0000000001299658

AUTHOR

Wolfgang Tremel

In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD

We report on the in situ heating transmission electron microscopy (TEM) study of WS2 and MoS2 nanoparticles obtained from metal–organic chemical vapor deposition (MOCVD). The general behavior of MoS2 and WS2 is similar: Round, amorphous particles in the pristine sample transform to hollow, onion-like particles upon annealing. A second type of particle with straight layers exhibits only minor changes. A significant difference between both compounds could be demonstrated in their crystallization behavior. The results of the in situ heating experiments are compared to those obtained from an ex situ annealing process under Ar.

research product

Fibrous Nanozyme Dressings with Catalase-Like Activity for H2O2 Reduction To Promote Wound Healing

The concentrations of the redox pair hydrogen peroxide (H2O2) and oxygen (O2) can promote or decelerate the progression and duration of the wound healing process. Although H2O2 can reach critically high concentrations and prohibit healing, a sufficient O2 inflow to the wound is commonly desired. Herein, we describe the fabrication and use of a membrane that can contemptuously decrease H2O2 and increase O2 levels. Therefore, hematite nanozyme particles were integrated into electrospun and cross-linked poly(vinyl alcohol) membranes. Within the dual-compound membrane, the polymeric mesh provides a porous scaffold with high water permeability and the nanozymes act as a catalyst with catalase-li…

research product

Bismuth-Catalyzed Growth of SnS2 Nanotubes and Their Stability

research product

Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering

Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-link…

research product

Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.

research product

Surface Chemistry Directs the Tunable Assembly of TiO 2 Anatase Nanocubes into Three‐Dimensional Mesocrystals

research product

ChemInform Abstract: Metal-Metal Bonding and Metallic Behavior in Some ABO2 Delafossites.

We present results of ab initio band structure calculations on some ABO2 delafossite oxides that have both the A and B sites occupied by transition metals. This class of materials includes insulators as well as some of the most conducting oxides. The calculations have been performed in order to understand the nature of the metallic and insulating states and the extensive metal−metal bonding displayed by these materials. The effect of polytypism on the electronic structure is examined. Among the interesting aspects of the electronic structure of these materials are the contributions from both A and B atoms to states near the Fermi energy and the highly disperse nature of bands derived from t…

research product

Synthesis of MoO3 Nanostructures and Their Facile Conversion to MoS2 Fullerenes and Nanotubes.

The fast thermolysis of ammonium molybdate leads to a mixture of MoO3 and Mo5.3O14.5(OH)2.8(H2O)1.36 with spherical and rod-like morphologies. The oxide mixture can be converted in quantitative yield to inorganic fullerene-type (IF) MoS2 and MoS2 nanotubes (NT) by H2S reduction using a facile and quick procedure. The products were studied by X-Ray Diffraction (XRD) and by Transmission Electron Microscopy (TEM). TEM analysis reveals that the spherical and rod-like morphology of the oxide precursor is preserved during the H2S treatment.

research product

Stamping of monomeric SAMs as a route to structured crystallization templates: patterned titania films.

Gold-coated glass slides have be patterned by using self-assembled monolayers (SAM) of alkane thiols. Through the use of a special thiol terminated with a styrene monomer, microstructures of 5 to 10 microm width and 70 A height have been formed on the surface by graft polymerization of styrene. These patterned gold slides have then been used to template the precipitation of thin titania films from ethanolic solutions of titanium isopropoxide to create microstructured architectures in the film. Plasmon resonance spectra have established the presence of different steps in the process and have been used to follow the kinetics of the precipitation of titania on the surface. The structured TiO2 …

research product

Well-defined carbohydrate-based polymers in calcium carbonate crystallization: Influence of stereochemistry in the polymer side chain on polymorphism and morphology

Abstract In this work we demonstrate the remarkable phase control on the crystallization of calcium carbonate by the stereochemistry of carbohydrate-based polymers. The polymers (poly(2-(2,3,4,6-tetra-O-acetyl-β- d -glucosyloxy)ethyl methacrylate) and poly(2-(2,3,4,6-tetra-O-acetyl-β- d -galactosyloxy)ethyl methacrylate)) have been synthesized from the respective glucose or galactose containing monomers (3 step synthesis) by RAFT polymerization leading to well-defined carbohydrate-based polymers with number averages of the molecular weights (Mw) of 10,000–18,000 g/mol and a dispersities (Đ) from 1.1 to 1.2. For the deprotected polymers we found differences in the phase selection of calcium …

research product

Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging

Highly biocompatible multifunctional nanocomposites consisting of monodisperse manganese oxide nanoparticles with luminescent silica shells were synthesized by a combination of w/o-microemulsion techniques and common sol–gel procedures. The nanoparticles were characterized by TEM analysis, powder XRD, SQUID magnetometry, FT-IR, UV/vis and fluorescence spectroscopy and dynamic light scattering. Due to the presence of hydrophilic poly(ethylene glycol) (PEG) chains on the SiO2 surface, the nanocomposites are highly soluble and stable in various aqueous solutions, including physiological saline, buffer solutions and human blood serum. The average number of surface amino groups available for lig…

research product

Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites

Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu2ZnGeS4-x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlyi…

research product

Magnetic Transitions in the Double Perovskite Sr2FeRe1-xFexO6(0≤X≤0.5)

AbstractThe synthesis, structure, and magnetic and transport properties of solid solutions Sr2FeRe1-xFexO6 (0≤x≤0.5) are reported. A structural evolution in the solid solutions from a double perovskite to perovskite is observed with increasing Fe/Re disorder. Except for the metallic parent compound all members of the series are semiconducting. For the Fe-doped samples a change from ferrimagnetic interactions in the parent compound to a complex superposition of ferrimagnetic and antiferromagnetic interactions was observed. The magnetic moment decreases with x, whereas the Curie temperature TC remains unaffected. The magnetic and Mössbauer data suggest Fe to act as a redox-buffer.

research product

Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction

tion that is fundamental for understanding material properties. Still, a number of compounds have eluded such kinds of analysis because they are nanocrystalline, highly disordered, with strong pseudosymmetries or available only in small amounts in polyphasic or polymorphic systems. These materials are crystallographically intractable with conventional Xray or synchrotron radiation diffraction techniques. Single nanoparticles can be visualized by high-resolution transmission electron microscopy (HR-TEM) up to sub�ngstrom resolution, [2] but obtaining 3D information is still a difficult task, especially for highly beam-sensitive materials and crystal structures with long cell parameters. Elec…

research product

Amine functionalized ZrO2 nanoparticles as biocompatible and luminescent probes for ligand specific cellular imaging

Surface functionalized ZrO2 nanoparticles show strong photoluminescence and are a versatile tool for cellular targeting due to their chemical functionality. They are highly photostable, biocompatible and amenable to coupling with bioligands (e.g. secondary goat anti-rabbit antibody (GAR) and tri-phenyl phosphine (TPP)) via carbodiimide chemistry. Antibody (GAR) functionalized ZrO2 nanoparticles were used to image the nuclear protein Sirt6, whereas triphenyl phosphonium ion (TPP) functionalized ZrO2 nanoparticles specifically targeted the mitochondria. The versatility and easiness of the ZrO2 surface modification opens up new possibilities for designing non-toxic water dispersible and photos…

research product

Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

research product

Pyridazine-Supported Polymeric Cyanometallates with Spin Transitions

Heterometallic cyano-bridged spin-crossover complexes form a large family of switchable compounds with different structural motives and diverse transition characteristics. Here we report on the hysteretic water-dependent spin transitions found in the family of [Fe(pyridazine)2M(CN)4] frameworks (M = Ni, Pd, Pt). The structure of three new spin-crossover compounds is built of cyanometallic layers supported by pyridazine ligands. The frameworks contain water guest molecules that can be removed upon heating. Spin transition was found in both hydrated and dehydrated compounds, while the removal of water stimulated a complete spin state switch. Mössbauer spectroscopy revealed two different …

research product

Multi-photon imaging of amine-functionalized silica nanoparticles.

A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functionalized silica particles are superior alternatives for current bioimaging platforms. Moreover, the presence of a free amine group at the surface of the M-dots allows biomolecule conjugation (e.g. with antibodies, proteins) in a single step for converting these photoluminescent SiO(2) nanoparticles into …

research product

Trapping Amorphous Intermediates of Carbonates – A Combined Total Scattering and NMR Study

Crystallization via metastable phases plays an important role in chemical manufacturing, biomineralization, and protein crystallization, but the kinetic pathways leading from metastable phases to the stable crystalline modifications are not well understood. In particular, the fast crystallization of amorphous intermediates makes a detailed characterization challenging. To circumvent this problem, we devised a system that allows trapping and stabilizing the amorphous intermediates of representative carbonates (calcium, strontium, barium, manganese, and cadmium). The long-term stabilization of these transient species enabled a detailed investigation of their composition, structure, and morpho…

research product

Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron m…

research product

Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation

Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about th…

research product

Correlation of epoxy material properties with the toughening effect of fullerene-like WS2 nanoparticles

Abstract This work deals with the toughening effect of inorganic, fullerene-like WS2 (IF-WS2) nanoparticles (NPs) on epoxy. It has been hypothesized that this toughening effect depends on the epoxy’s cross-link density, its molecular defect fraction or its reference fracture toughness K Ic . Seven different epoxy systems were filled with 0.5% laboratory-made IF-WS2 NPs by mass and investigated in order to analyze which material properties are determining the toughening effect. These NPs were similar to commercially available IF-WS2 NPs, but their agglomerates could not be broken up as successfully and they yielded less toughening effect. The cross-link density of the epoxies measured via dy…

research product

From Layered Molybdic Acid to Lower-Dimensional Nanostructures by Intercalation of Amines under Ambient Conditions

Nanostructures of varied dimensionality such as rods, scrolls, and disks of molybdenum oxide have been synthesized in gram quantities under ambient conditions using exfoliation of the layers as a synthetic tool. Intercalation of alkylamines (CnH2n+2NH2, where n = 3, 4, 8, 12, and 16) into yellow molybdic acid (MoO3·2H2O) and subsequent treatment with nitric acid resulted in molybdenum oxide nanorods, nanodisks, or oxide−amine composite nanorods. The sizes of the nanoparticles range from a few nanometers to micrometers in length and 10 to 200 nm in diameter. Detailed X-ray, scanning electron microscopy, and transmission electron microscopy analyses reveal an inverse relation between the size…

research product

Facile hydrothermal synthesis of crystalline Ta2O5 nanorods, MTaO3 (M = H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour

Alkali metal tantalates are of interest for applications in photocatalysis as well as in high temperature resistance or capacitor dielectric materials. We have synthesized nanosized Ta2O5 rods and MTaO3 cubes (M = Na, K, Rb) hydrothermally and demonstrate the pH dependence of the synthesis of tantalum oxide and tantalate nanoparticles. The morphologies of the nanoparticles range from particle agglomerates in acidic reaction media over rods at neutral pH to tantalate cubes in basic reaction media. Whereas there is no apparent influence of the base cation on the particle morphology, there is a pronounced effect on the particle composition. At high base concentrations cubic tantalate particles…

research product

ChemInform Abstract: Nb4Te17I4, a New Pseudo One-Dimensional Solid-State Polytelluride.

The new ternary compound Nb4Te17I4 has been prepared and structurally characterized. It crystallizes in the monoclinic system, space group C2/c with unit-cell parameters a = 16.199(4), b = 8.128(2), c = 27.355(6) A, β = 110.84(2)°, Z = 4. The structure consists of infinite one-dimensional niobium/tellurium chains running parallel to the crystallographic c direction. The chains are separated by iodine atoms. Short and long metal–metal distances alternate in the sequence of three consecutive short bonds ([d ≈ 3.1 – 3.2 A) and one long (d = 4.268 A) metal–metal separation. Each Nb atom is eight-coordinate. The composition of the chain is ∞11[(Nb5+)2(Nb4+)2(Te22−)4(Te32−)3(I−)4].

research product

„Supramolekulare“ Festkörperchemie: einander durchdringende diamantartige Gerüststrukturen mit U4+-Ionen und zweizähnigen molekularen P2S62−-S,S′-„Stäben“ in UP4S12

research product

Poly(THF-co-cyano ethylene oxide): Cyano Ethylene Oxide (CEO) Copolymerization with THF Leading to Multifunctional and Water-Soluble PolyTHF Polyelectrolytes

Cyano-functional polyether copolymers based on THF were prepared via cationic ring-opening copolymerization of THF with cyano ethylene oxide (CEO). The CEO content of poly(tetrahydrofuran) (polyTHF) based copolymers varied from 3.3 to 29.3%, and molecular weights ranged from 5100 to 31900 g·mol–1 with Mw/Mn in the range of 1.31 to 1.74 (SEC in THF, PS standards). The polymerization was conducted with methyl trifluoromethanesulfonate (MeOTf) as an initiator. Kinetic studies concerning incorporation of both monomers were performed via NMR spectroscopy. The cyano groups at the poly(THF-co-CEO) copolymers enable direct access to amino (polyTHF–NH2) and carboxyl groups (polyTHF–COOH) in facile o…

research product

Low temperature synthesis of monodisperse nanoscaled ZrO2with a large specific surface area

Thermal decomposition of Zr(C(2)O(4))(2)·4H(2)O within an autoclave or in a conventional tube furnace at temperatures below 380 °C resulted in nano- and micron-sized ZrO(2), respectively. Reactions under autogenic pressure yielded monodisperse monoclinic (m) and tetragonal (t) ZrO(2) nanoparticles with an average diameter of ~8 nm and interconnected t-ZrO(2) nanoparticles with diameters of ~4 nm, depending on the synthesis temperature. Samples were characterised by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) associated with energy dispersive X-ray spectroscopy (EDS), Raman microspectroscopy and phot…

research product

Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite

The mechanisms by which amorphous intermediates transform into crystalline materials are not well understood. To test the viability and the limits of the classical crystallization, new model systems for crystallization are needed. With a view to elucidating the formation of an amorphous precursor and its subsequent crystallization, the crystallization of calcium oxalate, a biomineral widely occurring in plants, is investigated. Amorphous calcium oxalate (ACO) precipitated from an aqueous solution is described as a hydrated metastable phase, as often observed during low-temperature inorganic synthesis and biomineralization. In the presence of water, ACO rapidly transforms into hydrated whewe…

research product

Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate

Cubic ZrW2O8 is a negative thermal expansion (NTE) material that is of interest as filler in controlled thermal expansion composites. It is easily accessible from a hydrated precursor, ZrW2O7(OH)2·2H2O, which can be obtained by hydrothermal synthesis. Different reaction conditions were investigated to gain control over the morphology, and to minimize the particle size. Optimized procedures resulted in rod-shaped particles with widths of 10–30 nm and lengths of 200–500 nm, which showed little agglomeration. The particle size and morphology of the precursor are preserved during conversion to the NTE phase at 600–650 °C.

research product

Synthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Pulicaria undulata Extract and Their Catalytic Activity for the Reduction of 4-Nitrophenol

