanoscale mapping of the surface trapped charge holds significant potential for the precise tailoring of the electrostatic properties of dielectric and semiconductive samples, such as hydroxyapatite, which has particular importance with respect to biomedical applications. The meth…

research product

Formation of real, orthoscopic integral images by smart pixel mapping.

Integral imaging systems are imaging devices that provide 3D images of 3D objects. When integral imaging systems work in their standard configuration the provided reconstructed images are pseudoscopic; that is, are reversed in depth. In this paper we present, for the first time we believe, a technique for formation of real, undistorted, orthoscopic integral images by direct pickup. The technique is based on a smart mapping of pixels of an elemental-images set. Simulated imaging experiments are presented to support our proposal.

research product

3D integral imaging with optical processing

Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices…

research product

Digital slicing of 3D scenes by Fourier filtering of integral images

We present a novel technique to extract depth information from 3D scenes recorded using an Integral Imaging system. The technique exploits the periodic structure of the recorded integral image to implement a Fourier-domain filtering algorithm. A proper projection of the filtered integral image permits reconstruction of different planes that constitute the 3D scene. The main feature of our method is that the Fourier-domain filtering allows the reduction of out-of-focus information, providing the InI system with real optical sectioning capacity.

research product

High-resolution far-field integral-imaging camera by double snapshot

In multi-view three-dimensional imaging, to capture the elemental images of distant objects, the use of a field-like lens that projects the reference plane onto the microlens array is necessary. In this case, the spatial resolution of reconstructed images is equal to the spatial density of microlenses in the array. In this paper we report a simple method, based on the realization of double snapshots, to double the 2D pixel density of reconstructed scenes. Experiments are reported to support the proposed approach.

research product

Optimized integral imaging display by global pixel mapping

Integral imaging systems are imaging devices that provide 3D images of 3D objects. When integral imaging systems work in their standard configuration the provided reconstructed images are pseudoscopic; that is, are reversed in depth. In this paper we present a technique for formation of real, undistorted, orthoscopic integral images by direct pickup. The technique is based on a global mapping of pixels of an elemental-images set. Simulated imaging experiments are presented.

research product

THREE-DIMENSIONAL INTEGRAL MICROSCOPY WITH ENHANCED RESOLUTION AND DEPTH OF FIELD

In this contribution we explain two new techniques developed by our group, which permit to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy.

research product

Three-dimensional superresolution by annular binary filters

We present a new family of annular binary filters for improving the three-dimensional resolving power of optical systems. The filters, whose most important feature is their simplicity, permit to achieve a significant reduction, both in the transverse and in the axial direction, of the central lobe width of the irradiance point spread function of the system. The filters can be used for applications such as optical data storage or confocal scanning microscopy.

research product

Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments.

In modern high-numerical-aperture (NA) optical scanning instruments, such as scanning microscopes, optical data storage systems, or laser trapping technology, the beam emerging from the high-NA objective focuses deeply through an interface between two media of different refractive index. Such a refractive index mismatch introduces an important amount of spherical aberration, which increases dynamically when scanning at increasing depths. This effect strongly degrades the instrument performance. Although in the past few years many different techniques have been reported to reduce the spherical aberration effect, no optimum solution has been found. Here we concentrate on a technique whose mai…

research product

Tunable optical sectioning in confocal microscopy by use of symmetrical defocusing and apodization

We present two novel optical methods to achieve a significative improvement in the optical-sectioning capacity of confocal scanning microscopes. The techniques, whose real power is the simplicity with which they can be implemented, consist of a suitable combination of symmetrical defocusing with two different manners of apodizing both parts of the confocal architecture. It is shown that the proposed techniques are useful in both the bright-field and the fluorescence modes and for reflection and transmission geometries.

research product

Annular binary filters for controlling the axial behaviour of optical systems

The one-dimensional (1D) version of the iterative Fourier transform algorithm (IFTA) and a modified error diffusion algorithm are proposed for binarizing rotationally symmetric pupil filters designed to shape the axial impulse response of optical system. The resulting binary masks consist of a set of transparent and opaque annular zones of equal area or equal width. A numerical experiment in which we examine the performance of the binarization methods is carried out. In this experiment the resemblance between the axial diffractive behaviour of the binary version of an axially superresolving pupil filter, and that of the original continuous-tone filter is evaluated. It is shown that the perf…

research product

Free-depths reconstruction with synthetic impulse response in integral imaging

Integral Imaging provides spatial and angular information of three-dimensional (3D) objects, which can be used both for 3D display and for computational post-processing purposes. In order to recover the depth information from an integral image, several algorithms have been developed. In this paper, we propose a new free depth synthesis and reconstruction method based on the two-dimensional (2D) deconvolution between the integral image and a simplified version of the periodic impulse response function (IRF) of the system. The period of the IRF depends directly on the axial position within the object space. Then, we can retrieve the depth information by performing the deconvolution with compu…

research product

Examining the utility of pinhole-type screens for lightfield display

The use of microlens arrays for lightfield display has the drawback of providing images with strong chromatic aliasing. To overcome this problem, pinhole-type lightfield monitors are proposed. This paper is devoted to evaluating the capability for such lightfield monitors to offer the user a convincing 3D experience with images with enough brightness and continuous aspect. Thus, we have designed a psychophysical test specifically adapted for lightfield monitors, which allowed us to confirm the usability of pinhole-type monitors.

research product

Orthoscopic long-focal-depth 3D integral imaging

Integral imaging systems are imaging devices that provide 3D images of 3D objects. When integral imaging systems work in their standard configuration the provided reconstructed images are pseudoscopic; that is, are reversed in depth. In this paper we present, a technique for formation of real, undistorted, orthoscopic integral images by direct pickup. The technique is based on the use of a proper relay system and a global mapping of pixels of the elemental-images set. Simulated imaging experiments are presented to support our proposal.

research product

Time-multiplexing Integral Microscopy

Conventional microscopes do not capture the 3D information of thick specimens. In order to avoid this limitation Integral Microscopy was proposed. An integral microscope is implemented by inserting a microlens array between the microscope objective and the camera sensor. Although this device captures multiperspective information of the specimen, the small number of microlenses limits the lateral resolution. In this paper we propose to improve the resolution by time multiplexing. Specifically, we propose an electrically addressable device that permits to obtain three sheared versions of the microscopic plenoptic map. Digital processing algorithm applied to the maps provides images with resol…

research product

Focus on Microscopy in the City of the Holy Grail

The next conference in the FOM microscopy conference series will take place in the week after Easter in the University of Valencia, Spain, from Tuesday 10 April to Friday 13 April 2007. The detailed program and information of the conference can be found at the conference website: FocusOnMicroscopy.org.

research product

Facet braiding: a fundamental problem in integral imaging.

A rigorous explanation of a phenomenon that produces significant distortions in the three-dimensional images produced by integral imaging systems is provided. The phenomenon, which we refer to as the facet-braiding effect, has been recognized in some previous publications, but to our knowledge its nature has never been analyzed. We propose a technique for attenuating the facet-braiding effect. We have conducted experiments to illustrate the consequences of the facet-braiding effect on three-dimensional integral images, and we show the usefulness of the proposed technique in eliminating this effect.

research product

Three-dimensional polarimetric computational integral imaging

In this paper, we propose a novel 3D polarimetric computational integral imaging system by using polarization diversity of objects under natural illumination conditions. In the system, the measured Stokes polarization parameters are utilized to generate degree of polarization images of a 3D scene. Based on degree of polarization images and original 2D images, we utilize a modified computational reconstruction method to perform 3D polarimetric image reconstruction. The system may be used to detect or classify objects with distinct polarization signatures in 3D space. Experimental results also show the proposed system may mitigate the effect of occlusion in 3D reconstruction.

research product

Optically-corrected elemental images for undistorted Integral image display

Conventional macro objectives are generally used as relay systems in the capture stage in Integral Imaging. This choice leads to microimage overlap and shift, which produce undesirable effects on the reconstructed three-dimensional images, such as loss in resolution and image distortions. In this paper, we propose and demonstrate a new architecture for the capture stage. Our method uses a telecentric relay system to overcome the conventional drawbacks. Experiments conducted with our system show an important improvement in the quality of displayed images.

research product

Large Depth-of-Field Integral Microscopy by Use of a Liquid Lens

Integral microscopy is a 3D imaging technique that permits the recording of spatial and angular information of microscopic samples. From this information it is possible to calculate a collection of orthographic views with full parallax and to refocus computationally, at will, through the 3D specimen. An important drawback of integral microscopy, especially when dealing with thick samples, is the limited depth of field (DOF) of the perspective views. This imposes a significant limitation on the depth range of computationally refocused images. To overcome this problem, we propose here a new method that is based on the insertion, at the pupil plane of the microscope objective, of an electrical…

research product

Ownership protection of plenoptic images by robust and reversible watermarking

Abstract Plenoptic images are highly demanded for 3D representation of broad scenes. Contrary to the images captured by conventional cameras, plenoptic images carry a considerable amount of angular information, which is very appealing for 3D reconstruction and display of the scene. Plenoptic images are gaining increasing importance in areas like medical imaging, manufacturing control, metrology, or even entertainment business. Thus, the adaptation and refinement of watermarking techniques to plenoptic images is a matter of raising interest. In this paper a new method for plenoptic image watermarking is proposed. A secret key is used to specify the location of logo insertion. Employing discr…

research product

Extended View Angle Integral Imaging 3D Display using Smart Pseudoscopic-to-orthoscopic Conversion with Head Tracking