Plant extract of Pulicaria undulata (L.) was used as both reducing agent and stabilizing ligand for the rapid and green synthesis of gold (Au), silver (Ag), and gold&ndash

research product

27Al NMR Study of the pH Dependent Hydrolysis Products of Al2(SO4)3 in Different Physiological Media

Soluble inorganic aluminium compounds like aluminium sulfate or aluminium chloride have been challenged by the European Chemical Agency to induce germ cell mutagenicity. Before conducting mutagenicity tests, the hydrolysis products in water and in physiological solutions should be determined as a function of the concentration and pH. We used different 27Al NMR spectroscopic techniques (heteronuclear Overhauser effect spectroscopy (HOESY), exchange spectroscopy (EXSY), diffusion ordered (DOSY)) in this work to gain the information to study the aluminium species in solutions with Al2(SO4)3 concentrations of 50.0, 5.0, and 0.5 g/L and their pH and time dependent transformation. At low pH, thre…

research product

A highly reduced graphene oxide/ZrOx–MnCO3 or –Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols

Highly reduced graphene oxide (HRG) nanocomposites of manganese carbonate doped with (1%) zirconia (ZrOx) nanoparticles [ZrOx(1%)–MnCO3/(X%)HRG (where X = 0–7)] were prepared employing a facile co-precipitation method in which the percentage of HRG was varied. The resulting nanocomposite was calcined at 300 °C. Further calcination of the catalyst at 500 °C resulted in the conversion of manganese carbonate to manganese oxide [ZrOx(1%)–Mn2O3/(X%)HRG]. The effect of the inclusion of HRG on the catalytic activity along with its comparative performance between carbonates and their respective oxides was studied for the liquid-phase selective oxidation of benzylic alcohols into corresponding aldeh…

research product

Solution synthesis of nanoparticular binary transition metal antimonides

The preparation of nanoengineered materials with controlled nanostructures, for example, with an anisotropic phase segregated structure or a regular periodicity rather than with a broad range of interparticle distances, has remained a synthetic challenge for intermetallics. Artificially structured materials, including multilayers, amorphous alloys, quasicrystals, metastable crystalline alloys, or granular metals, are mostly prepared using physical gas phase procedures. We report a novel, powerful solution-mediated approach for the formation of nanoparticular binary antimonides based on presynthesized antimony nanoparticles. The transition metal antimonides M-Sb (M = Co, Ni, Cu(2), Zn) were …

research product

Removal of Surface Oxygen Vacancies Increases Conductance Through TiO(2) Thin Films for Perovskite Solar Cells

[Image: see text] We report that UV–ozone treatment of TiO(2) anatase thin films is an efficient method to increase the conductance through the film by more than 2 orders of magnitude. The increase in conductance is quantified via conductive scanning force microscopy on freshly annealed and UV–ozone-treated TiO(2) anatase thin films on fluorine-doped tin oxide substrates. The increased conductance of TiO(2) anatase thin films results in a 2% increase of the average power conversion efficiency (PCE) of methylammonium lead iodide-based perovskite solar cells. PCE values up to 19.5% for mesoporous solar cells are realized. The additional UV–ozone treatment results in a reduced number of oxygen…

research product

Bone Scaffolds Based on Degradable Vaterite/PEG‐Composite Microgels

Vaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as …

research product

Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation

Polymer coated superparamagnetic gamma-Fe(2)O(3) nanoparticles were derivatized with a synthetic double-stranded RNA [poly(IC)], a known allosteric activator of the latent (2-5)A synthetase, to separate a single 35 kDa protein from a crude extract which cross reacted with antibodies raised against the sponge enzyme.

research product

Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment

The synthesis of multifunctional magnetic nanoparticles (NPs) is a highly active area of current research located at the interface between materials science, biotechnology and medicine. By virtue of their unique physical properties magnetic nanoparticles are emerging as a new class of diagnostic probes for multimodal tracking and as contrast agents for MRI. Furthermore, they show great potential as carriers for targeted drug and gene delivery, since reactive agents, such as drug molecules or large biomolecules (including genes and antibodies), can easily be attached to their surface. On the other hand, the fate of the nanoparticles inside the body is mainly determined by the interactions wi…

research product

Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

Marine biofouling—the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls—is an expensive problem that is currently without an environmentally compatible solution1. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints1, 2, 3, 4 based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage5 the environment through metal leaching (for example, of copper and zinc)6 and bacteria resistance7. Here, we show that vanadium pentoxide nanowires ac…

research product

Enzymatic Synthesis and Surface Deposition of Tin Dioxide using Silicatein-α

Nanostructured tin dioxide was synthesized by making use of the catalytic activity of silicatein-α. TEM, HRTEM, and XRD revealed the formation of cassiterite SnO2. Surface bound silicatein retains its biocatalytic activity. This was demonstrated by immobilizing silicatein on glass surfaces using a histidine-tag chelating anchor. The subsequent deposition of SnO2 on glass was monitored by quartz crystal microbalance (QCM) measurements and scanning electron microscopy (SEM). This new aspect of silicatein activity toward the formation of metal oxides other than SiO2, TiO2, and BaTiO3 opens up new vistas in composite material synthesis.

research product

Synthesis and Structure of ThTe2I2

research product

Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ)

Preventing bacterial adhesion on materials surfaces is an important problem in marine, industrial, medical and environmental fields and a topic of major medical and societal importance. A defense strategy of marine organisms against bacterial colonization relies on the biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidases, a class of metal-dependent enzymes, whose activity can be emulated by ceria nanoparticles. The enzyme-like activity of ceria was enhanced by a factor of 3 through bismuth substitution (Ce1−xBixO2−δ). The solubility of Bi3+ in CeO2 is confined to the range 0 < x < 0.25 under quasi-hydrothermal c…

research product

Cover Picture: Advanced Complex Inorganic Nanomaterials (Eur. J. Inorg. Chem. 13‐14/2016)

research product

Controlled synthesis of linear and branched Au@ZnO hybrid nanocrystals and their photocatalytic properties.

Colloidal Au@ZnO hybrid nanocrystals with linear and branched shape were synthesized. The number of ZnO domains on the Au seeds can be controlled by the solvent mixture. Imidazole-functionalized Au@ZnO hybrid nanocrystals were soluble in water and exhibited a greatly enhanced photocatalytic activity compared to ZnO nanocrystals. The pristine heterodimeric NPs were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis spectroscopy.

research product

One-Dimensional Hypersonic Phononic Crystals

We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

research product

Magnetic transitions in double perovskiteSr2FeRe1−xSbxO6(0⩽x⩽0.9)

The double perovskites ${\mathrm{Sr}}_{2}\mathrm{Fe}M{\mathrm{O}}_{6}$ $(M=\mathrm{Re},\mathrm{Mo})$ belong to the important class of half-metallic magnetic materials. In this study we explore the effect of replacing the electronic $5d$ buffer element Re with variable valency by the main group element Sb with fixed valency. X-ray diffraction reveals ${\mathrm{Sr}}_{2}{\mathrm{FeRe}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}{\mathrm{O}}_{6}$ $(0lxl0.9)$ to crystallize without antisite disorder in the tetragonally distorted perovskite structure (space group $I4∕mmm$). The ferrimagnetic behavior of the parent compound ${\mathrm{Sr}}_{2}{\mathrm{FeReO}}_{6}$ changes to antiferromagnetic upon Sb subst…

research product

ChemInform Abstract: Synthesis, Structure, and Properties of BaVO2(AsO4): A New Vanadium Arsenate Containing the V2O2+4 Core.

research product

Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins

Abstract Multifunctional polymer-derivatized superparamagnetic iron oxide (γ-Fe2O3) nanoparticles were prepared for biomagnetic separation of histidine-tagged recombinant proteins building up a faster and efficient method for protein separation by making use of their intrinsic magnetic properties. Using polymer bound γ-Fe2O3 nanocrystals, a 6× histidine-tagged recombinant protein (silicatein) with a molecular weight of 24 kDa has been isolated and purified. The supermagnetic iron oxide nanocrystals were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), SQUID and Mossbauer and the polymer functionalization of the γ-Fe2O3 nanocrystals was monitored by UV–vi…

research product

Effect of Charge Transfer in Magnetic-Plasmonic Au@MOx (M = Mn, Fe) Heterodimers on the Kinetics of Nanocrystal Formation

Heteronanoparticles represent a new class of nanomaterials exhibiting multifunctional and collective properties, which could find applications in medical imaging and therapy, catalysis, photovoltaics, and electronics. This present work demonstrates the intrinsic heteroepitaxial linkage in heterodimer nanoparticles to enable interaction of the individual components across their interface. It revealed distinct differences between Au@MnO and Au@Fe3O4 regarding the synthetic procedure and growth kinetics, as well as the properties to be altered by the variation of the electronic structure of the metal oxides. The chemically related metal oxides differ concerning their band gap; while MnO is a M…

research product

ChemInform Abstract: Hf27Si6P10, a Novel Metal-Rich Compound with P2 Groups.

The new ternary metal rich compound Hf27Si6P10 has been synthesized by reduction of HfP with Hf and Si; Hf27Si6P10 crystallizes in a new structure type, a characteristic and unexpected feature of which is the presence of P2 groups; the structural results are interpreted with the aid of high-level band structure calculations.

research product

Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

Mujeeb Khan,1 Merajuddin Khan,1 Syed Farooq Adil,1 Muhammad Nawaz Tahir,2 Wolfgang Tremel,2 Hamad Z Alkhathlan,1 Abdulrahman Al-Warthan,1 Mohammed Rafiq H Siddiqui1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany Abstract: The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous…

research product

Synthesis and immobilization of molecular switches onto titaniumdioxide nanowires

Abstract The precursor [Fe III (L)Cl (L =  N , N ′-bis(2′-hydroxy-3′-methyl-benzyliden)-1,7-diamino-4-azaheptane) is combined with [Mo(CN) 8 ] 4− yields a star shaped nona-nuclear cluster, [Mo IV {(CN)Fe III (L)} 8 ]Cl 4 . This Fe 8 Mo molecule is a high-spin system at room temperature. On cooling to 20 K some of the iron(III) centres in the molybdenum(IV)-star switch to the low-spin state as proven by Mossbauer spectroscopy. This molecule was deposited on TiO 2 nanowires by electrostatic interactions between the cluster cations and the surface functionalized titanium oxide nanowire. The synthesis and surface binding of the multistable molecular switch was demonstrated using IR and UV–Vis s…

research product

Molecular Camouflage: Making Use of Protecting Groups To Control the Self-Assembly of Inorganic Janus Particles onto Metal-Chalcogenide Nanotubes by Pearson Hardness

Hard and soft: Binding of inorganic Pt@Fe3O4 Janus particles to WS2 nanotubes through their Pt or Fe3O4 domains is governed by the difference in Pearson hardness: the soft Pt block has a higher sulfur affinity than the harder magnetite face; thus the binding proceeds preferentially through the Pt face. This binding preference can be reversed by masking the Pt face with an organic protecting group.

research product

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in compa…

research product

Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder

research product

Solvothermal Synthesis of Molybdenum–Tungsten Oxides and Their Application for Photoelectrochemical Water Splitting

Molybdenum and tungsten oxides are of interest as semiconductors for the production of clean and sustainable energy. Here we show that synergistic effects arising from a combination of noncrystalli...

research product

Mechanochemical Access to Defect-Stabilized Amorphous Calcium Carbonate

Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. The lifetime of transient ACC in nature is regulated by an organic matrix, to use it as an intermediate storage buffer or as a permanent structural element. The relevance of ACC in material science is related to our understanding of CaCO3 crystallization pathways. ACC can be obtained by liquid–liquid phase separation, and it is typically stabilized with the help of macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. The ball-milled amorphous calcium carbonate (BM-ACC) was stabilized with small amounts of Na2CO3. The addition of foreign ions in form of Na2C…

research product

Thermo-elektrische Verbindungen. Strom aus Abwärme

Thermoelektrische Materialien bieten die Moglichkeit, thermische Gradienten in elektrische Energie umzuwandeln um somit Abwarme aus verschiedensten Prozessen zur Energieerzeugung zu nutzen. In diesem Artikel werden die physikalischen Hintergrunde der thermoelektrischen Effekte beschrieben sowie Aufbau und Wirkungsgrad thermoelektrischer Generatoren erlautert. Um eine Brucke zwischen der Physik und Chemie in Festkorpern zu schlagen, werden die unterschiedlichen physikalischen Transportprozesse in Festkorpern mit Hilfe chemischer Konzepte erlautert. Anhand von Beispielen fur thermoelektrische Materialien werden die Ansatze zur Maximierung des thermoelektrischen Wirkungsgrades und der Einfluss…

research product

Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries

Abstract In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly i…

research product

Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes).