We overview a head tracking integral imaging display using the smart pseudoscopic-to-orthoscopic conversion method. The crosstalk for a large viewing angle in integral imaging is eliminated by generating a new set of elemental images.

research product

Fourier-domain lightfield microscopy: a new paradigm in 3D microscopy

Recently, integral (also known as lightfield or plenoptic) imaging concept has been applied successfully to microscopy. The main advantage of lightfield microscopy when compared with conventional 3D imaging techniques is that it offers the possibility of capturing the 3D information of the sample after a single shot. However, integral microscopy is now facing many challenges, like improving the resolution and depth of field of the reconstructed specimens or the development and optimization of specially-adapted reconstruction algorithms. This contribution is devoted to review a new paradigm in lightfield microscopy, namely, the Fourier-domain integral microscope (FiMic), that improves the ca…

research product

Robust Light Field Watermarking by 4D Wavelet Transform

Unlike common 2D images, the light field representation of a scene delivers spatial and angular description which is of paramount importance for 3D reconstruction. Despite the numerous methods proposed for 2D image watermarking, such methods do not address the angular information of the light field. Hence the exploitation of such methods may cause severe destruction of the angular information. In this paper, we propose a novel method for light field watermarking with extensive consideration of the spatial and angular information. Considering the 4D innate of the light field, the proposed method incorporates 4D wavelet for the purpose of watermarking and converts the heavily-correlated chann…

research product

Axial resolution in two-color excitation fluorescence microscopy by phase-only binary apodization

We study the effect of a kind of binary phase-only filters, the Toraldo filters, in two-color excitation fluorescence microscopy. We show that by simple insertion of a properly designed Toraldo filter in one of the illumination arms the axial resolution of the system is significantly improved. Specifically, the main peak of the point spread function is narrowed by 22% along the axial direction.

research product

3D imaging and visualization: An overview of recent advances

This paper presents an overview of our published work on physical principles, applications, and advances in integral imaging and digital holography. Various approaches for image capture, image reconstruction, and 3D display methods are overviewed. Applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed.

research product

Axial behavior of diffractive lenses under Gaussian illumination: complex-argument spectral analysis

We present a general procedure to analyze the axial-irradiance distribution generated by an unlimited diffractive lens under coherent, Gaussian illumination. The resulting on-axis diffraction pattern, which is evaluated in terms of the power complex spectrum of the Fresnel-zone transmittance, explicitly depends on the truncation parameter that we define, which evaluates the effective number of zones illuminated by the Gaussian beam. Depending on the value of this parameter, different kinds of axial behavior are observed. In particular, for moderate values a multiple-focal-shift phenomenon appears, and a simple formula for its evaluation is presented. Additionally, for low values of the trun…

research product

Inverse focal shift: A new effect in truncated cylindrical waves

We report on a general analytical procedure to analyse the axial focusing properties of uniform cylindrical waves truncated by a rectangular window. The resulting on-axis diffraction pattern explicitly depends on the square of the window height-to-width ratio. Depending on the value of this parameter, different kinds of axial behaviour are observed. In particular, it is found that for low values of this parameter and low Fresnel number, instead of the expected focal-shift effect, an inverse focal-shift phenomenon can appear, i.e. the maximum of the axial-irradiance distribution is displaced further away from the window.

research product

Three-Dimensional Integral Imaging and Display

research product

Quasi-isotropic 3-D resolution in two-photon scanning microscopy.

One of the main challenges in three-dimensional microscopy is to overcome the lack of isotropy of the spatial resolution, which results from the axially-elongated shape of the point spread function. Such anisotropy gives rise to images in which significant axially-oriented structures of the sample are not resolved. In this paper we achieve an important improvement in z resolution in two-photon excitation microscopy through spatial modulation of the incident beam. Specifically, we demonstrate that the design and implementation of a simple shaded ring performs quasi-isotropic three-dimensional imaging and that the corresponding loss in luminosity can be easily compensated by most available fe…

research product

Chapter 1 The Resolution Challenge in 3D Optical Microscopy

Publisher Summary This chapter discusses the theoretical principles of 3D microscopy with the widespread realizations of 3D microscopy.Based on the paraxial diffraction equations, it has been shown that conventional microscopes, when dealing with 3D fluorescent samples, provide sets of 2D images. These images of the different transverse sections of the 3D object contain, in addition to the sharp image of the in focus section, the blurred images of the rest of the specimen. The paraxial formalism has been generalized in a very simple way to a non-paraxial context, showing that the equations that govern non-paraxial imaging are similar to those that govern paraxial imaging. The only differenc…

research product

Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector

[EN] We report a scheme for the detector system of confocal microscopes in which the pinhole and a large-area detector are substituted by a CCD camera. The numerical integration of the intensities acquired by the active pixels emulates the signal passing through the pinhole. We demonstrate the imaging capability and the optical sectioning of the system. Subtractive-imaging confocal microscopy can be implemented in a simple manner, providing superresolution and improving optical sectioning. (C) 2012 Optical Society of America

research product

Analytical formula for calculating the focal shift in apodized systems

We report a quite simple analytical formula for the evaluation of the focal shift in apodized systems, with or without rotational invariance. Specifically it is shown that the magnitude of the focal shift is determined by the product of the Fresnel number of the focusing geometry and the standard deviation of a mapped version of the azimuthal average of the pupil transmittance. To illustrate our approach, several examples are examined.

research product

Stable and simple quantitative phase-contrast imaging by Fresnel biprism

Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the be…

research product

Three-dimensional resolvability in an integral imaging system

The concept of three-dimensional (3D) resolvability of an integral imaging system is thoroughly investigated in this research. The general concept of 3D resolution fails to describe the 3D discrimination completely. Then the concepts of the depth-resolution plane and lateral-resolution plane are introduced to show the difference between the conventional 3D spatial resolution and the newly introduced 3D resolvability. Therefore, the different properties of these planes for differentiating lateral spatial variations and axial variations are analyzed in this paper. The theoretical statements are demonstrated experimentally.

research product

Depth-of-Field Enhancement in Integral Imaging by Selective Depth-Deconvolution

One of the major drawbacks of the integral imaging technique is its limited depth of field. Such limitation is imposed by the numerical aperture of the microlenses. In this paper, we propose a method to extend the depth of field of integral imaging systems in the reconstruction stage. The method is based on the combination of deconvolution tools and depth filtering of each elemental image using disparity map information. We demonstrate our proposal presenting digital reconstructions of a 3-D scene focused at different depths with extended depth of field.

research product

Display of travelling 3D scenes from single integral-imaging capture

Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

research product

Axial apodization in 4Pi-confocal microscopy by annular binary filters

We present a novel technique for considerably decreasing the sidelobe height of the axial point-spread function of one-photon 4Pi-confocal microscopes. By means of a numerical example, in which the ratio between the excitation and the fluorescence wavelengths was set to epsilon = lambdaexc/lambdadet = 0.8, we show that simply inserting a pair of properly designed two-ring binary masks in the illumination set allows the height of the axial sidelobes to be reduced from 20% to 5% of the height of the central peak. This allows one to receive the full benefit of the strong narrowness of the central lobe provided by the 4Pi-confocal technique.

research product

Optical sectioning by two-pinhole confocal fluorescence microscopy.