The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly …

research product

Formation of layered titania and zirconia catalysed by surface-bound silicatein

Silicatein immobilised on self-assembled polymer layers using a histidine-tag chelating anchor group retains its hydrolytical activity for the formation of biosilica, and catalyses the formation of layered arrangements of biotitania and biozirconia.

research product

Defect-controlled hypersound propagation in hybrid superlattices

We employ spontaneous Brillouin light scattering spectroscopy and detailed theoretical calculations to reveal and identify elastic excitations inside the band gap of hypersonic hybrid superlattices. Surface and cavity modes, their strength and anticrossing are unambiguously documented and fully controlled by layer thickness, elasticity, and sequence design. This new soft matter based superlattice platform allows facile engineering of the density of states and opens new pathways to tunable phoxonic crystals.

research product

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb (Phys. Status Solidi B 5/2014)

research product

Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu2ZnGeSe4–xSx Series of Solid Solutions

Knowledge of structure–property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu_2ZnGeSe_(4–x)S_x (x = 0–4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a chang…

research product

High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites

Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO 3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defi ned organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO 2 nanoparticles and a 3-hydroxytyramine…

research product

Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl

Abstract Rutile-type nanorods of SnO2 were obtained in a one-pot hydrothermal synthesis starting from SnCl4·5H2O and HCl in a temperature range between 200 and 240°C. Although the nanorods are polydisperse, the average length of the nanorods could be adjusted from 13 to 65 nm by varying of the reaction temperature. The resulting anisotropic nanocrystals were characterized using powder X-ray diffraction (PXRD), (high resolution-) transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The particle growth proceeds via a dissolution-recrystallization process with soluble [SnCl5(H2O)]− intermediates, as confirmed by PXRD, Raman spectroscopy, and magic angle spi…

research product

Crystallization of the CaCO3 mineral in the presence of the protein ovalbumin

Abstract The kinetics of CaCO3 mineralization was studied by SANS in a 0.1 M aqueous CaCl2 solution in the presence of the protein ovalbumin found in chicken eggs. As the scattering from the protein and the mineral was observed within different Q regimes the evolution of the protein and mineral could be followed independently. It is observed that ovalbumin denaturates during the first 3 h and leads to a strong enhancement of mineralization.

research product

Synthesis, Structure, and Properties of BaVO2(AsO4):  a New Vanadium Arsenate Containing the V2O42+ Core

The new vanadium arsenate BaAsVO6 has been synthesized hydrothermally and structurally characterized by single-crystal X-ray diffraction, IR spectroscopy, and magnetic susceptibility measurements. It crystallizes in the monoclinic system, space group P21/c with unit cell parameters a = 5.645(1) A, b = 10.243(1) A, c = 8.945(1) A, β = 90.60(1)°, and Z = 2. The layered structure is built up from V2O42+ units and AsO43- anions, the AsO43- ligands being coordinated to two (V2O4)2+ units in both, terminal and bridging μ2-AsO43- fashion. The [VO2(AsO4)]2- layers are separated by Ba2+ cations. The V2O42+ unit has no precedence in oxo-vanadium chemistry.

research product

Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions

We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzyme horseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymer membranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic tran…

research product

Fabrication, characterization, thermal stability and nanoassemblies of novel pullulan-aspirin conjugates

Abstract Present study deals with homogeneous and one-pot synthesis of novel macromolecular prodrugs (MPDs) of aspirin onto naturally occurring hydrophilic biopolymer pullulan. Pullulan-aspirin conjugates were synthesized by using green carboxylic acid activating reagent 1,1′-carbonyldiimidazole (CDI). The aspirin was first reacted with CDI to prepare aspirin-imidazolide at RT for 24 h which in situ reacted with pre-dissolved pullulan and the reaction preceded further for 24 h at 80 °C under nitrogen. Degree of substitution (DS 0.32–0.40) of aspirin onto pullulan was calculated from 1H NMR spectroscopy. Spectroscopic techniques confirmed the high covalent drug loading and purity. Thermal an…

research product

Comprehensive Uranium Thiophosphate Chemistry: Framework Compounds Based on Pseudotetrahedrally Coordinated Central Metal Atoms

The new ternary compounds UP2S6, UP2S7, U(P2S6)2, and U3(PS4)4 were prepared from uranium metal, phosphorus pentasulfide, and sulfur at 700 °C. The crystal structures were determined by single-crystal X-ray diffraction methods. UP2S6 (I) crystallizes in the ZrP2S6 structure type [tetragonal, P42/m, a = 6.8058(7) A, c = 9.7597(14) A, Z = 2], which consists of central uranium(IV) atoms coordinated by P2S64– anions (staggered conformation). The anions are two-dimensional connectors for four uranium cations arranged in one plane. The structure of UP2S7 (II) [orthorhombic, Fddd, a = 8.9966(15) A, b = 15.2869(2) A, c = 30.3195(5) A, Z = 16] is closely related to the monoclinic ZrP2S7 structure ty…

research product

Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu_2Zn_(1−x)Fe_xGeSe_4

Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu(2)Zn(1-x)Fe(x)GeSe(4). Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce th…

research product

PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation

Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4 center dot 2H(2)O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then b…

research product

Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx

Inspired by the good performance of argyrodites as ion conducting thermoelectrics and as solid electrolytes we investigated the effect of isovalent S2- substitution for Se2- in Cu7PSe6. At room temperature Cu7PSe6 crystallizes in the primitive cubic β-polymorph of the argyrodite structure and transforms to the face-centered high-temperature (HT) γ-modification above 320 K. The transition for the homologous Cu7PS6 occurs at 510 K. Promising thermoelectric and ion conducting properties are observed only in the HT modification, where the cations are mobile. Using Rietveld refinements against X-ray diffraction data the effect of isovalent S2- substitution for Se2- on the structural and transpor…

research product

Phase selection of calcium carbonate through the chirality of adsorbed amino acids.

research product

Functionalized magnetic nanoparticles for selective targeting of cells

AbstractInitiation of pathways that lead to proliferation and chemoresistance by Toll-like receptors (TLRs) is an important factor in cancer progression. Here, we show the response of human cancer cells to TLR signaling inevitably linked to tumor biology. The approach is based on tailored multifunctional magnetic nanoparticles equipped with pathogen-derived ligands (CpG) functioning as TLR agonists (molecular component) to investigate the impact of transcription factor immune activation on human cancer cells. Magnetic nanoparticles (MnO and bifunctional Au-MnO) particles were covalently coated with a multifunctional polymer, displaying no cytotoxicity, to being able to enter cells while car…

research product

Functional Polymer-Opals from Core-Shell Colloids

Colloidal photonic crystals were prepared from monodisperse core-shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core-shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His-tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric …

research product

Synthetic Approaches to Functionalized Chalcogenide Nanotubes

research product

Monitoring the formation of biosilica catalysed by histidine-tagged silicatein.

Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring the immobilisation of silicatein using a histidine-tag chelating anchor and the subsequent biosilicification of SiO(2) on surfaces by surface plasmon resonance spectroscopy, atomic force microscopy and scanning electron microscopy.

research product

A Facile Approach for Transferring Hydrophobic Magnetic Nanoparticles into Water-Soluble Particles

A novel, easy and high-efficient method is described for transferring hydrophobic magnetic Fe 3 O 4 nanoparticles from organic to aqueous solution by wrapping a thermo-responsive and photocrosslinkable poly(N-isopropylacrylamide) (PNIPAm) terpolymer around the particles. The wrapping procedure is introduced by the co-nonsolvent transition of PNIPAm in the mixing solvent and the polymer can dissolve in water carrying Fe 3 O 4 nanoparticles by noncovalent interaction. The temperature-dependant and magnetic properties of the water-soluble particles are characterized in this paper.

research product

Metal-Organic Chemical Vapor Depostion Synthesis of Hollow Inorganic-Fullerene-Type MoS2 and MoSe2 Nanoparticles

research product

Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent

The predicted global cancer burden is expected to surpass 20 million new cancer cases by 2025. Despite recent advancement in tumor therapy, a successful cancer treatment remains challenging. The emerging field of nanotechnology offers great opportunities for diagnosis, imaging, as well as treatment of cancer. Zinc oxide nanoparticles (ZnO NP) were shown to exert selective cytotoxicity against tumor cells via a yet unknown mechanism, most likely involving the generation of reactive oxygen species (ROS). These nanoparticles are a promising therapeutic opportunity as zinc is a nontoxic trace element and its application in medically-related products is considered to be safe. We could show that …

research product

Bioinspired self-assembly of tyrosinase-modified silicatein and fluorescent core-shell silica spheres.

Inspired by the intermolecular cross-linking of mussel foot proteins and their adhesive properties, tyrosinase has been used to modify recombinant silicatein. DOPA/DOPAquinone-mediated cross-linking and interfacial interactions enhanced both self-assembly of silicatein building blocks and templating of core–shell silica spheres, resulting in fluorescent biomimetic silicatein–silica hybrid mesofibers.

research product

Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept

&Titel gek rzt. OK?& Die Nanotechnologie hat ein Entwicklungsstadium erreicht, in dem nicht mehr einzelne Nanopartikel, sondern komplexere Systeme im Fokus des Interesses stehen. Solche Strukturen bestehen aus zwei oder mehr unterschiedlichen Materialien, wie Metall-HalbleiterHybride, die die Eigenschaften beider Materialien effektiv vereinen. Der Aufbau von Nanopartikeln aus mehreren Komponenten mit unterschiedlichen optischen, elektronischen, magnetischen oder chemischen Eigenschaften kann zu neuartigen Funktionalit ten f hren, die unabh ngig von den einzelnen Komponenten masgeschneidert werden k nnen, um spezifischen Anforderungen zu gen gen. M gliche Anwendungen liegen in Gebieten wie d…

research product

Reversible self-assembly of metal chalcogenide/metal oxide nanostructures based on Pearson hardness.

Nanotechnology has reached a stage of development where not individual nanoparticles but rather systems of greater complexity are the focus of concern. These complex structures incorporate two or more types of materials, an example of which is the formation of metal–semiconductor hybrids, which effectively combine the properties of both materials. The assembly of multicomponent nanoparticles from constituents with different optical, electrical, magnetic, and chemical properties can lead to novel functionalities that are independent of the individual components and may be tailored to fit a specific application. These applications include such far-reaching challenges as solar energy conversio…

research product

Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorods

We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO2 nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO2 nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image H2O2 which is a harmful secondary product of cellular metabolism. The shape, size and structure of TiO2 nanorods (anatase) were analyzed by transmission electron microscopy (TEM), high resolution TEM (HRTEM), electron diffraction (ED) and X-ray diffraction (XRD). The surface functionalization, HRP reconstitution and catalytic activity were con…

research product

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb

The121 Sb partial density of phonon states (DPS) in nanopowder antimonides were obtained with nuclear inelastic scattering on , , and NiSb prepared by a wet chemistry route. The DPS is compared with the bulk counterpart. An increase of the Debye level indicative of a decrease of the isothermal speed of sound is systematically observed. This observation reveals that the decrease in speed of sound observed in nanostructured thermoelectric materials is not restricted to sintered nanocomposites.

research product

Synthesis of single crystalline sub-micron rutile TiO2 rods using hydrothermal treatment in acidic media

Size engineered rutile sub-micron rods were obtained from nanostructured titania under acidic conditions. The synthesis was performed by hydrothermal treatment starting from TiO2-P25 and HCl. The synthesis proceeds in less than two hours and can be up-scaled to several grams in a one-pot reaction by increasing the reaction time. The product is single-phase, and the particles are single crystalline as confirmed by electron diffraction and powder X-ray diffraction analysis. The length of the particles can be varied over a wide range from 100 nm to 1.3 μm by changing the acid concentration. Particle growth is proposed to proceed by a dissolution-recrystallization process via soluble [TiCl6]2− …

research product

High temperature spin crossover in [Fe(pyrazine){Ag(CN) 2 } 2 ] and its solvate

A high temperature spin crossover (Tup = 367 K) was detected in a metal–organic framework [Fe(pz){Ag(CN)2}2]·MeCN (pz = pyrazine). Upon heating, this solvate released acetonitrile guest molecules, which slightly shifted the transition temperature of the complex (Tup = 370 K and Tdown = 356 K).

research product

ChemInform Abstract: Synthesis and Functionalization of Chalcogenide Nanotubes

New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.

research product

ChemInform Abstract: Facile Synthesis and Characterization of Monocrystalline Cubic ZrO2Nanoparticles.

Abstract Crystalline ZrO2 nanoparticles were prepared from zirconium isopropoxide by slow hydrolysis and subsequent hydrothermal treatment of solutions containing various amounts of sodium hydroxide at 180 °C. Whereas moderately basic solutions lead to the formation of nanoparticles of monoclinic ZrO2 with plate-like morphology, and nanoparticles of the cubic ZrO2 high-temperature polymorph with diameters of approx. 5 nm were obtained from strongly basic solutions. The morphology, structure and properties of as-synthesized nanoparticles were characterized using HRTEM, XRD, Raman spectroscopy, UV–vis, PL spectroscopy and BET measurements. The formation of both, the monoclinic and the cubic p…

research product

Inorganic Biochemistry. An Introduction. Von J. A. Cowan. VCH Publishers, New York/VCH Verlagsgesellschaft, Weinheim, 1993. 349 S., geb. 69.00 DM. – ISBN 3-527-89537-X

research product

Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: spreading driven by Marangoni flow.

Tungsten oxide nanorods were synthesized by a soft chemistry approach using tungsten alkoxide and trioctyl amine and oleic acid as the surfactants. The optical properties of the nanorods were studied. The nanorods were found to be soluble in a wide range of solvents like chloroform, cyclohexane, and so on. Upon solvent evaporation, the nanorods formed hierarchically organized solid state structures. Depending on the solvent used, the nanorods organized in different mesostructures. Moreover, the organization of the nanorods from mixtures of polar and nonpolar solvents was studied. Here, the Marangoni effect resulting from differences in the surface tensions of the two solvents was found to p…

research product

Synthesis and functionalization of chalcogenide nanotubes

New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.

research product

Tetragonal tungsten bronzes Nb8−xW9+xO47−δ: optimization strategies and transport properties of a new n-type thermoelectric oxide

Engineering of nanoscaled structures may help controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require the combination of low thermal conductivity and low electrical resistivity. The tetragonal tungsten bronzes Nb8−xW9+xO47 (TTB) allow a continuous variation of the charge carrier concentration while fulfilling at the same time the concept of a “phonon-glass electron-crystal” through a layered nanostructure defined by intrinsic crystallographic shear planes. The thermoelectric properties of the tetragonal tungsten bronzes Nb8−xW9+xO47−δ (0 < x < 2) were studied in the temperature range from 373 to 973 K. Structural defects and the…

research product

Titelbild: Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept (Angew. Chem. 41/2010)

research product

SPS-assisted preparation of the Magnéli phase WO2.90 for thermoelectric applications

We describe the preparation and simultaneous consolidation of WO2.90 by spark plasma sintering (SPS). SPS allows for the direct manufacturing of large amounts of consolidated material. Synchrotron powder X-ray diffraction indicates that the material is single phase. Microstructure analysis indicates that the pellet is fully dense, allowing high-temperature thermoelectric properties to be reliably measured. The as-prepared samples of WO2.90 reach a ZT of 0.1 at 1100 K.

research product

ChemInform Abstract: NbTe4I and TaTe4I, Two New Telluride Iodides with Chain Structure.

research product

Facile Large Scale Synthesis of WS2 Nanotubes from WO3 Nanorods Prepared by a Hydrothermal Route.

Abstract Hexagonal WO 3 nanorods of 5–50 nm in diameter and 150–250 nm in length have been synthesised in gram quantities by a low temperature hydrothermal route using citric acid as a structural modifier and hexadecylamine as a templating agent. The ratio of [A]/[W] play an important role on WO 3 nanorods formation. These WO 3 nanorods were found highly suitable as a precursor for the synthesis of a good yield of multiwalled WS 2 nanotubes by reducing them with H 2 S at 840 °C for 30 min. The length and the wall thickness of the WS 2 nanotubes could be altered by controlled reduction of the oxide precursor. The morphology, structure and the composition of the WO 3 nanorods and WS 2 nanotub…

research product

ChemInform Abstract: Synthesis and Structure of ThTe2I2.

research product

Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithium-Ion Batteries

The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by…

research product

Modular Metal Chalcogenide Chemistry: Secondary Building Blocks as a Basis of the Silicate-Type Framework Structure of CsLiU(PS4)2

The novel uranium thiophosphate CsLiU(PS4)2 has been synthesized by reacting uranium metal, Cs2S, Li2S, S, and P2S5 at 700 °C in an evacuated silica tube. The crystal structure was determined by single-crystal X-ray diffraction techniques. CsLiU(PS4)2 crystallizes in the rhombohedral space group Rc (a = 15.2797(7) A; c = 28.778(2) A, V = 5818.7(5) A3, Z = 18). The structure ofCsLiU(PS4)2 is a unique three-dimensional U(PS4)22– framework with large tunnels with an approximate diameter of 6.6 A running parallel to the crystallographic c axis. The tunnels are filled with Cs+ cations. The smaller Li+ cations are located at tetrahedral sites at the periphery of the channels. In the structure of …

research product

Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity

Sulfite oxidase is a mitochondria-located molybdenum-containing enzyme catalyzing the oxidation of sulfite to sulfate in the amino acid and lipid metabolism. Therefore, it plays a major role in detoxification processes, where defects in the enzyme cause a severe infant disease leading to early death with no efficient or cost-effective therapy in sight. Here we report that molybdenum trioxide (MoO3) nanoparticles display an intrinsic biomimetic sulfite oxidase activity under physiological conditions, and, functionalized with a customized bifunctional ligand containing dopamine as anchor group and triphenylphosphonium ion as targeting agent, they selectively target the mitochondria while bein…

research product

Thermally highly stable amorphous zinc phosphate intermediates during the formation of zinc phosphate hydrate.