A two-pinhole axially superresolving confocal fluorescence imaging system is presented. Based on the concept of subtractive incoherent imaging, the system described here is equipped with a zero-focus complex-transmittance pupil filter in one of the collector paths. The optical sectioning capacity of the system is 25% superior to that of a free-pupil one-pinhole instrument.

research product

Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels

Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…

research product

Resolution enhancement in integral microscopy by physical interpolation

Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass…

research product

Non-Homogeneity of Lateral Resolution in Integral Imaging

We evaluate the lateral resolution in reconstructed integral images. Our analysis takes into account both the diffraction effects in the image capture stage and the lack of homogeneity and isotropy in the reconstruction stage. We have used Monte Carlo simulation in order to assign a value for the resolution limit to any reconstruction plane. We have modelled the resolution behavior. Although in general the resolution limit increases proportionally to the distance to the lens array, there are some periodically distributed singularity planes. The phenomenon is supported by experiments.

research product

Full parallax three-dimensional display from Kinect v1 and v2

We exploit the two different versions of Kinect, v1 and v2, for the calculation of microimages projected onto integral-imaging displays. Our approach is based on composing a three-dimensional (3-D) point cloud from a captured depth map and RGB information. These fused 3-D maps permit to generate an integral image after projecting the information through a virtual pinhole array. In our analysis, we take into account that each of the Kinect devices has its own inherent capacities and individualities. We illustrate our analysis with some imaging experiments, provide the distinctive differences between the two Kinect devices, and finally conclude that Kinect v2 allows the display of 3-D images …

research product

Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy

The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device.

research product

Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems

There has been great interest in researching and implementing effective technologies for the capture, processing, and display of 3D images. This broad interest is evidenced by widespread international research and activities on 3D technologies. There is a large number of journal and conference papers on 3D systems, as well as research and development efforts in government, industry, and academia on this topic for broad applications including entertainment, manufacturing, security and defense, and biomedical applications. Among these technologies, integral imaging is a promising approach for its ability to work with polychromatic scenes and under incoherent or ambient light for scenarios fro…

research product

Full-parallax 3D display from the hole-filtered depth information

In this paper we introduce an efficient hole-filling algorithm for synthetic generation of microimages that are displayed on an integral imaging monitor. We apply the joint bilateral filter and the median filter to the captured depth map. We introduce in any step of the iterative algorithm with the data from a new Kinect capture. As a result, this algorithm can improve the quality of the depth maps and remove unmeasured depth holes effectively. This refined depth information enables to create a tidy integral image, which can be projected into an integral imaging monitor. In this way the monitor can display 3D images with continuous views, full parallax and abundant 3D reconstructed scene fo…

research product

On-axis diffractional behavior of two-dimensional pupils

We show that, at any Fresnel number, a suitable one-dimensional Fourier transform relates the complex-amplitude distribution along the optical axis with the zero-order circular harmonic of the amplitude transmittance of a two-dimensional diffracting screen. First, our general result is applied to recognize that any rationally nonsymmetric screen generates an axial-irradiance distribution that exhibits focal shift. In this way we identify a wide set of two-dimensional screens that produce the same focal shift as that produced by the clear circular aperture. Second, we identify several apodizers for shaping the axial-amplitude distribution. We discuss some examples for achieving high-precisio…

research product

Digital holographic microscopy for diabetes screening

A digital holographic microscope operating in telecentric mode could be used to diagnose diabetes and evaluate long-term glycemic control in patients with diabetes.

research product

Roadmap on 3D integral imaging: Sensing, processing, and display

This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field.

research product

Breakthroughs in Photonics 2014: Recent Advances in 3-D Integral Imaging Sensing and Display

Integral imaging concept provides a fascinating tool for the capture and display of 3-D images or movies with full parallax, with no need for special glasses and without visual fatigue due to the convergence and accommodation conflict. The limitations and recent advances in integral imaging are discussed.

research product

Handheld and cost-effective Fourier lightfield microscope

In this work, the design, building, and testing of the most portable, easy-to-build, robust, handheld, and cost-effective Fourier Lightfield Microscope (FLMic) to date is reported. The FLMic is built by means of a surveillance camera lens and additional off-the-shelf optical elements, resulting in a cost-effective FLMic exhibiting all the regular sought features in lightfield microscopy, such as refocusing and gathering 3D information of samples by means of a single-shot approach. The proposed FLMic features reduced dimensions and light weight, which, combined with its low cost, turn the presented FLMic into a strong candidate for in-field application where 3D imaging capabilities are pursu…

research product

Algorithms for transforming an integral photography into a plenoptic picture

We report a simple algorithm for transforming the set of elemental images captured with an integral-photography set up, into the set of micro-images ready to be projected into an integral-imaging monitor. The method is based in the transposing relation between an integral photography and a plenoptic picture. The reported technique permits to adapt the integral images to the resolution and size of the monitor.

research product

Full-parallax 3D display from stereo-hybrid 3D camera system

Abstract In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microim…

research product

Digital holographic microscopy as a screening technology for diabetes

Label-free quantitative phase imaging (QPI) is the hallmark of digital holographic microscopy (DHM). One of the most interesting medical applications of QPI-DHM is that it can be used to analyze illnesses in which the refractive index or/and the morphology of cells/tissues are distorted, from the acquisition of a single image. In this contribution, we obtain the phase maps of red blood cells (RBCs) samples of patients suffering from diabetes mellitus type 1 (DM1) by using a DHM. Our experimental results show that the measured phase values are significantly different between control non-diabetic and diabetic patients. The high correlation coefficient between the phase and the glycated hemogl…

research product

Fundamentals of automated human gesture recognition using 3D integral imaging: a tutorial

Automated human gesture recognition is receiving significant research interest, with applications ranging from novel acquisition techniques to algorithms, data processing, and classification methodologies. This tutorial presents an overview of the fundamental components and basics of the current 3D optical image acquisition technologies for gesture recognition, including the most promising algorithms. Experimental results illustrate some examples of 3D integral imaging, which are compared to conventional 2D optical imaging. Examples of classifying human gestures under normal and degraded conditions, such as low illumination and the presence of partial occlusions, are provided. This tutorial…

research product

GPU-accelerated integral imaging and full-parallax 3D display using stereo-plenoptic camera system

Abstract In this paper, we propose a novel approach to produce integral images ready to be displayed onto an integral-imaging monitor. Our main contribution is the use of commercial plenoptic camera, which is arranged in a stereo configuration. Our proposed set-up is able to record the radiance, spatial and angular, information simultaneously in each different stereo position. We illustrate our contribution by composing the point cloud from a pair of captured plenoptic images, and generate an integral image from the properly registered 3D information. We have exploited the graphics processing unit (GPU) acceleration in order to enhance the integral-image computation speed and efficiency. We…

research product

Head Tracking Three-Dimensional Integral Imaging Display Using Smart Pseudoscopic-to-Orthoscopic Conversion

A novel head tracking three-dimensional (3D) integral imaging display is presented. By means of proper application of the smart pseudoscopic-to-orthoscopic conversion (SPOC) method, our display allows an extended viewing angle accommodated to the viewer's position which is obtained by a head/eye tracking system. Using the SPOC, new sets of elemental images are calculated and adapted to any specific viewing position. Additionally, the crosstalk which is typical in conventional integral imaging, is eliminated for a large viewing angle. By performing the rotation transformation in the simulated display, viewing a 3D scene with head rotation can be realized for robust display. Experimental resu…

research product

An overview of head tracking integral imaging three-dimensional display using smart pseudoscopic-to-orthoscopic conversion

We overview a previously reported head tracking integral imaging three-dimensional (3D) display to extend viewing angle accommodated to a viewer's position without the crosstalk phenomenon. A head detection system is applied to obtain the head position and rotation of a viewer, and a new set of elemental images is then computed using the smart pseudoscopic-to-orthoscopic conversion (SPOC) method for head tracking 3D display. Experimental results validate the proposed method for high quality 3D display with large viewing angle.

research product

Gaussian imaging transformation for the paraxial Debye formulation of the focal region in a low-Fresnel-number optical system

The Debye formulation of focused fields has been systematically used to evaluate, for example, the point-spread function of an optical imaging system. According to this approximation, the focal wave field exhibits some symmetries about the geometrical focus. However, certain discrepancies arise when the Fresnel number, as viewed from focus, is close to unity. In that case, we should use the Kirchhoff formulation to evaluate accurately the three-dimensional amplitude distribution of the field in the focal region. We make some important remarks regarding both diffraction theories. In the end we demonstrate that, in the paraxial regime, given a defocused transverse pattern in the Debye approxi…

research product

Manufacture of pupil filters for 3D beam shaping

In a previous work we presented a new method for binarizing pupil filters designed to control the three-dimensional (3D) irradiance distribution in the focal volume of apodized systems. The method is based in the fact that the 3D amplitude point spread function of an axially-symmetrical system can be recovered entirely from a one-dimensional (1D) set of regularly spaced amplitude samples. Hence we proposed the use of 1D iterative Fourier transform algorithm to binarize a, properly mapped, version of the amplitude transmittance of the filter. The binary masks obtained consist of a set of opaque and transparent concentric annular zones. In this paper we have built two of these masks with oppo…

research product

Sidelobe decline in single-photon 4Pi microscopy by Toraldo rings.

We demonstrate theoretically the feasibility of single-photon 4Pi-confocal microscopy. By inserting a pair of properly designed multi-ring phase-only pupil filters in the illumination path of a 4Pi microscope the height of the sidelobes of the point spread function substantially reduced, so that there is no ambiguity in the 3D image. Then, an axial resolution up to four times higher than that of single-photon confocal microscope can be effectively achieved.

research product

Enhanced field-of-view integral imaging display using multi-Köhler illumination.

A common drawback in 3D integral imaging displays is the appearance of pseudoimages beyond the viewing angle. These pseudoimages appear when the light rays coming from each elemental image are not passing through the corresponding microlens, and a set of barriers must be used to avoid this flipping effect. We present a pure optical arrangement based on Köhler illumination to generate these barriers thus avoiding the pseudoimages. The proposed system does not use additional lenses to project the elemental images, so no optical aberrations are introduced. As an added benefit, Köhler illumination provides a higher contrast 3D display. This work was supported in part by the Plan Nacional I + D …

research product

Analytical Evaluation of the Temporal Focal Shift for Arbitrary Pulse Shapes

In this letter, we analyze the propagation of linearly chirped arbitrary-shaped light pulses through a parabolic dispersive medium to derive an analytical formula of assessing the location of the transverse plane where the pulse root-mean-square width is minimum. Closed form expressions for compressed pulses, which are independent of the input pulse shape, are demonstrated. In this way, we demonstrate that both the relative temporal focal shift and the minimum pulsewidth are solely determined by two factors, the temporal equivalent of the Fresnel number of the geometry and the pulse quality factor, i.e., the temporal analogue of the spatial M/sup 2/ beam quality factor. Some examples are di…

research product

Fuzzy Integral Imaging Camera Calibration for Real Scale 3D Reconstructions

In this paper, we present a quantitative analysis of the error in the reconstruction of a 3D scene which has been captured with Synthetic Aperture Integral Imaging system. The 3D information is obtained from 2D images for which the camera parameters are unknown. The model used for calibrating the Integral Imaging camera setup is based on fuzzy systems. These systems provide the opportunity for modeling of conditions which are inherently imprecisely defined. We demonstrate that the error in the 3D reconstruction not only depends on the number of cameras, but also to their relative positions. Our model is applied to a set of images captured experimentally from a real object. A true-color real…

research product

An experiment to study the structure of the focal volume in apertured focusing systems

We present a simple experiment, specifically designed for students of undergraduate optics courses, where the influence of an aperture stop position on the three-dimensional structure of the focal volume of focusing systems is studied. The experiment, which involves only simple optical elements, permits an undergraduate student to generate different focal structures by simply axially displacing the aperture stop.

research product

Resolution improvements in integral microscopy with Fourier plane recording

Abstract: Integral microscopes (IMic) have been recently developed in order to capture the spatial and the angular information of 3D microscopic samples with a single exposure. Computational post-processing of this information permits to carry out a 3D reconstruction of the sample. By applying conventional algorithms, both depth and also view reconstructions are possible. However, the main drawback of IMic is that the resolution of the reconstructed images is low and axially heterogeneous. In this paper, we propose a new configuration of the IMic by placing the lens array not at the image plane, but at the pupil (or Fourier) plane of the microscope objective. With this novel system, the spa…

research product

Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters.

We present a new family of pupil masks to control the axial component of the intensity distribution in the focal region of tightly focused light fields. The filters, which consist of a circular clear pupil with a single shaded ring, allow to control the width of the central lobe of the axial spot together with the residual sidelobes energy. The filters can be applied to improve the optical sectioning capacity of different scanning microscopes.

research product

Elemental images for integral-imaging display

One of the differences between the near-field integral imaging (NInI) and the far-field integral imaging (FInI), is the ratio between number of elemental images and number of pixels per elemental image. While in NInI the 3D information is codified in a small number of elemental images (with many pixels each), in FInI the information is codified in many elemental images (with only a few pixels each). The later codification is similar that the one needed for projecting the InI field onto a pixelated display when aimed to build an InI monitor. For this reason, the FInI cameras are specially adapted for capturing the InI field with display purposes. In this contribution we research the relation…

research product

Fully programmable display parameters in integral imaging by smart pseudoscopic-to-orthoscopic conversion

Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generates a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

research product

Integral Imaging Monitors with an Enlarged Viewing Angle

Enlarging the horizontal viewing angle is an important feature of integral imaging monitors. Thus far, the horizontal viewing angle has been enlarged in different ways, such as by changing the size of the elemental images or by tilting the lens array in the capture and reconstruction stages. However, these methods are limited by the microlenses used in the capture stage and by the fact that the images obtained cannot be easily projected into different displays. In this study, we upgrade our previously reported method, called SPOC 2.0. In particular, our new approach, which can be called SPOC 2.1, enlarges the viewing angle by increasing the density of the elemental images in the horizontal …

research product

Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information

We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …

research product

Digital holographic microscopy with pure-optical spherical phase compensation

Telecentric architecture is proposed for circumventing, by the pure-optical method, the residual parabolic phase distortion inherent to standard configuration of digital holographic microscopy. This optical circumvention produces several important advantages. One is that there is no need for computer compensation of the parabolic phase during the phase map recovering procedure. The other is that in off-axis configuration, the spatial frequency useful domain is enlarged. The validity of the method is demonstrated by performing quantitative measurement of depth differences with high axial resolution. (C) 2011 Optical Society of America

research product

Filter performance parameters for vectorial high-aperture wave fields.

Performance parameters have been presented that can be used to compare the focusing performance of different optical systems, including the effect of pupil filters. These were originally given for the paraxial case and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vectorial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different optical systems is compared.

research product

Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter

This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each …

research product

Off-axis focal shift for rotationally nonsymmetric screens

We report on an analytical formulation for evaluating the amplitude distribution along any line directed toward the geometrical focus of a spherical wave front that passes through a rotationally nonsymmetric diffracting screen. Our formula consists of two factors. The first factor involves the one-dimensional Fourier transform of the projection of the screen function onto the off-axis line. The second factor depends on the inverse distance to the screen and permits us to recognize the existence of focal shift along off-axis lines.

research product

Analytical formulation of the axial behavior of apodized general Bessel beams

We present an analytical formula for the evaluation of the axial-irradiance distribution of general Bessel beams apodized by a radially-nonsymmetric window. Our approach is based on the similarity between the axial behavior of such beams and the propagation properties of a properly modified version of the window transmittance. To illustrate our formalism, we analyze the axial behavior of some complex beams.

research product

Zone plates with cells apodized by Legendre profiles

By apodizing the cells of a zone plate and changing the opening ratio, it is possible to shape the relative power spectrum of its foci. We describe a novel procedure that leads to an analytical formula for shaping the focus power spectrum by using apodizers expressible as the Legendre series; these act on cells of arbitrary opening ratio. Our general result is used to design zone plates that have missing foci and to discuss a synthesis procedure using apodizers with various opening ratios. Our applications can also be used for shaping the power spectrum of 1-D gratings.

research product

Integral imaging with Fourier-plane recording

Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…

research product

Shaded-mask filtering: novel strategy for improvement of resolution in radial-polarization scanning microscopy

Radially polarized illumination produces, in combination with annular pupil filtering, the sharpest focal spot. However, the enhanced sidelobes produce an effective deterioration of spatial resolution. This study shows that if one substitutes the annular filter by one, adequately designed, shaded-mask filter, the sidelobes' strength is strongly reduced, and an important, effective improvement of resolution is achieved.

research product

Integral-Imaging display from stereo-Kinect capture

In this paper, we propose a new approach in order to improve the quality of microimages and display them onto an integral imaging monitor. Our main proposal is based on the stereo-hybrid 3D camera system. Originally, hybrid camera system has dissimilarity itself. We interpret our method in order to equalize the hybrid sensor's characteristics and 3D data modification strategy. We generate integral image by using synthetic back-projection mapping method. Finally, we project the integral image onto our proposed display system. We illustrate this procedure with some imaging experiments in order to prove an advantage of our approach.

research product

Multiple-Planes Pseudoscopic-to-Orthoscopic Conversion for 3D Integral Imaging Display

In this paper, we propose an advanced pseudoscopic-to-orthoscopic conversion method for 3D integral imaging display systems. Compared to previous works, this method can generate more accurate images for orthoscopic 3D display using multiple reference planes and estimated depth information. 3D display results show the superiority of the proposed pseudoscopic-to-orthoscopic conversion method.

research product

Optimal design of incoherent tunable-frequency structured illumination microscope scheme

Structured illumination microscopy (SIM) improves resolution and optical sectioning capability compared to conventional widefield techniques. The main idea of this method is the illumination of the sample with a structured pattern of fixed spatial modulation frequency. Previously, a Fresnel biprism has been implemented in a structured illumination (SI) device providing tunable-frequency sinusoidal patterns. However, the use of this SI system introduces a tradeoff between the visibility and field of view of the illumination fringes. In this contribution, we analyze theoretically this tradeoff and propose the optimal design for the Fresnel biprism-based SIM system.

research product

Aberration compensation for objective phase curvature in phase holographic microscopy: comment

In a recent Letter by Seo et al. [Opt. Lett. 37, 4976 (2012)], the numerical correction of the quadratic phase distortion introduced by the microscope objective in digital holographic microscopy (DHM) has been presented. In this comment, we would like to draw to the attention of the authors and the readers in general that this approach could not be the optimal solution for maintaining the accuracy of the quantitative phase via DHM. We recall that the use of telecentric imaging systems in DHM simplifies the numerical processing of the phase images and produces more accurate measurements.

research product

Far-field light imaging in the presence of atmospheric turbulence with rotating anti-phase apertures: Theoretical investigation

We investigated the diffraction of far-field light objects in the presence of turbulence formed by an optical system with a rotating anti-phase mask. This mask facilitates to detect the position of faint companion in every direction around the bright companion. In the presence of atmospheric turbulence, diffraction images of distant objects are beyond the diffraction limits, the proposed phase shift mask has a merit to compensate the turbulence results high contrast astronomical imaging under partially coherent light illumination and it is proficient to increase the resolution limits in a Sparrow criterion sense. In this approach, we demonstrated the mask fabrication in laboratory condition…

research product

Computation of microimages for plenoptic display

We report a new algorithm for the generation of the microimages ready for their projection into an integral imaging monitor. The algorithm is based in the transformation properties of the plenoptic field captured with an array of digital cameras. We show that a small number of cameras can produce the microimages for displaying 3D scenes with resolution and parallax fully adapted to the monitor features.

research product

Fast and robust phase-shift estimation in two-dimensional structured illumination microscopy.