The mechanisms by which amorphous intermediates transform into crystalline materials are still poorly understood. Here we attempt to illuminate the formation of an amorphous precursor by investigating the crystallization process of zinc phosphate hydrate. This work shows that amorphous zinc phosphate (AZP) nanoparticles precipitate from aqueous solutions prior to the crystalline hopeite phase at low concentrations and in the absence of additives at room temperature. AZP nanoparticles are thermally stable against crystallization even at 400 °C (resulting in a high temperature AZP), but they crystallize rapidly in the presence of water if the reaction is not interrupted. X-ray powder diffract…

research product

Structure-property relations in the distorted ordered double perovskite Sr2InReO6

The rock-salt ordered type double perovskite Sr${}_{2}$InReO${}_{6}$ is systematically investigated by means of powder x-ray diffraction, neutron powder diffraction, temperature-dependent electrical transport, heat capacity and magnetic susceptibility measurements, and electronic band structure calculations. The crystal structure of Sr${}_{2}$InReO${}_{6}$ is revised to be monoclinic (cryolite structure type, space group $P$2${}_{1}$/$n$) with all structural distortions according to the high-symmetry aristotype due to tilting of the InO${}_{6}$ and ReO${}_{6}$ octahedra, respectively. Sr${}_{2}$InReO${}_{6}$ is a Mott insulator with variable-range hopping. Two 5$d$ electrons are unpaired an…

research product

Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 &lt;x &lt;5)

Thermoelectric materials are believed to play a fundamental role in the energy field over the next years thanks to their ability of directly converting heat into usable electric energy. To increase their integration in the commercial markets, improvements of the efficiencies are needed. At the same time, cheap and non-toxic materials are required along with easily upscalable production cycles. Compounds of the tetragonal tungsten bronze (TTB) series Nb8-xW9+xO47 fulfill all these requirements and are promising materials. Their adaptive structure ensures glass-like values of the thermal conductivity, and the substitution on the cation side allows a controlled manipulation of the electronic p…

research product

Morphology of Sponge Spicules: Silicatein a Structural Protein for Bio-Silica Formation

Most forms of multicellular life have developed a calcium-based skeleton, while only a few specialized organisms complement their body plan with silica, such as sponges (phylum Porifera). However, the way in which sponges synthesize their silica is exceptional. They use an enzyme, silicatein, for the polymerization/polycondensation of silica, and thereby form their highly resistant and stabile massive siliceous skeletal elements (spicules). During this biomineralization process (i.e., biosilicification), hydrated amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. This peculiar phenomenon has…

research product

A Step into the Future: Applications of Nanoparticle Enzyme Mimics.

We describe elementary concepts, up-to-date developments, and perspectives of the emerging field of nanoparticle enzyme mimics (so-called "nanozymes") at the interface of chemistry, biology, materials, and nanotechnology. The design and synthesis of functional enzyme mimics is a long-standing goal of biomimetic chemistry. Metal complexes, polymers and engineered biomolecules capturing the structure of natural enzymes or their active centers have been made to achieve high rates and enhanced selectivities. Still, the design of new "artificial enzymes" that are not related to proteins but with capacity of production and stability at industrial level, remains a goal. Inorganic nanoparticles bea…

research product

Solution Synthesis of a New Thermoelectric Zn1-xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography

Engineering materials with specific physical properties have recently focused on the effect of nanoscopic inhomogeneities at the 10 nm scale. Such features are expected to scatter medium- and long-wavelength phonons thereby lowering the thermal conductivity of the system. Low thermal conductivity is a prerequisite for effective thermoelectric materials, and the challenge is to limit the transport of heat by phonons, without simultaneously decreasing charge transport. A solution-phase technique was devised for synthesis of thermoelectric "Zn(4)Sb(3)" nanocrystals as a precursor for phase segregation into ZnSb and a new Zn-Sb intermetallic phase, Zn(1+delta)Sb, in a peritectoid reaction. Our …

research product

Flexible minerals: self-assembled calcite spicules with extreme bending strength.

Flexi-Fibers Glass or metal fibers can show incredible flexibility. Natalio et al. (p. 1298 ; see the Perspective by Sethmann ) used the protein silicatein-α, which is responsible for the biomineralization of silicates in sponges, to guide the formation of spicules made of calcite. These synthetic spicules could be bent to a high degree because of their inherent elasticity, whilst retaining the ability to guide light.

research product

Synthesis, Structure, and Electrical Properties of Ta 4 FeTe 4

Ta4FeTe4 has been synthesized and its structure determined by single-crystal X-ray methods. It crystallizes in the ortho-rhombic space group Pbam with Z = 4 and a = 10.514(5), b = 18.275(7), and c = 4.815(1) A. Ta4FeTe4 has a chain structure built up by Fe-centered Ta8-square antiprisms sharing common square faces. The resistivity of Ta4FeTe4 has been measured by a two-point method. Ta4FeTe4 shows metallic behavior. The structure of Ta4FeTe4 is discussed in relation to other early transition metal cluster compounds. A rational approach to the synthesis of related compounds is proposed.

research product

Die Dreikomponenten‐Selbstorganisation ändert ihre Richtung: Ein Sprung von einfachen Polymeren zu 3D‐Netzwerken sphärischer Wirt/Gast‐Aggregate

research product

Rough Surfaces by Design: Gold Colloids Tethered to Gold Surfaces as Substrates for CaCO3 Crystallization

research product

Hemin-coupled iron(III)-hydroxide nanoparticles show increased uptake in Caco-2 cells

Abstract Objectives The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and ferrous iron but not ferric iron is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. In iron(III)-hydroxide nanoparticles hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by a solubilising carbohydrate shell, yet bioavailability from such particles is insufficient when compared with ferrous salts. To increase their intestinal uptake iron(III)-hydroxide nanoparticles …

research product

Orientation and Dynamics of ZnO Nanorod Liquid Crystals in Electric Fields.

ZnO nanorod polymer hybrids (i.e., ZnO nanorods coated with a block copolymer with a short anchor block (dopamine) and a longer solubilizing block of polystyrene (PS)) form liquid crystalline (LC) phases if they are dispersed at high concentration e.g., in a PS oligomer matrix. Due to the high mobility of the low T(g)-matrix the nanorod polymer hybrids show a switching behavior under an applied AC electric field. Hence, the orientation of the nanorod mesogens can be changed from planar (parallel to the substrate) to homeotropic (perpendicular) in full analogy to the switching of low molecular liquid crystals in an electric field. Dielectric measurements show that such a switching is mainly …

research product

Metal—Organic Chemical Vapor Deposition Synthesis of Hollow Inorganic-Fullerene-Type MoS2 and MoSe2 Nanoparticles.

research product

Large Magnetoresistance at Room Temperature in the Off-Stoichiometric Chalcogenide Cr0.92Te.

research product

VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2.

research product

Thermoelectric properties of Zn-doped Ca_(3)AlSb_(3)

Polycrystalline samples of Ca_(3)Al_(1)−_(x)Zn_(x)Sb_(3), with x = 0.00, 0.01, 0.02, and 0.05 were synthesized via a combined ball milling and hot pressing technique and the influence of zinc as a dopant on the thermoelectric properties was studied and compared to the previously reported transport properties of sodium-doped Ca_(3)AlSb_(3). Consistent with the transport in the sodium-doped material, substitution of aluminum with zinc leads to p-type carrier conduction that can be sufficiently explained with a single parabolic band model. It is found that, while exhibiting higher carrier mobilities, the doping effectiveness of zinc is lower than that of sodium and the optimum carrier concentr…

research product

Low melting Metal Catalysed Growth of Tin Disulfide Nanotubes

AbstractWe report here the synthesis of tin disulfide nanotubes by a vapour liquid solid growth using bismuth, a low melting metal, as a catalyst. The reaction was carried out in a single step process by heating SnS2 and bismuth in a horizontal tube furnace at 800oC. TEM analysis allowed proposing a plausible mechanism for the formation of SnS2 nanotubes. Pure material could be obtained by optimizing the reaction based on a product analysis using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) combined with energy dispersive X-ray spectroscopy (EDX).

research product

Liquid crystalline phases from polymer functionalized ferri-magnetic Fe3O4nanorods

Here, we present the surface functionalization of anisotropic in form ferri-magnetic Fe3O4-nanorods (NRs) with a diblock copolymer, having a PMMA- or PDEGMEMA-block, for solubilization, and a dopamine anchor block. These polymers were synthesized through RAFT polymerization via a macro-initiator approach. The successful surface functionalization, performed via a grafting-to method, was monitored using TGA, IR and TEM measurements. The NRs were very soluble in organic solvents after functionalization. Afterwards, the liquid crystalline (LC) behavior was investigated. During solvent evaporation, birefringent domains were formed. The self-assembly into lyotropic LC structures could be observed…

research product

Functionalization of TiO2Nanoparticles with Semiconducting Polymers Containing a Photocleavable Anchor Group and Separation via Irradiation Afterward

The controlled radical polymerization (RAFT polymerization) of semiconducting polymers based on poly(4,4′-dimethyl-triphenylamine) is described. These polymers are afterward end-functionalized with a photocleavable group and an anchor unit (catechol) for oxidic nanoparticles (NPs). Serving as a reference, polystyrene oligomers with the same end groups are also synthesized. Using these polymers allows functionalization of the TiO2-NPs, leading to an improved solubility and miscibility in organic solvents or polymer matrices. Irradiation in the UV region is used to split the photocleavable group and remove the polymer chains from the NPs, which leads to their aggregation.

research product

Cell Specific Targeting of Multifunctional γ-Fe2O3 Nanoparticles Through Surface Binding of dsDNA

AbstractThe immobilization of polyinosinic-polycytidylic acid [poly(IC)] on ã-Fe2O3 maghemite nanoparticles via the phosphor-amidate route using a multifunctional polymer is reported. The dsRNA coupled nanoparticles were used to visualize the Toll-like (TLR3) receptors at the cell surface. The presence of TLR3 was demonstrated independently in the Caki-1 cell line by RT-PCR and immunostaining techniques

research product

Hofmann-Like Frameworks Fe(2-methylpyrazine)n[M(CN)2]2 (M = Au, Ag) : Spin-Crossover Defined by the Precious Metal

Hofmann-like cyanometalates constitute a large class of spin-crossover iron(II) complexes with variable switching properties. However, it is not yet clearly understood how the temperature and cooperativity of a spin transition are influenced by their structure. In this paper, we report the synthesis and crystal structures of the metal&ndash;organic coordination polymers {FeII(Mepz)[AuI(CN)2]2} ([Au]) and {FeII(Mepz)2[AgI(CN)2]2} ([Ag]), where Mepz = 2-methylpyrazine, along with characterization of their spin-state behavior by variable-temperature SQUID magnetometry and M&ouml;ssbauer spectroscopy. The compounds are built of cyanoheterometallic layers, which are pillared by the bridging Mepz…

research product

Silicatein: Nanobiotechnological and Biomedical Applications

Silica-based materials are used in many high-tech products including microelectronics, optoelectronics, and catalysts. Siliceous sponges (Demospongiae and Hexactinellida) are unique in their ability to synthesize silica enzymatically. We have cloned the silica-forming enzymes, silicateins, from both demosponges (marine and freshwater sponges) and hexactinellid sponges. The recombinant enzymes allow the synthesis of silica under environmentally benign ambient conditions, while the technical (chemical) production of silica commonly requires high temperatures and pressures, and extremes of pH. Silicateins can be used for the fabrication of highly-ordered inorganic–organic composite materials w…

research product

Liquid Crystalline Phases from Polymer-Functionalized TiO2 Nanorods

research product

Selective Synthesis of Hollow and Filled Fullerene-like (IF) WS2 Nanoparticles via Metal–Organic Chemical Vapor Deposition

The synthesis of WS2 onion-like nanoparticles by means of a high-temperature metal–organic chemical vapor deposition (MOCVD) process starting from W(CO)6 and elemental sulfur is reported. The react...

research product

Hybrid chalcogenide nanoparticles: 2D-WS2 nanocrystals inside nested WS2 fullerenes.

The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core–shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures o…

research product

Local Current Imaging through TiO2 Thin Films

research product

Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO 3 nanocomposite thin films

Determination of the anisotropic mechanical properties of nanostructured hybrid films is of great importance to improve fabrication and to enable reliable utility. Here, we employ spontaneous Brillouin light spectroscopy to record the phononic dispersion relation along the two symmetry directions in a supported PMMA (poly(methylmethacrylate))-BaTiO3 hybrid superlattice (SL) with a lattice constant of about 140 nm. Several dispersive elastic modes are resolved for in-plane wave propagation, whereas along the periodicity direction the SL opens a wide propagation stop band for hypersonic phonons and near UV photons both centered at about 280 nm. A thorough theoretical analysis based on the fin…

research product

Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles

research product

Gram-scale selective synthesis of WO3−x nanorods and (NH4)xWO3 ammonium tungsten bronzes with tunable plasmonic properties

Localized surface plasmon resonance properties in unconventional materials like metal oxides or chalcogenide semiconductors have been studied for use in signal detection and analysis in biomedicine and photocatalysis. We devised a selective synthesis of the tungsten oxides WO3-x and (NH4)xWO3 with tunable plasmonic properties. We selectively synthesized WO3-x nanorods with different aspect ratios and hexagonal tungsten bronzes (NH4)xWO3 as truncated nanocubes starting from ammonium metatungstate (NH4)6H2W12O40·xH2O. Both particles form from the same nuclei at temperatures >200 °C; monomer concentration and surfactant ratio are essential variables for phase selection. (NH4)xWO3 was the prefe…

research product

ChemInform Abstract: NbNi2.38Te3, a New Metal-Rich Niobium Telluride with a “Stuffed” TaFe1+ xTe3 Structure.