A method of determining unknown phase-shifts between elementary images in two-dimensional Structured Illumination Microscopy (2D-SIM) is presented. The proposed method is based on the comparison of the peak intensity of spectral components. These components correspond to the inherent structured illumination spectral content and the residual compo- nent that appears from wrongly estimated phase-shifts. The estimation of the phase-shifts is carried out by finding the absolute maximum of a function defined as the normalized peak intensity difference in the Fourier domain. This task is performed by an optimization method providing a fast estimation of the phase-shift. The algorithm stability an…

research product

Full-parallax immersive 3D display from depth-map cameras

We exploit two different versions of the Kinect to make comparison of three-dimensional (3D) scenes displayed by proposed integral imaging (InI) display system. We attempt to show the difference between each version specifications and capacity. Furthermore, we illustrate our study result with some empirical imaging experiment in which the final result are displayed with full-parallax. Each demonstrated integral images can provide clear comparison results to the observer.

research product

Three-dimensional behavior of apodized nontelecentric focusing systems.

The scalar field in the focal volume of nontelecentric apodized focusing systems cannot be accurately described by the Debye integral representation. By use of the Fresnel–Kirchhoff diffraction formula it is found that, if the aperture stop is axially displaced, the focal-volume structure is tuned. We analyze the influence of the apodizing function and find that, whereas axially superresolving pupil filters are highly sensitive to the focal-volume reshaping effect, axially apodizing filters are more inclined to the focal-shift effect.

research product

Relay optics for enhanced integral imaging

Integral imaging provides with three-dimensional (3D) images. This technique works perfectly with incoherent light and does not need the use of any special glasses nor stabilization techniques. Here we present relay systems for both acquire and display 3D images. Some other important challenges are revisited.

research product

Resolution limit in opto-digital systems revisited

The resolution limit achievable with an optical system is a fundamental piece of information when characterizing its performance, mainly in case of microscopy imaging. Usually this information is given in the form of a distance, often expressed in microns, or in the form of a cutoff spatial frequency, often expressed in line pairs per mm. In modern imaging systems, where the final image is collected by pixelated digital cameras, the resolution limit is determined by the performance of both, the optical systems and the digital sensor. Usually, one of these factors is considered to be prevalent over the other for estimating the spatial resolution, leading to the global performance of the imag…

research product

3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC).

Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generate a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

research product

Multidimensional Optical Sensing and Imaging Systems (MOSIS): From Macro to Micro Scales

Multidimensional optical imaging systems for information processing and visualization technologies have numerous applications in fields such as manufacturing, medical sciences, entertainment, robotics, surveillance, and defense. Among different three-dimensional (3-D) imaging methods, integral imaging is a promising multiperspective sensing and display technique. Compared with other 3-D imaging techniques, integral imaging can capture a scene using an incoherent light source and generate real 3-D images for observation without any special viewing devices. This review paper describes passive multidimensional imaging systems combined with different integral imaging configurations. One example…

research product

Three-ring filters increase the effective NA up to 1.46 in optical sectioning fluorescence microscopy

Single-photon fluorescence confocal microscopy techniques can be combined with the use of specific binary filters in order to increase their optical sectioning capability. We present a novel class of axially super-resolving binary pupil filters specially designed to reach this aim. These filters let us to obtain a relevant compression of the z-response together with the reduction of the photo-bleaching effect typically inherent to apodization techniques. The fact of joining both the three-ring filters we propose in the illumination path, and the confocal detection gives rise to an important effective increase of lenses of effective numerical aperture.

research product

One-dimensional iterative algorithm for three-dimensional point-spread function engineering.

We present a new method with which to binarize pupil filters designed to control the three-dimensional irradiance distribution in the focal volume of an optical system. The method is based on a one-dimensional iterative algorithm, which results in efficient use of computation time and in simple, easy to fabricate binary filters. An acceptable degree of resemblance between the point-spread function of the annular binary filter and that of its gray-tone counterpart is obtained.

research product

Enhanced depth of field integral imaging with sensor resolution constraints.

One of the main challenges in integral imaging is to overcome the limited depth of field. Although it is widely assumed that such limitation is mainly imposed by diffraction due to lenslet imaging, we show that the most restricting factor is the pixelated structure of the sensor (CCD). In this context, we demonstrate that by proper reduction of the fill factor of pickup microlenses, the depth of field can be substantially improved with no deterioration of lateral resolution.

research product

Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy

Spatial light modulator (SLM) implementation of wavefront encoding enables various types of engineered pointspread functions (PSFs), including the generalized-cubic and squared-cubic phase mask wavefront encoded (WFE) PSFs, shown to reduce the impact of sample-induced spherical aberration in fluorescence microscopy. This investigation validates dynamic experimental parameter variation of these WFE-PSFs. We find that particular design parameter bounds exist, within which the divergence of computed and experimental WFE-PSFs is of the same order of magnitude as that of computed and experimental conventional PSFs, such that model-based approaches for solving the inverse imaging problem can be a…

research product

Lightfield microscopy, an emerging tool for real-time 3D imaging

Integral, or lightfield, microscopy offers the possibility of capturing and processing in real time multiple views of 3D fluorescent samples captured with a single shot. In this contribution we review the recent advances in lightfield microscopy and enunciate the forthcoming challenges.

research product

Machine Learning-Based View Synthesis in Fourier Lightfield Microscopy

Current interest in Fourier lightfield microscopy is increasing, due to its ability to acquire 3D images of thick dynamic samples. This technique is based on simultaneously capturing, in a single shot, and with a monocular setup, a number of orthographic perspective views of 3D microscopic samples. An essential feature of Fourier lightfield microscopy is that the number of acquired views is low, due to the trade-off relationship existing between the number of views and their corresponding lateral resolution. Therefore, it is important to have a tool for the generation of a high number of synthesized view images, without compromising their lateral resolution. In this context we investigate h…

research product

Effective Fresnel-number concept for evaluating the relative focal shift in focused beams

We report on an analytical formulation, based on the concept of effective Fresnel number, to evaluate in a simple way the relative focal shift of rotationally nonsymmetric scalar fields that have geometrical focus and moderate Fresnel number. To illustrate our approach, certain previously known results and also some new focusing setups are analytically examined.

research product

Recent Advances in Digital Holographic Microscopy

In digital holographic microscopy (DHM) a hologram is captured in the image space provided by a microscope. The transfer of the phase and amplitude structure in the original sample to the hologram is in fact strongly affected by the use of the imaging microscope. A big research effort has been devoted to correct these distortions both by numerical and optical compensation. In this contribution, we present several proposals to improve the performance of classical DHM architectures by an a priori approach to compensate physically these perturbations. Experimental results are also presented to validate the proposed techniques.

research product

New Analytical Tools for Evaluation of Spherical Aberration in Optical Microscopy

The required tightly focused spots in three-dimensional (3D) scanning optical techniques are usually achieved by high-NA immersion lenses. The refractive index mismatch between the sample and the immersion medium introduces an important amount of spherical aberration when imaging deep inside the specimen, spreading out the focusing response. Since this aberration depends on the focalization depth, it is not possible to simultaneously achieve a global compensation for the whole scanned sample. In this way, the design of pupil elements that increase the tolerance to this aberration is of great interest. We present a new formalism for the evaluation and the design of filters that decrease the …

research product

Multifacet structure of observed reconstructed integral images.

Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.

research product

Focal switch: a new effect in low-Fresnel-number systems

It is shown for the first time we believe, that when a spherical wave illuminates a certain type of diffracting screen, in addition to the expected focal-shift effect, depending on the value of the Fresnel number of the focusing system, a focal switch effect can appear, i.e., an increase in the height of the lateral lobe of the axial-intensity distribution over that of the central lobe.

research product

Sampling expansions for three-dimensional light amplitude distribution in the vicinity of an axial image point: comment.

Landgrave and Berriel-Valdos presented axial and radial sampling expansions for three-dimensional light amplitude distribution around the Gaussian focal point. [J. Opt. Soc. Am. A 14, 2962 (1997)]. The expansions were obtained under the assumption that the pupil function was rotationally symmetric. We present a new derivation of the axial expansion that does not make use of arbitrary formal assumptions used by Landgrave and Berriel-Valdos and eliminates some faults of the derivation given by Arsenault and Boivin, who published this expansion in 1967 [J. Appl. Phys. 38, 3988 (1967)]. We also discuss generalizations of the axial expansion to the case of pupils that exhibit no symmetry with re…

research product

Shaded-Mask Filtering for Extended Depth-of-Field Microscopy

This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical architecture. In the filter design, we have used the analogy between the axial behavior of a system with spherical aberration and the transverse impulse response of a 1D defocused system. This allowed us the…

research product

View images with unprecedented resolution in integral microscopy

Integral microscopy is a novel technique that allows the simultaneous capture of multiple perspective images of microscopic samples. This feature is achieved at the cost of a significant reduction of the spatial resolution. In fact, it is assumed that in the best cases the resolution is reduced by a factor that is not smaller than ten, what poses a hard drawback to the utility of the technique. However, to the best of our knowledge, this resolution limitation has never been researched rigorously. For this reason, the aim of this paper is to explore the real limitations in resolution of integral microscopy and to obtain optically, without the need of any image-processing algorithm, perspecti…

research product

Focal shift in optical waves with off-axis focus

We present a formulation for a suitable description of the focal shift in optical waves that have an off-axis focus. This shift that is primarily produced along the chief axis is given in terms of the focal distance and depends only on a parameter that is named as the generalized Fresnel number. Any non-uniform, either truncated and non-apertured optical beam with off-axis focus may be considered.

research product

The Lightfield Microscope Eyepiece

Lightfield microscopy has raised growing interest in the last few years. Its ability to get three-dimensional information about the sample in a single shot makes it suitable for many applications in which time resolution is fundamental. In this paper we present a novel device, which is capable of converting any conventional microscope into a lightfield microscope. Based on the Fourier integral microscope concept, we designed the lightfield microscope eyepiece. This is coupled to the eyepiece port, to let the user exploit all the host microscope’s components (objective turret, illumination systems, translation stage, etc.) and get a 3D reconstruction of the sample. After the optical design, …

research product

Tunable axial superresolution by annular binary filters. Application to confocal microscopy

We present a set of annular binary pupil filters for increasing the axial resolving capacity of imaging systems. The filters consist of two transparent annuli of the same area. It is shown that by changing the area of the transparent regions it is possible to obtain a tunable reduction of the width of the central lobe of the axial point spread function of the imaging system. However, this reduction is accompanied by a severe increase of the strength of secondary lobes, what can make these filters not very useful when used in conventional imaging systems. That is why we propose to use these filters for apodizing confocal microscopy systems. It is shown that in this case an important reductio…

research product

Progress in 3-D Multiperspective Display by Integral Imaging

Three-dimensional (3-D) imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture and display true 3-D color images, has been seen as the right technology for 3-D viewing for audiences of more than one person. Due to the advanced degree of its development, InI technology could be ready for massive commercialization in the coming years. This development is the result of a strong research effort performed over the past few years. In this sense, this paper is devoted to reviewing some recent advances in InI, which have allowed improvement in the response of InI systems to the problems of …

research product

Focal-shift formula in apodized nontelecentric focusing systems

A single analytical formulation for evaluating the focal shift in any apodized nontelecentric focusing setup is reported. The formulation is also useful in the case of imaged paraxial beams. We show explicitly that the magnitude of the focal shift is determined by only one parameter that depends on the effective width of the pupil filter and its axial position. To illustrate our approach we examine different focusing setups.

research product

Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit.

The utilization of microscope objectives (MOs) in digital holographic microscopy (DHM) has associated effects that are not present in conventional optical microscopy. The remaining phase curvature, which can ruin the quantitative phase imaging, is the most evident and analyzed. As phase imaging is considered, this interest has made possible the development of different methods of overcoming its undesired consequences. Additionally to the effects in phase imaging, there exist a set of less obvious conditions that have to be accounted for as MOs are utilized in DHM to achieve diffraction-limit operation. These conditions have to be considered even in the case in which only amplitude or intens…

research product

Optical-sectioning improvement in two-color excitation scanning microscopy

We present a new beam-shaping technique for two-color excitation fluorescence microscopy. We show that by simply inserting a properly designed shaded-ring filter in the illumination beam of smaller wavelength, it is possible to improve the effective optical sectioning capacity of such microscopes by 23%. Such an improvement is obtained at the expense of only a very small increasing of the overall energy in the point-spread-function sidelobes. The performance of this technique is illustrated by a numerical imaging simulation.

research product

What about computational super-resolution in fluorescence Fourier light field microscopy?

Recently, Fourier light field microscopy was proposed to overcome the limitations in conventional light field microscopy by placing a micro-lens array at the aperture stop of the microscope objective instead of the image plane. In this way, a collection of orthographic views from different perspectives are directly captured. When inspecting fluorescent samples, the sensitivity and noise of the sensors are a major concern and large sensor pixels are required to cope with low-light conditions, which implies under-sampling issues. In this context, we analyze the sampling patterns in Fourier light field microscopy to understand to what extent computational super-resolution can be triggered duri…

research product

Optical-sectioning microscopy by patterned illumination

We propose a very simple method for the flexible production of 1D structured illumination for high resolution 3D microscopy. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source for producing a pair of twin, fully coherent, virtual point sources. The resulting interference fringes are projected into the 3D sample and, by simply varying the distance between the biprism and the point source, one can tune the period of the fringes, while keeping their contrast, in a very versatile and efficient way.

research product

Three-dimensional real-time darkfield imaging through Fourier lightfield microscopy

We report a protocol that takes advantage of the Fourier lightfield microscopy concept for providing 3D darkfield images of volumetric samples in a single-shot. This microscope takes advantage of the Fourier lightfield configuration, in which a lens array is placed at the Fourier plane of the microscope objective, providing a direct multiplexing of the spatio-angular information of the sample. Using the proper illumination beam, the system collects the light scattered by the sample while the background light is blocked out. This produces a set of orthographic perspective images with shifted spatial-frequency components that can be recombined to produce a 3D darkfield image. Applying the ade…

research product

Reduction of focus size in tightly focused linearly polarized beams

The electromagnetic theory predicts that when a linearly polarized collimated field is focused by a high-angle focusing system, components perpendicular to the initial polarization are generated. The use of annular masks to reduce the area of the focal spot usually increases the magnitude of this phenomenon, known as depolarization. We present a class of masks, the three-ring masks, which are important because they narrow the central lobe of the focal intensity distribution without increasing the depolarization. This can be very useful in modern optical applications, such as confocal microscopy or multiphoton scanning microscopy.

research product

Recent Advances in the Capture and Display of Macroscopic and Microscopic 3-D Scenes by Integral Imaging

The capture and display of images of 3-D scenes under incoherent and polychromatic illumination is currently a hot topic of research, due to its broad applications in bioimaging, industrial procedures, military and surveillance, and even in the entertainment industry. In this context, Integral Imaging (InI) is a very competitive technology due to its capacity for recording with a single exposure the spatial-angular information of light-rays emitted by the 3-D scene. From this information, it is possible to calculate and display a collection of horizontal and vertical perspectives with high depth of field. It is also possible to calculate the irradiance of the original scene at different dep…

research product

Method to Remedy Image Degradations Due to Facet Braiding in 3D Integral-Imaging Monitors

One of the main challenges in 3D integral imaging (InI) is to overcome the limited depth of field of displayed 3D images. Although this limitation can be due to many factors, the phenomenon that produces the strongest deterioration of out-of-focus images is the facet braiding. In fact, the facet braiding is an essential problem, since InI 3D monitors are not feasible if the braiding problem is not solved. In this paper, we propose a very simple method for overcoming the facet braiding effect which is a serious limitation for realization of 3D TV based on InI. Hybrid experiments are presented to verify the theoretical analysis.

research product

Depth rendering of large incoherent scenes from integral images

Integral imaging is a technique that provides the spatial and angular information of three-dimensional (3D) scenes through a single shot. Taking advantage of this capability, different applications have been developed. Some of these applications are the 3D display and digital post-processing, in particular depth-reconstruction from integral images.

research product

Simple demonstration of the impact of spherical aberration on optical imaging

We present an experiment, well adapted for students of introductory optics courses, for the visualization of the impact of spherical aberration in the point spread function of imaging systems. The demonstrations are based on the analogy between the point-spread function of spherically aberrated systems, and the defocused patterns of 1D slit-like screens.

research product

Towards 3D Television Through Fusion of Kinect and Integral-Imaging Concepts

We report a new procedure for the capture and processing of light proceeding from 3D scenes of some cubic meters in size. Specifically we demonstrate that with the information provided by a kinect device it is possible to generate an array of microimages ready for their projection onto an integral-imaging monitor. We illustrate our proposal with some imaging experiment in which the final result are 3D images displayed with full parallax.

research product

Asymmetric apodization in confocal scanning systems.