The authors report the synthesis, structure, and electrical properties of NbNi{sub 2.38}Te{sub 3}. The structure of the compound was determined by X-ray crystallography and the electric conductivity of the compound was measured.

research product

Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To investigate confinement in combination with strong magnetoelastic interactions, we measured the infrared vibrational properties of CoFe(2)O(4) nanoparticles and compared our results to trends in the coercivity over the same size range and to the response of the bulk material. Remarkably, the spectroscopic response is sensitive to the size-induced crossover to the superparamagnetic state, which occurs between 7 and 10 nm. A spin-phonon coupling analysis supports the core-shell model. Moreover, it provides an estimate of the magnetically disordered shell thickness, which increases from 0.4 nm i…

research product

Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11

The Magneli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magneli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (μΩ m)-1, a Seebeck coefficient of α = -(3…

research product

TaNi 2 .05Te 3 , eine Verbindung mit “aufgefüllter” TaFe 1+ x Te 3 ‐Struktur

TaNi2.05Te3, a Novel Telluride with “Stuffed” TaFe1+xTe3 Structure The novel metal-rich layer compound TaNi2.05Te3 was synthesized from the elements. Its structure contains TaNi2Te3 layers which are interconnected by Ni atoms on partially occupied tetragonal-pyramidal sites located between the layers. The title compound and the related telluride TaFe1.14Te3 form a pair of compounds differing only in the occupation or nonoccupation of one 3d-material atom site. Therefore, the structure of TaNi2.05Te3, which is stabilized by interstial Ni atoms, can be regarded as a “stuffed” TaFe1.14Te3 type. Pairs of compounds with a similar structural relationship seem to be of general importance in early …

research product

A Solvothermal Route to High-Surface-Area Nanostructured MoS2.

research product

Fluorescein- and EGFR-Antibody Conjugated Silica Nanoparticles for Enhancement of Real-time Tumor Border Definition Using Confocal Laser Endomicroscopy in Squamous Cell Carcinoma of the Head and Neck

Intraoperative definition of tumor free resection margins in head and neck cancer is challenging. In the current proof-of-principle study we evaluated a novel silica nanoparticle-based agent for its potential use as contrast enhancer. We synthesized silica nanoparticles with an average size of 45 nm and modified these particles with the fluorescence stain fluorescein isocyanate (FITC) for particle detection and with epidermal growth factor receptor (EGFR)-targeting antibodies for enhanced tumor specificity. The nanoparticles exhibited good biocompatibility and could be detected in vitro and in vivo by confocal laser scanning microscopy. Additionally, we show in an ex vivo setting that these…

research product

Influence of Binding-Site Density in Wet Bioadhesion

research product

Structure analysis of titanate nanorods by automated electron diffraction tomography

A hitherto unknown phase of sodium titanate, NaTi3O6(OH)·2H2O, was identified as the intermediate species in the synthesis of TiO2 nanorods. This new phase, prepared as nanorods, was investigated by electron diffraction, X-ray powder diffraction, thermogravimetric analysis and high-resolution transmission electron microscopy. The structure was determined ab initio using electron diffraction data collected by the recently developed automated diffraction tomography technique. NaTi3O6(OH)·2H2O crystallizes in the monoclinic space group C2/m. Corrugated layers of corner- and edge-sharing distorted TiO6 octahedra are intercalated with Na+ and water of crystallization. The nanorods are typically …

research product

Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the red…

research product

Inside Cover: Phase Selection of Calcium Carbonate through the Chirality of Adsorbed Amino Acids (Angew. Chem. Int. Ed. 29/2007)

research product

Improvement of solubility and biocompatibility of MnO based nanoparticles in aqueous solutions

ABSTRACTMnO nanoparticles were surface modified using two different multifunctional polymers. By introducing a PEG group, the long term stability, MRI applicability and sterile filtration could be greatly improved. Furthermore, PEGylated MnO NPs were less toxic compared to non-PEGylated NPs. The results suggest that these nanoparticles are suitable for in vivo applications.

research product

ChemInform Abstract: Ta4BTe8: Tantalum Telluride Cluster Chains with Encapsulated Boron Atoms.

The new metallic chain compound Ta4BTe8 has been synthesized by high-temperature reactions from the elements. The structure consists of chains of fused B-centered Ta6Te12 clusters (shown in the picture), the individual chains being connected by ditelluride groups. The results of band structure calculations indicate that the interstitial B atoms are required for cluster stability.

research product

Wet Chemical Synthesis and a Combined X-ray and Mössbauer Study of the Formation of FeSb2 Nanoparticles

Understanding how solids form is a challenging task, and few strategies allow for elucidation of reaction pathways that are useful for designing the synthesis of solids. Here, we report a powerful solution-mediated approach for formation of nanocrystals of the thermoelectrically promising FeSb(2) that uses activated metal nanoparticles as precursors. The small particle size of the reactants ensures minimum diffusion paths, low activation barriers, and low reaction temperatures, thereby eliminating solid-solid diffusion as the rate-limiting step in conventional bulk-scale solid-state synthesis. A time- and temperature-dependent study of formation of nanoparticular FeSb(2) by X-ray powder dif…

research product

Graphitically encapsulated cobalt nanocrystal assemblies

Graphitically encapsulated cobalt nanocrystal assemblies are chemically prepared by one-pot reaction at380 degrees C followed by a reversed etching process to produce porous graphitic structure for revealing their self-assembling nature.

research product

An Inorganic Double Helix Sheathing Alkali Metal Cations: ANb2P2S12(A=K, Rb, Cs), A Series of Thiophosphates Close to the Metal-Nonmetal Boundary-Chalcogenide Analogues of Transition-Metal Phosphate Bronzes?

The new quaternary niobium thiophosphates ANb 2 P 2 S 1 2 (A=K, Rb, Cs) have been prepared and characterized. The title compounds were synthesized by reacting Nb metal, A 2 S, P 2 S 5 , and S at 600-700°C in evacuated silica tubes. They crystallize as "stuffed" variants of the tetragonal TaPS 6 structure type in the tetragonal space group I42d with eight formula units per unit cell and lattice constants a=15.923(2) and c=13.238(3) A for CsNb 2 P 2 S 1 2 , a= 15.887(3) and c=13.132(3) A for RbNb 2 P 2 S 1 2 , and a=15.850(2) and c= 13.119(3) A for KNb 2 P 2 S 1 2 . Their structures are based on double helices formed from interpenetrating, noninteracting spiral chains of binuclear [Nb 2 S 1 2…

research product

dsRNA-functionalized multifunctional gamma-Fe2O3 nanocrystals: a tool for targeting cell surface receptors.

research product

Asymmetric tungsten oxide nanobrushes via oriented attachment and Ostwald ripening

Tungsten oxide nanobrushes were synthesized using a solvothermal approach that lead to self-branching in the presence of citric acid and hexadecylamine as surfactants. Our synthetic approach yielded branched nanorods of tungsten oxide in a single synthetic step. Based on our results, we propose a phenomenological pathway for the formation, branching, and assembly of these tungsten oxide brushes. The formation of tungsten oxide brushes proceeds by thermal decomposition of ammonium tungstate in the presence of citric acid and hexadecylamine. The pale blue powder obtained after solvothermal reaction was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolu…

research product

Hierarchical Assembly of TiO2 Nanoparticles on WS2 Nanotubes Achieved Through Multifunctional Polymeric Ligands

Thefunctionalization of nanotubes is required in order to bene-fit from their outstanding properties, as any application inmaterials and devices is hindered by processing and manipu-lation difficulties. Only the attachment of appropriate chem-ical functionalities on the nanotube surface allows tailoringof the properties for the respective applications. As an ex-ample, the enhancement of the nanotube solubility is onemajor task since most pristine nanotubes are insoluble inboth water and organic solvents. Thus, the improvement ofthe solubility by chemical functionalization is an importantconcept for synthetic chemists and materials scientists. Tai-loring of the surface chemical bonds might a…

research product

Synthesis and Comparative Catalytic Study of Zirconia-MnCO3or -Mn2O3for the Oxidation of Benzylic Alcohols

Abstract We report on the synthesis of the zirconia–manganese carbonate ZrO x (x  %)–MnCO3 catalyst (where x=1–7) that, upon calcination at 500 °C, is converted to zirconia–manganese oxide ZrO x (x  %)–Mn2O3. We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing agent. ZrO x (x  %)–MnCO3 was prepared through co‐precipitation by varying the amounts of Zr(NO3)4 (w/w %) in Mn(NO3)2. The morphology, composition, and crystallinity of the as‐synthesized product and the catalysts prepared upon calcination were studied by using scanning electron microscopy, tr…

research product

Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement

Despite a millennial history and the ubiquitous presence of cement in everyday life, the molecular processes underlying its hydration behavior, like the formation of calcium–silicate–hydrate (C–S–H), the binding phase of concrete, are mostly unexplored. Using time-resolved potentiometry and turbidimetry combined with dynamic light scattering, small-angle X-ray scattering, and cryo-TEM, we demonstrate C–S–H formation to proceed via a complex two-step pathway. In the first step, amorphous and dispersed spheroids are formed, whose composition is depleted in calcium compared to C–S–H and charge compensated with sodium. In the second step, these amorphous spheroids crystallize to tobermorite-typ…

research product

Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite CuxFe3−xO4 nanoparticles

Magnetic nanocrystals are of great interest for a fundamental understanding of nanomagnetism and for their technological applications. CuxFe3−xO4 nanocrystals (x ≈ 0.32) with sizes ranging between 5 and 7 nm were synthesized starting from Cu(HCOO)2 and Fe(CO)5 using oleic acid and oleylamine as surfactants. The nanocrystals were characterized by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), magnetization studies and Mossbauer spectroscopy. The CuxFe3−xO4 particles are superparamagnetic at room temperature 300 K with a saturation magnetization of 30.5 emu g−1. Below their blocking temperature of 60 K, they become ferrimagnetic, and at 5 K they show a co…

research product

ChemInform Abstract: Solution Synthesis of Nanoparticular Binary Transition Metal Antimonides.

The transition metal antimonides MSb with M: Co, Ni, and Zn and Cu2Sb with particle sizes ranging from 20 to 60 nm are prepared using presynthesized antimony nanoparticles and activated metal nanoparticles as precursors.

research product

Ni@Fe2O3 heterodimers: controlled synthesis and magnetically recyclable catalytic application for dehalogenation reactions

Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mossbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.

research product

CpG-DNA loaded multifunctional MnO nanoshuttles for TLR9-specific cellular cargo delivery, selective immune-activation and MRI

Initiation of pathways that lead to a proliferation and chemoresistance by Toll-like receptors (TLRs) are an important factor in cancer progression. Multifunctional magnetic nanoparticles equipped with a pathogen-derived ligand (CpG) functioning as TLR agonists were used to show the impact of immune activation on human HNSCC (head and neck squamous cell carcinoma) cells. The response of human cancer cells to TLR signaling is linked to tumor biology. The magnetic MnO nanoparticles were coated with a multifunctional polymer, displaying no cytotoxicity and being able to enter cells while carrying foreign DNA (unmethylated CpG) to recognize intracellular TLR9. Both the particle and the nucleic …

research product

Light induced charging of polymer functionalized nanorods.

ZnO nanorods were functionalized with new block copolymers containing a hole transporting moiety in one block and a dye and an anchor system in the second block. After functionalization, the ZnO nanorods are well dispersible in organic media and the fluorescence of the dye is quenched. Kelvin probe force microscopy was used to measure changes in electrical potential between the ZnO nanorod and the polymeric corona. Upon light irradiation, potential changes on the order of some tens of millivolts were observed on individual structures. This effect is attributed to light-induced charge separation between the ZnO nanorod and its hole transporting polymeric corona.

research product

Crystal Structures of Ln2Pd2Pb (Ln: Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) Compounds.

research product

Enzyme-Mediated Deposition of a TiO2Coating onto Biofunctionalized WS2 Chalcogenide Nanotubes

A chemically specific and facile method for the biofunctionalization of WS2 nanotubes (NT-WS2) is reported. The covalent modification strategy is based on the affinity of the nitrilotriacetic acid (NTA) side chain, which serves as a ligand for the surface binding to NT-WS2 and simultaneously as an anchor group for the binding of His-tagged proteins to the polymer backbone. The polymer functionalized WS2 nanotubes can be solubilized either in water or organic solvents; they are stable for at least one week. The probes were characterized by FT-IR and UV-vis spectroscopy. The immobilization of silicatein, a hydrolytic protein encountered in marine sponges, was visualized by scanning force micr…

research product

Morphology control in biphasic hybrid systems of semiconducting materials.

Simple blends of inorganic nanocrystals and organic (semiconducting) polymers usually lead to macroscopic segregation. Thus, such blends typically exhibit inferior properties than expected. To overcome the problem of segregation, polymer coated nanocrystals (nanocomposites) have been developed. Such nanocomposites are highly miscible within the polymer matrix. In this Review, a summary of synthetic approaches to achieve stable nanocomposites in a semiconducting polymer matrix is presented. Furthermore, a theoretical background as well as an overview concerning morphology control of inorganic NCs in polymer matrices are provided. In addition, the morphologic behavior of highly anisotropic na…

research product

Molybdenum blue: Binding to collagen fibres and microcrystal formation

Collagen fibres have been shown by transmission electron microscopy to progressively bind the polyoxomolybdate ring-complex, termed molybdenum blue. Nucleation of cuboidal molybdenum blue microcrystals occurs on the surface of the collagen fibres, leading eventually to extensive coating of the fibres with microcrystals.

research product

Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 photoanode

Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO2 photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core–shell nanoparticles (Au@SiO2 NPs) and hollow silica nanoparticles with the same shell size of the core–shell nanoparticles. The Au nanoparticles were shelled by a thin SiO2 layer to produce the core–shell structure, and the SiO2 hollow spheres were made by dissolving the Au cores of the gold/silica core–shell nanoparticles. Therefore, the size and morphology of the SiO2 hollow spheres were the same as the Au@SiO2 NPs. The energy conver…

research product

Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials has increased exponentially. Particularly the development of easy preparation methods for graphene like materials, such as highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of vari…

research product

Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast

Superoxide radicals are associated with the development of many severe diseases, such as cancer. Under nonpathogenic conditions, the natural enzyme superoxide dismutase (SOD) regulates the intracellular superoxide concentrations, but nearly all tumor tissues show reduced SOD levels. Selective imaging in early progression stages remains a key requirement for efficient cancer diagnosis and treatment. Magnetic resonance imaging (MRI) as a noninvasive tool with high spatial resolution may offer advantages here, but MRI contrast agents exhibiting a redox-triggered change in the image contrast towards superoxide radicals have not been reported so far. Here we show that manganese oxide (MnO) nanop…

research product

Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: Biological/biochemical studies and chemical/biomimetical confirmation

Recently it has been discovered that the formation of the siliceous spicules of Demospongiae proceeds enzymatically (via silicatein) and occurs matrix guided (on galectin strings). In addition, it could be demonstrated that silicatein, if immobilized onto inorganic surfaces, provides the template for the synthesis of biosilica. In order to understand the formation of spicules in the intact organism, detailed studies with primmorphs from Suberites domuncula have been performed. The demosponge spicules are formed from several silica lamellae which are concentrically arranged around the axial canal, harboring the axial filament composed of silicatein. Now we show that the appositional growth o…

research product

ChemInform Abstract: Ln2Ti2S2O5 (Ln: Nd, Pr, Sm): A Novel Series of Defective Ruddlesden-Popper Phases.

research product

Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4.

Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu_(2+x)Zn_(1–x)GeSe_4 (x = 0–0.1) are reported. The substitution of Zn^(2+) with Cu^+ introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are l…

research product

Template induced crystallization of biominerals on self-assembled monolayers of alkylthiols

Abstract We have studied the templated crystallization of the three polymorphs of calcium carbonate on self-assembled monolayers of ω -substituted alkylthiols on gold surfaces. Our interest has been to model biomineralization processes by examining the effect of structured organic templates on heterogeneous nucleation at the inorganic–organic interphase. The crystallization of the three polymorphs was carried out from solution at two different temperatures. The crystals that were formed on the surface were examined using scanning electron microscopy. Phase quantification was achieved through Rietveld analysis of the X-ray diffraction profiles. This study provides significant clues on factor…

research product

ChemInform Abstract: K3Cr2(PS4)3: A New Chromium Thiophosphate with a One-Dimensional [Cr2(PS4)3]3- Anion Chain.

research product

Orientation of Polymer Functionalized Nanorods in Thin Films

A directed self assembly of anisotropic nanostructures offers a possibility to provide unique functional materials, which are e.g., important in optoelectronic devices. We use the liquid crystalline behavior of polymer functionalized TiO2 and ZnO nanorods to apply methods well known for low molecular liquid crystals to achieve oriented thin films. Convective forces in the meniscus on a structured substrate obtain thin layers of oriented nanoparticles with a ordering parameter of S = 0.7. As another method we present the orientation of polystyrene covered ZnO nanorods under an applied electric field. The method offers a perpendicular alignment of the rods to the surface.

research product

Cs3UP2S8, a Coordination Polymer Containing the Unprecedented [U=S]2+Sulfidouranium(2+) Moiety

Although terminal chalcogeno ligands are well known for the group 5 and 6 transition metals, they are highly unusual for the oxophilic group 4 metals and unknown so far for the lanthanides or actinides. Cs3UP2S8, is the first actinide compound containing a terminal M=S group. It was synthesized by reacting uranium metal, Cs2S, S, and P2S5 in a 4:1:8:3 ratio at 700 °C in an eutectic LiCl/CsCl mixture. The crystal structure was determined by single-crystal X-ray diffraction techniques. Cs3UP2S8 crystallizes in the rhombohedral space group R [a = 15.5217(8) A; c = 35.132(2) A, V = 8305.0(8) A3, Z = 18]. The crystal structure is based on a tetrahedral network type, wherein the uranium atoms are…

research product

Snapshots of the Formation of Inorganic MoS2 Onion-Type Fullerenes: A “Shrinking Giant Bubble” Pathway

research product

ChemInform Abstract: Large Scale MOCVD Synthesis of Hollow ReS2Nanoparticles with Nested Fullerene-Like Structure.

research product

The titanium–iron–antimony ternary system and the crystal and electronic structure of the interstitial compound Ti5FeSb2

Abstract Phase equilibria were established in the Ti–Fe–Sb ternary system below the TiSb2–FeSb section at 1070 K; the Sb–TiSb2–FeSb region was studied at 870 K. Investigation of the phase relations was based on X-ray diffraction experiments on arc-melted bulk alloys, which were annealed up to 350 h. Four ternary compounds were observed: TiFe1−xSb (0.64≤x≤0.70; defect TiNiSi-type), Ti1.18Fe0.57Sb (partially and statistically filled Ni2In-type), Ti1+xFeSb (−0.20≤x≤0.27; transformation from defect AlLiSi-type to the defect MnCu2Al-type), and new Ti5FexSb3−x (0.45≤x≤1.00; W5Si3-type). An extended solid solution up to about 10 at.% antimony was observed for the Laves phase Ti(Fe1−xSbx)2−y. Ti3Sb…

research product

Poly(methyl ethylene phosphate) hydrogels

Abstract A degradable and water-soluble polyphosphoester (PPE), namely poly(methyl ethylene phosphate)-dimethacrylate (PMEP-DMA), was synthesized and crosslinked by UV irradiation to prepare PPE-hydrogels. Hydrogels with 10 and 15 wt% of PMEP were prepared after UV-irradiation with an additional 0.2 wt% of photoinitiator. The colorless and transparent PPE hydrogels were studied for their swelling and water uptake. The rheological analysis demonstrated their viscoelastic behavior. The PPE hydrogels were compared to poly(ethylene glycol) (PEG) hydrogels prepared from PEG-macromonomers of similar degrees of polymerization. Hydrolysis experiments proved a successful disintegration of the PPE hy…

research product

Large magnetoresistance at room temperature in the off-stochiometric chalcogenide Cr0.92Te

Abstract We present the electronic and magnetic properties of the transition chalcogenide Cr0.92Te. The compound is the hexagonal counterpart to the hypothetical half-metallic ferromagnet CrTe. The off-stochiometric phase crystallizes in the hexagonal NiAs-type structure P63/mmm. New magnetotransport results show a large magnetoresistance (MR) of 5.5% at room temperature in a magnetic field of 8 T. The remarkable MR-effect can be explained with spin-dependent scattering below the Curie temperature.

research product

Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries

Abstract Herein, we present the electrochemical characterization of carbon-coated TiO 2 nanorods, obtained by carbonizing RAFT (reversible addition fragmentation chain transfer) polymerization derived block copolymers anchored on anatase TiO 2 nanorods. These carbon-coated TiO 2 nanorods show an improved electrochemical performance in terms of first cycle reversibility, specific capacity, cycling stability, and high rate capability. More importantly, however, the structural disordering observed in the uncoated TiO 2 nanorods by means of galvanostatic and potentiodynamic cycling as well as ex situ XRD analysis, does not occur for the carbon-coated material. Preventing this structural disorde…

research product

ChemInform Abstract: Modular Metal Chalcogenide Chemistry: Secondary Building Blocks as a Basis of the Silicate-Type Framework Structure of CsLiU(PS4)2.

The new title compound is synthesized from a mixture of U, P2S5, Li2S, Cs2S, and S in the molar ratio 2:2:1:1:4 (sealed silica tube, 700 °C, 3 d).

research product

The “Needle in the Haystack” Makes the Difference: Linear and Hyperbranched Polyglycerols with a Single Catechol Moiety for Metal Oxide Nanoparticle Coating

Multifunctional linear (CA-linPG) and hyperbranched polyglycerols (CA-hbPG) bearing a single catechol unit were synthesized by use of an acetonide-protected catechol initiator for the anionic polymerization of ethoxyethyl glycidyl ether (EEGE) and glycidol, respectively. A key feature for the synthesis of the hyperbranched structures was a selective, partial acetal deprotection step. The single catechol unit among a large number of aliphatic 1,2- and 1,3-diol moieties (i.e., the “needle in the haystack”) in both linear and hyperbranched polyglycerols permits dispersion of transition metal oxide nanoparticles in brine, as demonstrated for manganese oxide (MnO) nanoparticles. Molecular weight…

research product

Joining Two Natural Motifs: Catechol-Containing Poly(phosphoester)s.

Numerous catechol-containing polymers, including biodegradable polymers, are currently heavily discussed for modern biomaterials. However, there is no report combining poly(phosphoester)s (PPEs) with catechols. Adhesive PPEs have been prepared via acyclic diene metathesis polymerization. A novel acetal-protected catechol phosphate monomer was homo- and copolymerized with phosphoester comonomers with molecular weights up to 42000 g/mol. Quantitative release of the catechols was achieved by careful hydrolysis of the acetal groups without backbone degradation. Degradation of the PPEs under basic conditions revealed complete and statistical degradation of the phosphotri- to phosphodiesters. In …

research product

Synthesis and characterization of copper intercalated ZrTe3

Abstract Electrochemical copper intercalation in ZrTe3 yields the new metallic ternary phase CuxZrTe3 with a maximum stoichiometry of x = 1.9. The charge is balanced by filling the σ∗ antibonding Te p bands, as monitored by XANES spectroscopy. The reaction is accompanied by an increase in the a lattice dimension of 9%. This observation is explained by theoretical calculations.

research product

Monitoring Thiol–Ligand Exchange on Au Nanoparticle Surfaces

Surface functionalization of nanoparticles (NPs) plays a crucial role in particle solubility and reactivity. It is vital for particle nucleation and growth as well as for catalysis. This raises the quest for functionalization efficiency and new approaches to probe the degree of surface coverage. We present an (in situ) proton nuclear magnetic resonance (1H NMR) study on the ligand exchange of oleylamine by 1-octadecanethiol as a function of the particle size and repeated functionalization on Au NPs. Ligand exchange is an equilibrium reaction associated with Nernst distribution, which often leads to incomplete surface functionalization following “standard” literature protocols. Here, we show…

research product

Ab-initio-Strukturbestimmung von Vaterit mit automatischer Beugungstomographie

research product

Overcoming the Insolubility of Molybdenum Disulfide Nanoparticles through a High Degree of Sidewall Functionalization Using Polymeric Chelating Ligands

research product

Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates

We report a simple one step protocol for the preparation of fairly monodisperse and highly water-soluble magnetic iron oxide nanoparticles (MIONs) through a co-precipitation method using a novel multifunctional, biocompatible and water-soluble polymer ligand dodecanethiol–polymethacrylic acid (DDT–PMAA). DDT–PMAA owing to its several intrinsic properties, not only efficiently controls the size of the MIONs but also gives them excellent water solubility, long time stability against aggregation and oxidation, biocompatibility and multifunctional surface rich in thioether and carboxylic acid groups. The molecular weight and concentration of the polymer ligand were optimized to produce ultrasma…

research product

Engineered Multifunctional Nanotools for Biological Applications

Smart multifunctional magnetic nanoparticles are popular candidates for several biological applications owing to their intrinsic magnetic property and diverse applications that range from rare protein separation and biomedical utilization to cancer therapy and diagnostics. A universal protocol, for the development of such nanocarriers, is highly desirable for scientists with different backgrounds so that custom-made multifunctional nanoparticles can be developed to address their needs, among which are the superparamagnetic iron oxide and manganese oxide nanoparticles that are synthesized through high temperature decomposition reactions. However, an interface is needed to present these inorg…

research product

Nb 4 Te 17 I 4 , a New Pseudo One‐Dimensional Solid‐State Polytelluride

The new ternary compound Nb4Te17I4 has been prepared and structurally characterized. It crystallizes in the monoclinic system, space group C2/c with unit-cell parameters a = 16.199(4), b = 8.128(2), c = 27.355(6) A, β = 110.84(2)°, Z = 4. The structure consists of infinite one-dimensional niobium/tellurium chains running parallel to the crystallographic c direction. The chains are separated by iodine atoms. Short and long metal–metal distances alternate in the sequence of three consecutive short bonds ([d ≈ 3.1 – 3.2 A) and one long (d = 4.268 A) metal–metal separation. Each Nb atom is eight-coordinate. The composition of the chain is ∞11[(Nb5+)2(Nb4+)2(Te22−)4(Te32−)3(I−)4].

research product

Ladungsdichtewellen: Elektrische Leitfähigkeit

Die physikalischen Eigenschaften von Verbindungen werden im wesentlichen durch deren Aufbau bestimmt. Die Eigenschaften der Elemente sind nur insoweit wichtig, als sie den strukturellen Aufbau und damit die Bildung einer bestimmten Verbindung uberhaupt erst ermoglichen. Hier, in der Untersuchung und systematischen Veranderung der Substanzeigenschaften liegt die eigentliche Schnittstelle von Chemie und Physik – der Chemiker muss allerdings neben der Synthese, die sein eigentliches Handwerk ist, noch die Grundlagen der Physik so weit beherrschen, dass er die relevanten Fragestellungen erfasst. Umgekehrt muss der Physiker eine gewisse Stoffkenntnis besitzen, um ein Gespur dafur bekommen, welch…

research product

ChemInform Abstract: Mercaptophenol-Protected Gold Colloides as Nuclei for the Crystallization of Inorganic Minerals: Templated Crystallization on Curved Surfaces.

research product

Inorganic Janus particles for biomedical applications.

Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial pro…

research product

Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica,

Abstract The siliceous spicules of sponges (Porifera) show great variations of sizes, shapes and forms; they constitute the chief supporting framework of these animals; these skeletal elements are synthesized enzymatically by silicatein. Each sponge species synthesizes at least two silicateins, which are termed − α and − β . In the present study, using the demosponge Suberites domuncula , we studied if the silicateins of the axial filament contribute to the shape formation of the spicules. For these experiments native silicateins have been isolated by a new Tris/glycerol extraction procedure. Silicateins isolated by this procedure are monomeric (24 kDa), but readily form dimers through non-…

research product

A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles

AbstractAu@Fe3O4 Janus particles (JPs) are heteroparticles with discrete domains defined by different materials. Their tunable composition and morphology confer multimodal and versatile capabilities for use as contrast agents and drug carriers in future medicine. Au@Fe3O4 JPs have colloidal properties and surface characteristics leading to interactions with proteins in biological fluids. The resulting protein adsorption layer (“protein corona”) critically affects their interaction with living matter. Although Au@Fe3O4 JPs displayed good biocompatibility in a standardized in vitro situation, an in-depth characterization of the protein corona is of prime importance to unravel underlying mecha…

research product

Innentitelbild: Phasenselektion von Calciumcarbonat durch die Chiralität adsorbierter Aminosäuren (Angew. Chem. 29/2007)

research product

Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites

A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surfac…

research product

From Single Molecules to Nanoscopically Structured Functional Materials: Au Nanocrystal Growth on TiO2 Nanowires Controlled by Surface-Bound Silicatein

research product

Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater.