A new class of superresolution pairs of pupil filters for three-dimensional, two-pupil confocal imaging is proposed. A distinctive feature of these filters is the asymmetry of their impulse response. For synthesizing the amplitude transmittance of such filters the Fourier transform properties of Hermitian functions are employed. It is shown that, with simple phase-only filters that belong to the class in question, either axial or unidirectional lateral superresolution is achieved.

research product

Reduction of spherical-aberration impact in microscopy by wavefront coding

In modern high-NA optical scanning instruments, like scanning microscopes, the refractive-index mismatch between the sample and the immersion medium introduces a significant amount of spherical aberration when imaging deep inside the specimen, spreading out the impulse response. Since such aberration depends on the focalization depth, it is not possible to achieve a static global compensation for the whole 3D sample in scanning microscopy. Therefore a depth-variant impulse response is generated. Consequently, the design of pupil elements that increase the tolerance to this aberration is of great interest. In this paper we report a hybrid technique that provides a focal spot that remains alm…

research product

Diabetes screening by telecentric digital holographic microscopy

Diabetes is currently the world's fastest growing chronic disease and it is caused by deficient production of insulin by the endocrine pancreas or by abnormal insulin action in peripheral tissues. This results in persistent hyperglycaemia that over time may produce chronic diabetic complications. Determination of glycated haemoglobin level is currently the gold standard method to evaluate and control sustained hyperglycaemia in diabetic people. This measurement is currently made by high-performance liquid chromatography, which is a complex chemical process that requires the extraction of blood from the antecubital vein. To reduce the complexity of that measurement, we propose a fully-optica…

research product

Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we …

research product

Strehl ratio versus defocus for noncentrally obscured pupils.

We discuss from the viewpoint of the Strehl ratio versus defocus, or the normalized axial-irradiance distribution, the influence of decentering the dark mask of an annular pupil. Our treatment, which is valid for pupil apertures with any Fresnel number, permits us to infer that the axial behavior of a noncentrally obscured pupil is equivalent to that of an apodizer with continuous amplitude variations. Hence the Strehl ratio versus defocus of an optical system can be shaped by use of noncentered dark masks that act as continuous gray apodizers. Several numerically evaluated examples are presented.

research product

Fast Axial Scanning in 3D Imaging

We establish the conditions for obtaining fast axial 3D microscopy with constant magnification, invariant resolution, and symmetrical displacement range. We demonstrate that liquid lenses permit the axial scanning free of mechanical movements and vibrations. This allows speeding-up the process and avoiding distortionsin the image of dynamic specimens. Article not available.

research product

Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging

Inaccuracies introduced in quantitative phase digital holographic microscopy by the use of nontelecentric imaging systems are analyzed. Computer modeling of the experimental result shows that even negligible errors in the radius and center of curvature of the numerical compensation needed to get rid of the remaining quadratic phase factor introduce errors in the phase measurements; these errors depend on the position of the object in the field-of-view. However, when a telecentric imaging system is utilized for the recording of the holograms, the numerical modeling and experimental results show the shift-invariant behavior of the quantitative-phase digital holographic microscope.

research product

Scanning microscopy with spatial sampling of the detector plane

We present the implementation of a confocal scanning microscope in which the signal detection is performed through a matrix sensor, specifically, a CCD camera. This kind of detection has several advantages over the conventional detection in confocal microscopes. One of those advantages is the possibility to recover information of the sample that vanishes when the confocal image is directly acquired by the integration of light into a signal. We demonstrate the applicability of the system which allows implementing super-resolution techniques in a very easy manner.

research product

Robust Depth Estimation for Light Field Microscopy

Light field technologies have seen a rise in recent years and microscopy is a field where such technology has had a deep impact. The possibility to provide spatial and angular information at the same time and in a single shot brings several advantages and allows for new applications. A common goal in these applications is the calculation of a depth map to reconstruct the three-dimensional geometry of the scene. Many approaches are applicable, but most of them cannot achieve high accuracy because of the nature of such images: biological samples are usually poor in features and do not exhibit sharp colors like natural scene. Due to such conditions, standard approaches result in noisy depth ma…

research product

Optical sectioning with a Wiener-like filter in Fourier integral imaging microscopy

Non-scanning, single-shot, 3D integral microscopy with optical sectioning is presented. The method is based on the combination of Fourier-mode integral microscopy with a 3D deconvolution technique. Specifically, the refocused volume provided by a regular back-projection algorithm is 3D deconvolved with a synthetic 3D impulse response function that takes into account the number and positions of the elemental images. The use of this hybrid technique provides a stack of true-color depth-refocused images with significant gain of optical sectioning. The stack can be used, among other applications, to inspect inside the thick microscope specimen, to calculate collections of perspective views wit…

research product

Guest Editorial Three-Dimensional Displays and Visualization

THREE-DIMENSIONAL (3D) imaging and display is a natural concept for humans as it is a common vision attribute of our binocular vision, perception, and brain processing. However, until recently, our experiences have been mainly limited to the technologically inferior two-dimensional (2D) as evidenced from widespread use of 2D photography, cinema, and liquid crystal or LED-display for television, computer displays, etc.

research product

Tailoring the axial shape of the point spread function using the Toraldo concept

A novel procedure for shaping the axial component of the point spread function of nonparaxial focusing systems by use of phase-only pupil filters is presented. The procedure is based on the Toraldo technique for tailoring focused fields. The resulting pupil filters consist of a number of concentric annular zones with constant real transmittance. The number of zones and their widths can be adapted according to the shape requirements. Our method is applied to design filters that produce axial superresolution in confocal scanning systems.

research product

Analysis of the depth of field of integral imaging displays based on wave optics.

In this paper, we analyze the depth of field (DOF) of integral imaging displays based on wave optics. With considering the diffraction effect, we analyze the intensity distribution of light with multiple micro-lenses and derive a DOF calculation formula for integral imaging display system. We study the variations of DOF values with different system parameters. Experimental results are provided to verify the accuracy of the theoretical analysis. The analyses and experimental results presented in this paper could be beneficial for better understanding and designing of integral imaging displays.

research product

Confocal scanning microscope using a CCD camera as a pinhole-detector system

We report a scheme for a detector system of confocal microscopes. In our scheme the pinhole and the large area detector are subtituted by a CCD camera. The numerical integration of the intensities acquired by the active pixels emulates the signal acquired by the detector. To demonstrate the utility of the system we efficiently performed an experiment of substractive-image confocal microscopy

research product

Detection of wave aberrations in the human eye using a retinoscopy-like technique

The influence of optical aberrations on the retinoscopic reflex is theoretically analyzed from a geometrical point of view. The relationship between the wave aberrations to the ray aberrations is applied to explain the appearance of the retinoscopic patterns for different types of ocular aberrations. Several schematic models of the human eye are tested numerically, showing that a careful retinoscopic examination can detect the usual eye aberrations.

research product

Optically-undistorted digital holographic microscopy for quantitative phase-contrast imaging

We propose a telecentric architecture for circumventing, by a pure-optical method, the residual phase distortion inherent to standard configuration of digital holographic microscopy (DHM). With this proposal there is no need for computer compensation of the parabolic phase during the phase map recovering procedure. Futhermore, in off-axis configuration, the spatial frequency useful domain is enlarged. The validity of the method is demonstrated by performing quantitative measurements of depth differences

research product

Fast Axial-Scanning Widefield Microscopy With Constant Magnification and Resolution

In this paper, we propose the use of electrically-addressable lens devices for performing fast non-mechanical axial scanning when imaging three-dimensional samples. This non-mechanical method can be implemented in any commercial microscope. The approach is based on the insertion of the tunable lens at the aperture stop of the microscope objective. By tuning the voltage, a stack of depth images of 3D specimens can be captured in real time and with constant magnification and resolution. The main advantage of our technique is the possibility of performing fast axial scanning free of mechanical vibrations.

research product

One-dimensional error-diffusion technique adapted for binarization of rotationally symmetric pupil filters

Abstract Two novel algorithms for the binarization of continuous rotationally symmetric real and positive pupil filters are presented. Both algorithms are based on the one-dimensional error diffusion concept. In our numerical experiment an original gray-tone apodizer is substituted by a set of transparent and opaque concentric annular zones. Depending on the algorithm the resulting binary mask consists of either equal width or equal area zones. The diffractive behavior of binary filters is evaluated. It is shown that the filter with equal width zones gives Fraunhofer diffraction pattern more similar to that of the original gray-tone apodizer than that with equal area zones, assuming in both…

research product

Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization

International audience; We present a beam-shaping technique for two-photon excitation (TPE) fluorescence microscopy. We show that by inserting a properly designed three-ring pupil filter in the illumination beam of the microscope, the effective optical sectioning capacity of such a system improves so that the point spread function gets a quasi-spherical shape. Such an improvement, which allows the acquisition of 3D images with isotropic quality, is obtained at the expense of only a small increase of the overall energy in the axial sidelobes. The performance of this technique is illustrated with a scanning TPE microscopy experiment in which the image of small beads is obtained. We demonstrat…

research product

Evaluation of the use of wavefront encoding to reduce depth-induced aberration in structured-illumination microscopy

Three-dimensional imaging is affected by depth-induced spherical aberration (SA) when imaging deep into an optically thick sample. In this work, we evaluate the impact of SA on the performance of incoherent grating-projection structured illumination microscopy (SIM). In particular, we analyze the reduction of the contrast in the structured pattern and compare the reconstructed SIM images for different amounts of SA. In order to mitigate the impact of SA, we implement and evaluate in SIM a wavefront encoded imaging system using a square cubic (SQUBIC) phase mask, an approach shown previously to be successful in conventional microscopy.