Abstract Chemically modified pullulan was evaluated for its sorption efficiency and selectivity to remove cadmium (Cd) from spiked high-hardness groundwater (GW). Pullulan esterified with succinic anhydride using dimethylaminopyridine showed a fairly high degree of substitution value as confirmed by 1 H NMR spectroscopy. Pullulan succinate (Pull-Suc) was converted into the sodium salt (Pull-Suc-Na). The effect of contact time (5–200 min) and pH (2–8) on Cd-uptake by the sorbent (Pull-Suc-Na) was investigated. The sorbent showed more than 90% Cd-removal in first 15 min from distilled water (DW) and GW solution, respectively. Comparison of Pull-Suc-Na with other polysaccharidal sorbents sugge…

research product

Au@MnO-“Nanoblumen” - Hybrid-Nanokomposite zur selektiven dualen Funktionalisierung und Bildgebung

In j ngster Vergangenheit hat das Interesse f r die Entwicklung von Hybrid-Nanostrukturen, die sich aus verschiedenen Materialien zusammensetzen, in erheblichem Mase zugenommen. Es wurde berichtet, dass die Zusammenf hrung verschiedener Nanomaterialien, die ihrerseits spezifische optische, magnetische oder elektronische Eigenschaften aufweisen, zu Kompositen aus mehreren dieser Komponenten, deren individuelle Eigenschaften ver ndern oder sogar verbessern k nnen. Durch gezielte Optimierung der Struktur und der Grenzfl chenwechselwirkung innerhalb der Nanokomposite k nnte eine breite Basis f r zuk nftige Technologien geschaffen werden, beispielweise f r die synchrone Biomarkierung, Proteintre…

research product

Methods of protein surface PEGylation under structure preservation for the emulsion-based formation of stable nanoparticles

Proteins show remarkable versatility as multifunctional materials for therapeutic applications. They can be easily modified with the toolkit of bioorganic chemistry and are particularly attractive because of their degradability and biocompatibility. Herein, we evaluate different methods for the attachment of multiple PEG chains on the surface of the enzyme lysozyme. For this, we activated standard 2 kDa mPEG chains with four different electrophilic groups and tested their ability to react with different amino acids on the surface of our model protein. The aim was to find an effective and at the same time mild modification method that preserves the native structure and activity of the enzyme…

research product

VS2-Nanoröhren mit Amin-Templaten der VOx-Vorstufen und reversible Cu-Einlagerung in NT-VS2

research product

Bio-nano: Theranostic at Cellular Level

Functionalized nanoparticles are important platforms for targeted drug delivery and multimodal imaging. Materials scientists provide tailor-made tools for medical research, diagnosis and treatment. These tools are rationally designed to have defined functions. Still, the value of these tools can only be determined by the users in medical sciences that develop assays for applying these tools. Until now, little is known about the impact of multifunctional particles that display intrinsic chemical and physical asymmetry which poses new challenges for cells associated with the amphiphilicity, dipole moments and chemical diversity/patchiness of the functionalized nanoparticles. Why is it importa…

research product

Syntheses, crystal structures, and solid state NMR investigations of K4M2P6S25 and K3M2P5S18 (M=Ti, Sn)

Abstract Reaction of K 2 S 5 with P 4 S 10 and Ti at 450 °C results in the formation of K 4 Ti 2 P 6 S 25 , a new titanium thiophosphate, whose crystal structure was solved by single-crystal X-ray diffraction. The title compound crystallizes in the orthorhombic space group Fdd2, with the lattice constants a =33.819(7), b =35.508(7), and c =6.251(1) A ( Z =8). The structure contains a layered arrangement of crosslinked quasi-one-dimensional Ti 2 P 6 S 4− 25 chains. The K + ions are situated between the layers. The Ti atoms within the chains are octahedrally coordinated by P 2 S 4− 7 and P 2 S 4− 9 ligands. Reaction of K 2 S with P 4 S 10 , S and Ti at 600 °C results in the formation of K 3 T…

research product

The 2′-5′-oligoadenylate synthetase in the lowest metazoa: isolation, cloning, expression and functional activity in the sponge Lubomirskia baicalensis

Aquatic animals, especially filter feeders such as sponges [phylum Porifera], are exposed to a higher viral load than terrestrial species. Until now, the antiviral defense system in the evolutionary oldest multicellular organisms, sponges, is not understood. One powerful protection of vertebrates against virus infection is mediated by the interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase [(2-5)A synthetase] system. In the present study we cloned from the freshwater sponge Lubomirskia baicalensis a cDNA encoding a 314 aa long ORF with a calculated size of 35748Da, a putative (2-5)A synthetase, and raised antibodies against the recombinant protein. The native enzyme was identified in…

research product

Formation of silicones mediated by the sponge enzyme silicatein-α

The sponge-restricted enzyme silicatein-α catalyzes in vivo silica formation from monomeric silicon compounds from sea water (i.e. silicic acid) and plays the pivotal role during synthesis of the siliceous sponge spicules. Recombinant silicatein-α, which was cloned from the demosponge Suberites domuncula (phylum Porifera), is shown to catalyze in vitro condensation of alkoxy silanes during a phase transfer reaction at neutral pH and ambient temperature to yield silicones like the straight-chained polydimethylsiloxane (PDMS). The reported condensation reaction is considered to be the first description of an enzymatically enhanced organometallic condensation reaction.

research product

A Generalized Method for High‐Speed Fluorination of Metal Oxides by Spark Plasma Sintering Yields Ta 3 O 7 F and TaO 2 F with High Photocatalytic Activity for Oxygen Evolution from Water

A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta3 O7 F and TaO2 F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta3 O7 F and TaO2 F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering …

research product

Combining magnetic field induced locomotion and supramolecular interaction to micromanipulate glass fibers: toward assembly of complex structures at mesoscale.

The formation of ordered complex structures is one of the most challenging fields in the research of biomimic materials because those structures are promising with respect to improving the physical and mechanical properties of man-made materials. In this letter, we have developed a novel approach to fabricating complex structures on the mesoscale by combining magnetic-field-induced locomotion and supramolecular-interaction-assisted immobilization. We have employed a magnetic field to locomote the glass fiber, which was modified by the layer-by-layer self-assembly of magnetic nanoparticles, to desired positions and have exploited the supramolecular interaction to immobilize glass fiber onto …

research product

Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simu…

research product

Structure analysis on the nanoscale: closed WS2 nanoboxes through a cascade of topo- and epitactic processes

Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3·⅓H2O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3·⅓H2O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation wi…

research product

Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth

Organized three-dimensional (3D) nanomaterial architectures are promising candidates for applications in optoelectronics, catalysis, or theranostics owing to their anisotropy and advanced structural features that allow tailoring their physical and chemical properties. The synthesis of such complex but well-organized nanomaterials is difficult because the interplay of interfacial strain and facet-specific reactivity must be considered. Especially the magnetic anisotropy with controlled size and morphology plays a decisive role for applications like magnetic resonance imaging (MRI) and advanced data storage. We present a solution phase seed mediated synthesis of colloidal, well dispersible ir…

research product

Synthesis and Characterization of Monodisperse Manganese Oxide Nanoparticles−Evaluation of the Nucleation and Growth Mechanism

Magnetic nanoparticles of the 3d transition metal oxides have gained enormous interest for applications in various fields such as data storage devices, catalysis, drug-delivery, and biomedical imaging. One major requirement for these applications is a narrow size distribution of the particles. We have studied the nucleation and growth mechanism for the formation of MnO nanoparticles synthesized by decomposition of a manganese oleate complex in high boiling nonpolar solvents using TEM, FT-IR, and AAS analysis. The exceptionally narrow size distribution indicates that nucleation and growth are clearly separated. This leads to a uniform growth with a very narrow size distribution on the existi…

research product

ChemInform Abstract: Synthesis, Structure and Properties of [Cr2(PS4)4]6-; the First Discrete Transition Metal Cluster from Thiophosphate Flux Reactions.

research product

Monitoring a Mechanochemical Reaction Reveals the Formation of a New ACC Defect Variant Containing the HCO 3 – Anion Encapsulated by an Amorphous Matrix

Crystal growth &amp; design 20(10), 6831 - 6846 (2020). doi:10.1021/acs.cgd.0c00912

research product

Bismut-katalysiertes Wachstum von SnS2-Nanoröhren und deren Stabilität

research product

Insights into the In Vitro Formation of Apatite from Mg‐Stabilized Amorphous Calcium Carbonate

research product

Effect of precursor concentration on size evolution of iron oxide nanoparticles

Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the complex chemistry of the system such as precursor decomposition and surfactant–reducing agent interactions. Control over nanoparticle size is achieved by adjusting the reaction parameters, namely, the precursor concentration. The results, however, are conflicting as both an increase and a decrease in nanoparticle size, as a function of increasing concentration, have been reported. Here, we address the issue of size-controlled synthesis via the precursor concentration. We synthesized iron oxide nanoparticles with sizes from 6 nm to 24 nm wit…

research product

Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces

A method for mesoporous supraparticle synthesis on superamphiphobic surfaces is designed. Therefore, supraparticles assembled with nanoparticles are synthesized by the evaporation of nanoparticle dispersion drops on the superamphiphobic surface. For synthesis, no further purification is required and no organic solvents are wasted. Moreover, by changing the conditions such as drop size and concentration, supraparticles of different sizes, compositions, and architectures are fabricated.

research product

ChemInform Abstract: Comprehensive Uranium Thiophosphate Chemistry: Framework Compounds Based on Pseudotetrahedrally Coordinated Central Metal Atoms.

The new ternary compounds UP2S6 (I), UP2S7 (II), U(P2S6)2 (III), and U3(PS4)4 (IV) are prepared from polysulfide fluxes (evacuated quartz tube, 1.

research product

Silicatein conjugation inside nanoconfined geometries through immobilized NTA–Ni(ii) chelates

The chemical modification and bioconjugation processes inside confined geometries by His-tagged silicatein promote sensitive changes in the polarity and surface charge density that mainly contribute to the ionic current rectification properties of the single conical nanopores.

research product

Syntheses, Structures, and Properties of New Quaternary Gold-Chalcogenides: K2Au2Ge2S6, K2Au2Sn2Se6, and Cs2Au2SnS4

The new compounds K2Au2Ge2S6 (1), K2Au2Sn2Se6 (2), and Cs2Au2SnS4 (3) have been synthesized through direct reaction of the elements with a molten polyalkalithiogermanate(stannate) flux at 650, 550, and 400 °C, respectively. Their crystal structures have been determined by single crystal X-ray diffraction techniques. 1 crystallizes in the monoclinic space group P21/n with a = 10.633(2) A, b = 11.127(2) A, c = 11.303(2) A, β = 115,37(3)°, V = 1208,2(3) A3 and Z = 4, final R(Rw) = 0.045(0.106). 2 crystallizes in the tetragonal space group P4/mcc with a = 8.251(1) A, c = 19.961(4) A, V = 1358,9(4) A3 and Z = 4, final R(Rw) = 0.040(0.076). 3 crystallizes in the orthorhombic space group Fddd with…

research product

NbxRu6-xTe8, New Chevrel-Type Clusters Containing Niobium and Ruthenium,

Phases of composition Nb(x)()Ru(6)(-)(x)()Te(8) were prepared by reacting stoichiometric mixtures of the elements at high temperature in evacuated silica ampules. The structure of Nb(3.33)Ru(2.67)Te(8) was refined from X-ray powder data using the Rietveld method. Nb(3.33)Ru(2.67)Te(8) crystallizes isotypic with Mo(6)Q(8) (Q = S, Se, Te) in the rhombohedral space group Rthremacr; with the hexagonal lattice parameters a = 10.34106(5) Å, c = 11.47953(7) Å, and Z = 3. Its structure consists of M(6)Te(8) mixed-metal clusters (M = Nb, Ru) which are connected by intercluster M-Te bonds to form a three-dimensional network. Metal-metal bonding in these phases is analyzed in terms of Pauling bond ord…

research product

Synthesis of Hierarchically Grown ZnO@NT-WS2 Nanocomposites

A chemically specific and facile method for growth of ZnO nanorods on WS2 nanotubes (NT-WS2) is reported. The modification strategy is based on the chalcophilic affinity of Zn, which serves as an anchor to immobilize ZnO colloids onto the WS2 nanotubes. The surface bound ZnO colloids have been used as a seed to grow ZnO nanorods on WS2 nanotubes. The immobilization of ZnO colloids was monitored by UV−vis spectroscopy and photoluminescence spectroscopy whereas the growth of ZnO nanorods was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

research product

Band convergence in the non-cubic chalcopyrite compounds Cu_2MGeSe_4

Inspired by recent theoretical predictions on band convergence in the tetragonal chalcopyrite compounds, we have explored the influence of the crystal structure on the transport and bandstructure of different quaternary chalcopyrites. In theory, a changing lattice parameter ratio of c/2a towards unity should lead to band convergence due to a more cubic and higher symmetry structure. In accordance with this prediction, the different solid solutions explored in this manuscript show a significant impact on the electronic transport depending on the ratio of the lattice parameters. An increasing lattice parameter ratio results in an increase of the carrier effective masses which can be explained…

research product

Water-Controlled Crystallization of CaCO3, SrCO3, and MnCO3 from Amorphous Precursors

Calcium carbonate is the most abundant biomineral, whose amorphous form is stabilized in nature by a variety of organic additives and water. It is used to manipulate the morphology of new materials and to make strong inorganic/organic hybrid materials. However, the crystallization pathways (e.g., nucleation and growth, two-step nucleation pathways involving disordered, amorphous, or dense liquid states preceding the appearance of crystalline phases) remain often unclear. We have synthesized three amorphous carbonates, CaCO3 (ACC), SrCO3 (ASC), and MnCO3 (AMnC), that do not require any stabilization by additives to study their crystallization kinetics and mechanisms in the presence of water.…

research product

From Single Molecules to Nanostructured Functional Materials: Formation of a Magnetic Foam Catalyzed by Pd@FexO Heterodimers

Multicomponent nanostructures containing purely organic or inorganic as well as hybrid organic–inorganic components connected through a solid interface are, unlike conventional spherical particles, able to combine different or even incompatible properties within a single entity. They are multifunctional and resemble molecular amphiphiles, like surfactants or block copolymers, which makes them attractive for the self-assembly of complex structures, drug delivery, bioimaging, or catalysis. We have synthesized Pd@FexO heterodimer nanoparticles (NPs) to fabricate a macroporous, hydrophobic, magnetically active, three-dimensional (3D), and template-free hybrid foam capable of repeatedly separati…

research product

Templated Crystallisation of Calcium and Strontium Carbonates on Centred Rectangular Self-Assembled Monolayer Substrates

SrCO3crystals display patterns of templating when grown on tailored self-assembled monolayers (right). As SrCO3 is isostructural with aragonite, comparison of the crystallisation of SrCO3 in the aragonite/strontianite modification with the crystallisation of CaCO3 in all three modifications might yield some insights into which factors are important for crystal growth.

research product

Catechol-Initiated Polyethers: Multifunctional Hydrophilic Ligands for PEGylation and Functionalization of Metal Oxide Nanoparticles

Bifunctional CA-PEG (catechol-poly(ethylene glycol)) and multifunctional CA-PEG-PGA/PEVGE (poly(glycidyl amine)/poly(ethylene glycol vinyl glycidyl ether)) ligands for the functionalization and solubilization of nanoparticles are introduced. Tunable polymers with polydispersities1.25 and molecular weights in the range 500-7700 g mol(-1) containing a catechol moiety for conjugation to metal oxide nanoparticles were prepared. The functional PEG ligands were synthesized starting from the acetonide-protected catechol initiator 2,2-dimethyl-1,3-benzodioxole-5-propanol (CA-OH) for oxyanionic polymerization. CA-OH was used both for homopolymerization of ethylene oxide (EO) as well as copolymerizat…

research product

Cerdioxid schützt vor marinem Fouling

research product

ChemInform Abstract: Magnetic and Electronic Structure of the CMR Chalcospinel Fe0.5Cu0.5Cr2S4

research product

Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics

A longstanding goal of biomimetic chemistry is the design and synthesis of functional enzyme mimics. The past three decades have seen a wide variety of materials, including metal complexes, polymers and other biomolecules, that mimic the structures and functions of naturally occurring enzymes. Among these, inorganic nanoparticles offer huge potential, because they are more stable than their natural counterparts, while having large surface areas and sizes comparable to those of natural enzymes. Therefore, a considerable number of “artificial enzymes” derived from inorganic nanomaterials have been reported. This microreview highlights the recent progress in the field of enzymatically active i…

research product

Structural and magnetic properties of the solid solution series Sr2Fe1–xMxReO6(M = Cr, Zn)

Strong correlations between the electronic, structural and magnetic properties have been found during the study of doped double perovskites Sr2Fe1−xMxReO6 (0 ≤ x ≤ 1, M = Zn, Cr). The interplay between the van Hove singularity and the Fermi level plays a crucial role for the magnetic properties. Cr doping of the parent compound Sr2FeReO6 leads to a non-monotonic behaviour of the saturation magnetization and an enhancement for doping levels up to 10%. The Curie temperatures monotonically increase from 401 to 616 K. In contrast, Zn doping leads to a continuous decrease in the saturation magnetization and the Curie temperatures. Superimposed on the electronic effects is the structural influenc…

research product

Electrodeposition of ZnO nanorods on opaline replica as hierarchically structured systems

We present a new method to prepare hierarchical structures by using ZnO replica and ZnO-coated PMMA opals as electrodes in an electrodeposition process of ZnO nanorods. Depending on the approach the nanorods can be either grown exclusively on top of the replica or inside the replica structures. Therefore two types of systems are accessible: 3D photonic crystals with a hierarchically structured surface consisting of nanorods and macroporous ZnO structures with an increased surface area.

research product

Hierachical Ni@Fe2O3superparticles through epitaxial growth of γ-Fe2O3nanorods on: In situ formed Ni nanoplates

One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mossbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 …

research product

Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets.