research product

Reconstruction Improvement in Integral Fourier Holography by Micro-Scanning Method

Although integral holography has many promising advantages in the field of 3D imaging, the resolution of reconstructed holographic image is still limited by the insufficient information captured. To improve the reconstruction quality, an integral Fourier holographic imaging method based on micro-scanning of the micro-lens array is proposed in this paper. The micro-scanning of the micro-lens array can increase the sampling rate in spatial frequency domain and the information of the generated Fourier hologram, which will eventually eliminate the overlapping effect in the reconstructed 3D image. Experiments for different micro-scanning modes are carried out to verify the feasibility of the pro…

research product

FIMic: design for ultimate 3D-integral microscopy of in-vivo biological samples

In this work, Fourier integral microscope (FIMic), an ultimate design of 3D-integral microscopy, is presented. By placing a multiplexing microlens array at the aperture stop of the microscope objective of the host microscope, FIMic shows extended depth of field and enhanced lateral resolution in comparison with regular integral microscopy. As FIMic directly produces a set of orthographic views of the 3D-micrometer-sized sample, it is suitable for real-time imaging. Following regular integral-imaging reconstruction algorithms, a 2.75-fold enhanced depth of field and [Formula: see text]-time better spatial resolution in comparison with conventional integral microscopy is reported. Our claims …

research product

New Method of Microimages Generation for 3D Display

In this paper, we propose a new method for the generation of microimages, which processes real 3D scenes captured with any method that permits the extraction of its depth information. The depth map of the scene, together with its color information, is used to create a point cloud. A set of elemental images of this point cloud is captured synthetically and from it the microimages are computed. The main feature of this method is that the reference plane of displayed images can be set at will, while the empty pixels are avoided. Another advantage of the method is that the center point of displayed images and also their scale and field of view can be set. To show the final results, a 3D InI dis…

research product

3D Integral Microscopy based in far-field detection

Lately, Integral-Imaging systems have shown very promising capabilities of capturing the 3D structure of micro- scopic and macroscopic scenes. The aim of this work is to provide an optimal design for 3D-integral microscopy with extended depth of field and enhanced lateral resolution. By placing an array of microlenses at the aperture stop of the objective, this setup provides a set of orthographic views of the 3D sample. Adopting well known integral imaging reconstruction algorithms it can be shown that the depth of field as well as spatial resolution are improved with respect to conventional integral microscopy imaging. Our claims are supported on theoretical basis and experimental images …

research product

Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy

The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more acc…

research product

Reconfigurable Shack-Hartmann sensor without moving elements.

We demonstrate wavefront sensing with variable measurement sensitivity and dynamic range by means of a programmable microlens array implemented onto an off-the-shelf twisted nematic liquid crystal display operating as a phase-only spatial light modulator. Electronic control of the optical power of a liquid lens inserted at the aperture stop of a telecentric relay system allows sensing reconfigurability without moving components. Results of laboratory experiments show the ability of the setup to detect both smooth and highly aberrated wavefronts with adequate sensitivity.

research product

Extended Depth-of-Field 3-D Display and Visualization by Combination of Amplitude-Modulated Microlenses and Deconvolution Tools

One of the main challenges in 3-D display and visualization is to overcome its limited depth of field. Such limitation is due to the fast deterioration of lateral resolution for out-of-focus object positions. Here we propose a new method to significantly extend the depth of field. The method is based on the combined benefits of a proper amplitude modulation of the microlenses, and the application of deconvolution tools. Numerical tests are presented to verify the theoretical analysis.

research product

Fast and robust wave optics-based reconstruction protocol for Fourier lightfield microscopy

Fourier lightfield microscopy (FLMic) is a powerful technique to record 3D images of thick dynamic samples. Belonging FLMic to the general class of computational imaging techniques, its efficiency is determined by several factors, like the optical system, the calibration process, the reconstruction algorithm, or the computation architecture. In the case of FLMic the calibration and the reconstruction algorithm should be fully adapted to the singular features of the technique. To this end, and concerning the reconstruction, we discard the use of experimental PSFs, and propose the use of a synthetic one, which is calculated on the basis of paraxial optics and taking into account the equal inf…

research product

Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]

Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degrad…

research product

Computation and Display of 3D Movie From a Single Integral Photography

Integral photography is an auto-stereoscopic technique that allows, among other interesting applications, the display of 3D images with full parallax and avoids the painful effects of the accommodation-convergence conflict. Currently, one of the main drawbacks of this technology is the need of a huge amount of data, which have to be stored and transmitted. This is due to the fact that behind every visual resolution unit, i.e. behind any microlens of an integral-photography monitor, between 100 and 300 pixels should appear. In this paper, we make use of an updated version of our algorithm, SPOC 2.0, to alleviate this situation. We propose the application of SPOC 2.0 for the calculation of co…

research product

Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus.

The original aim of the integral-imaging concept, reported by Gabriel Lippmann more than a century ago, is the capture of images of 3D scenes for their projection onto an autostereoscopic display. In this paper we report a new algorithm for the efficient generation of microimages for their direct projection onto an integral-imaging monitor. Like our previous algorithm, the smart pseudoscopic-to-orthoscopic conversion (SPOC) algorithm, this algorithm produces microimages ready to produce 3D display with full parallax. However, this new algorithm is much simpler than the previous one, produces microimages free of black pixels, and permits fixing at will, between certain limits, the reference …

research product

Progresses in 3D integral imaging with optical processing

Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

research product

Photoelastic Analysis of Partially Occluded Objects With an Integral-Imaging Polariscope

Polariscopes are the basic instruments used for the analysis of the stress state of transparent materials. Polarized light passing through a 3D object carries the integrated effect of the stress field along the light path. Therefore, conventional polariscopes are not able to discern the stress state of objects involving multiple plates with mutual occlusions. In this paper we propose a novel experimental system for three-dimensional stress analysis based on the combination of a polariscope and Synthetic Aperture Integral Imaging technique. Experimental results show the system's ability to recover the information of the stress distribution of a set of plates located at different depths havin…

research product

Study of spatial lateral resolution in off-axis digital holographic microscopy

The lateral resolution in digital holographic microscopy (DHM) has been widely studied in terms of both recording and reconstruction parameters. Although it is understood that once the digital hologram is recorded the physical resolution is fixed according to the diffraction theory and the pixel density, still some researches link the resolution of the reconstructed wavefield with the recording distance as well as with the zero-padding technique. Aiming to help avoiding these misconceptions, in this paper we analyze the lateral resolution of DHM through the variation of those two parameters. To support our outcomes, we have designed numerical simulations and experimental verifications. Both…

research product

Integral display for non-static observers

We propose to combine the Kinect and the Integral-Imaging technologies for the implementation of Integral Display. The Kinect device permits the determination, in real time, of (x,y,z) position of the observer relative to the monitor. Due to the active condition of its IR technology, the Kinect provides the observer position even in dark environments. On the other hand, SPOC 2.0 algorithm permits to calculate microimages adapted to the observer 3D position. The smart combination of these two concepts permits the implementation, for the first time we believe, of an Integral Display that provides the observer with color 3D images of real scenes that are viewed with full parallax and which are…

research product

Lightfield recording and reconstruction by integral imaging

Integral imaging is a rising 3D imaging technique that can be considered the incoherent version of holography. In integral imaging the multiperspective information of 3D scenes is stored in a 2D picture. Such picture is nothing but a sampling version of the lightfield emitted by the 3D scene. The recorded lightfield can be used for many purposes. One is the display of 3D color scenes to audiences or much more than one person. Other is the 3D display, with full parallax, in personal monitors, like the screen of a Smartphone, a tablet, or the monitor used by a surgeon in an endoscopic operation. Other important types of applications are connected with the topographic reconstruction, slice by …

research product

Toward 3D integral-imaging broadcast with increased viewing angle and parallax

Abstract We propose a new method for improving the observer experience when using an integral monitor. Our method permits to increase the viewing angle of the integral monitor, and also the maximum parallax that can be displayed. Additionally, it is possible to decide which parts of the 3D scene are displayed in front or behind the monitor. Our method is based, first, in the direct capture, with significant excess of parallax, of elemental images of 3D real scenes. From them, a collection of microimages adapted to the observer lateral and depth position is calculated. Finally, an eye-tracking system permits to determine the 3D observer position, and therefore to display the adequate microim…

research product

Microscopic and macroscopic 3D imaging and display by integral imaging

Integral imaging is a rising 3D imaging technique that can be considered the incoherent version of holography. In integral imaging the multiperspective information of 3D scenes is stored in a 2D picture. Such picture, composed by a set of elemental images, is obtained through a 2D array of microlenses. The elemental-images set can be used for many purposes. One is the display of 3D color scenes to audiences or much more than one person. Other is the 3D display, with full parallax, in personal monitors, like the screen of a smartphone, a tablet, or the monitor used by a surgeon in an endoscopic operation. Other important types of applications are connected with the topographic reconstruction…

research product