An in situ study of the contact-free crystallization of calcium carbonate in acoustic levitated droplets is reported. The levitated droplet technique allows an in situ monitoring of the crystallization while avoiding any foreign phase boundaries that may influence the precipitation process by heterogeneous nucleation. The diffusion-controlled precipitation of CaCO3 at neutral pH starts in the initial step with the homogeneous formation of a stable, nanosized liquid-like amorphous calcium carbonate phase that undergoes in a subsequent step a solution-assisted transformation to calcite. Cryogenic scanning electron microscopy studies indicate that precipitation is not induced at the solution/a…

research product

Phoxonic Hybrid Superlattice

We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from…

research product

Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.

The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated …

research product

Alignment of Tellurium Nanorods via a Magnetization−Alignment− Demagnetization (“MAD”) Process Assisted by an External Magnetic Field

Tellurium (Te) nanorods have been successfully aligned on a solid substrate via a magnetization-alignment-demagnetization ("MAD") process in the presence of an external magnetic field. Te nanorods carrying a poly(tert-butyl methacrylate) shell were first converted into magnetic nanocylinders by assembling magnetite nanoparticles on their surface via a hydrophobic interaction in THF. We demonstrate that, below a critical concentration of the nanoparticles, this assembly process is able to quantitatively tune the magnetite nanoparticles' density on the nanorods in terms of their stoichiometric ratio. Due to the polymer and surfactant on their surface, the formed magnetic nanocylinders are sol…

research product

Magnetic and structural properties of the double-perovskite Ca2FeReO6

Abstract We suceeded in the preparation of polycrystalline Ca2FeReO6 which has a Curie temperature TC of 540 K, the highest value of all magnetic perovskites investigated till now. This material has been characterised by X-ray and neutron powder diffraction. We found at 548 K, a monoclinic unit cell (space group P21/n) with a=5.4366(5) A , b=5.5393(5) A , c=7.7344(5) A , and β=90.044(4)°. For temperatures below 400 K, a phase separation in two monoclinic phases with identical cell volume is observed in neutron scattering. The two phases possess different magnetic structure and coercivity. The conductivity is thermally activated for all temperatures and no significant magnetoresistivity is o…

research product

Silica-coated Au@ZnO Janus particles and their stability in epithelial cells

Multicomponent particles have emerged in recent years as new compartmentalized colloids with two sides of different chemistry or polarity that have opened up a wide field of unique applications in medicine, biochemistry, optics, physics and chemistry. A drawback of particles containing a ZnO hemisphere is their low stability in biological environment due to the amphoteric properties of Zn2+. Therefore we have synthesized monodisperse Au@ZnO Janus particles by seed-mediated nucleation and growth whose ZnO domain was coated selectively with a thin SiO2 layer as a protection from the surrounding environment that imparts stability in aqueous media while the Au domain remained untouched. The thi…

research product

Siliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics

AbstractPottery was a traditional art and technology form in pre-colonial Amazonian civilizations, widely used for cultural expression objects, utensils and as cooking vessels. Abundance and workability of clay made it an excellent choice. However, inferior mechanical properties constrained their functionality and durability. The inclusion of reinforcement particles is a possible route to improve its resistance to mechanical and thermal damage. The Amazonian civilizations incorporated freshwater tree sponge spicules (cauixí) into the clay presumably to prevent shrinkage and crack propagation during drying, firing and cooking. Here we show that isolated siliceous spicules are almost defect-f…

research product

K2AuPS4, TI2AuPS4, K2AuAsS4, and KAu5P2S8: Syntheses, structures, and properties of quaternary gold thiophosphate and thioarsenate compounds

The novel compounds K2AuPS4 (1), Tl2AuPS4 (2), K2AuAsS4 (3), and KAu5P2S8 (4) have been synthesized by direct reaction of the elements with a molten alkaline polythiophosphate(arsenate) flux at 550°C. The crystal structures of these compounds have been determined by single-crystal X-ray diffraction techniques. 1, 2, and 3 crystallize in the monoclinic space group P21/m. The structures of 1, 2, and 3 consist of infinite, one-dimensional anionic chains running along the crystallographic b axis. The chains are separated by potassium or thallium ions. Neighbouring Au atoms are bridged by MS43− tetrahedra (M = P, As) in a trans orientation. Compound 4 crystallizes in the space group P21/c. The a…

research product

Chemical Mimicry: Hierarchical 1D TiO2@ZrO2 Core−Shell Structures Reminiscent of Sponge Spicules by the Synergistic Effect of Silicatein-α and Silintaphin-1

In nature, mineralization of hard tissues occurs due to the synergistic effect of components present in the organic matrix of these tissues, with templating and catalytic effects. In Suberites domuncula, a well-studied example of the class of demosponges, silica formation is mediated and templated by an axial proteinaceous filament with silicatein-α, one of the main components. But so far, the effect of other organic constituents from the proteinaceous filament on the catalytic effect of silicatein-α has not been studied in detail. Here we describe the synthesis of core-shell TiO(2)@SiO(2) and TiO(2)@ZrO(2) nanofibers via grafting of silicatein-α onto a TiO(2) nanowire backbone followed by …

research product

Crystal structures of R2Pd2Pb (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) compounds

Abstract The crystal structures of the R2Pd2Pb (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) compounds were determined using X-ray powder diffraction. The investigated compounds crystallize with Mo2FeB2 structure type (space group P4/mbm, Pearson code tP10). The importance of stabilization by polar intermetallic R–Pd bonding is underscored by a bonding analysis derived from electronic band structure calculations.

research product

The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands

The effect of surface functionalization on the structural and magnetic properties of catechol-functionalized iron oxide magnetic (γ-Fe2O3) nanocrystals was investigated. γ-Fe2O3 nanocrystals (NCs) were synthesized from iron acetyl acetonate in phenyl ether with 1,2-tetradecanediol, oleic acid, and oleylamine. X-ray powder diffraction in combination with Mossbauer spectroscopy revealed the presence of γ-Fe2O3 (maghemite) particles only. Replacement of oleic acid (OA) with catechol-type 3,4-dihydroxyhydrocinnamic acid (DHCA) or polydentate polydopamine acrylate (PDAm) surface ligands leads to a pronounced change of the magnetic behavior of the γ-Fe2O3 nanocrystals and separated them into two …

research product

Structural and optical properties of Fe and Zn substituted CuInS2 nanoparticles synthesized by a one-pot facile method

We substitute indium present in the CuInS2 ternary compound by iron and zinc using a facile one-pot synthesis method. The quaternary compound of CuIn1−xMxS2 (M = Fe and Zn) was synthesized by dissolving CuCl, InCl3, FeCl3, Zn(ac)2 and SC(NH2)2 as precursors in 1-octadecene, oleylamine and oleic acid as non-coordinating, coordinating and capping agent solvents, respectively. Oleic acid, oleylamine and thiourea were used respectively as a hard Lewis base, borderline Lewis base (in comparison with oleic acid) and soft Lewis base to form appropriate complexes. The complex formation, structure, and optical properties of CuIn1−xMxS2 (M = Fe and Zn) nanoparticles were studied by Fourier transform …

research product

Cover Picture: Reversible Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness (Angew. Chem. Int. Ed. 41/2010)

research product

Substitution Effects in Double Perovskites: How the Crystal Structure Influences the Electronic Properties

We systematically studied substituted Sr2FeReO6 with respect to experimental characterization and theoretical band structure calculations. In the framework of the tight-binding approach, hole- or electron-doping of Sr2MM’O6 were performed at the M or M’ positions either by transition or main group metals. Hole-doping, rather than electron-doping, has a favorable effect to improve the half-metallicity (Curie temperature and saturation magnetization) of the parent compound. When M is substituted by another metal, the original M’ metal will serve as a redox buffer (and vice versa). Substituting M by another metal with a size similar to that of the metal at M’ position causes disorder, which ha…

research product

HPMC-salicylate conjugates as macromolecular prodrugs: Design, characterization, and nano-rods formation

The design, characterization, and nano-rods formation of hydroxypropylmethylcellulose (HPMC)-salicylate conjugates as macromolecular prodrugs, was described. HPMC, obtained from Zhejiang Zhongbao Imp and Exp Corp, was dried under vacuum at 110°C for 8 hr. Nanoparticles were prepared using dialysis process in which 170 mg of HPMC-salicylate sample was dissolved in 5 mL of purified DMSO and was dialyzed against distilled water for 4 days. HPMC-salicylic acid conjugates reveal the absence of sulfur in all of the samples showing that there is no introduction to tosylate groups either covalently bounded or as an impurity.

research product

Congratulations to Bernt Krebs

research product

Soluble IF-ReS2 nanoparticles by surface functionalization with terpyridine ligands.

A major drawback in the application of layered chalcogenide nanoparticles/tubes is their inertness to chemical and biological modification and functionalization. Their potential use in composite materials might be greatly enhanced by improving the chalcogenide/matrix interface bonding. A novel modification strategy for layered chalcogenide nanoparticles based on the chalcophilic affinity of metals and the chelating terpyridine is reported. The terpyridine anchor group can be conjugated to fluorescent tags or hydrophilic/hydrophobic groups that confer solubility in various solvents to the otherwise insoluble chalcogenide nanoparticles. The functionalized particles are characterized using TEM…

research product

Frontispiece: A Step into the Future: Applications of Nanoparticle Enzyme Mimics

research product

Mechanische Spannung und Valenzabsättigung in Konkurrenz: Nano-Münzrollen aus Stapeln nanoskaliger Schichten

research product

Elastic Modulus and Thermal Conductivity of Thiolene/TiO2 Nanocomposites

Metal oxide based polymer nanocomposites find diverse applications as functional materials, and in particular thiol-ene/TiO2 nanocomposites are promising candidates for dental restorative materials. The important mechanical and thermal properties of the nanocomposites, however, are still not well understood. In this study, the elastic modulus and thermal conductivity of thiol-ene/TiO2 nanocomposite thin films with varying weight fractions of TiO2 nanoparticles are investigated by using Brillouin light scattering spectroscopy and 3ω measurements, respectively. As the TiO2 weight fraction increases from 0 to 90%, the effective elastic longitudinal modulus of the films increases from 6.2 to 37…

research product

dsRNA-funktionalisierte γ-Fe2O3-Nanokristalle: ein Instrument zur gezielten Adressierung von Rezeptoren an der Zelloberfläche

research product

Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants

Cu@Fe3O4 heteroparticles with distinct morphologies were synthesized from organometallic reactants. The shape of the magnetic domains could be controlled by the solvent and reaction conditions. They display magnetic and optical properties that are useful for simultaneous magnetic and optical detection. After functionalization, the Cu@Fe3O4 heterodimers become water soluble. The morphology, structure, magnetic and optical properties of the as-synthesized heterodimer nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and dark field imaging. A special a…

research product

ChemInform Abstract: The Valence States of Nickel, Tin, and Sulfur in the Ternary Chalcogenide Ni3Sn2S2 - XPS, 61Ni and 119Sn Moessbauer Investigations, and Band Structure Calculations.

research product

Co-expression and Functional Interaction of Silicatein with Galectin

Sponges (phylum Porifera) of the class of Demospongiae are stabilized by a siliceous skeleton. It is composed of silica needles (spicules), which provide the morphogenetic scaffold of these metazoans. In the center of the spicules there is an axial filament that consists predominantly of silicatein, an enzyme that catalyzes the synthesis of biosilica. By differential display of transcripts we identified additional proteins involved in silica formation. Two genes were isolated from the marine demosponge Suberites domuncula; one codes for a galectin and the other for a fibrillar collagen. The galectin forms aggregates to which silicatein molecules bind. The extent of the silicatein-mediated s…

research product

Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals

Cerium oxide nanoparticles (CeNPs) have been shown to exhibit antioxidant capabilities, but their efficiency in scavenging reactive oxygen species (ROS) and the underlying mechanisms are not yet well understood. In this study, cerium dioxide nanoparticles (CeNPs) and nanorods (CeNRs) were found to exhibit much stronger scavenging activity than ·OH generation in phosphate buffered saline (PBS) and surrogate lung fluid (SLF). The larger surface area and higher defect density of CeNRs may lead to higher ·OH scavenging activity than for CeNPs. These insights are important to understand the redox activity of cerium nanomaterials and provide clues to the role of CeNPs in biological and environmen…

research product

Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

Abstract The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two co…

research product

Growth Mechanism and Surface Functionalization of Metal Chalcogenides Nanostructures

Following the discovery of carbon fullerenes and nanotubes (NTs), nanostructured materials and their synthesis have attracted tremendous attention due to their superior mechanical properties, their unique electronic behavior, and their high potential in making technologically advanced nanodevices. Among different classes, layered metal chalcogenides nanostructures are of interest for a variety of applications ranging from nanoelectronics or as source materials for energy applications, nanotribology and in heterogeneous catalysis. These nanoparticles are metastable phases. Therefore, equilibrium methods are necessary to prevent the formation of the thermodynamically stable bulk phase. On the…

research product

Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals

Although strong and stiff synthetic composites have long been developed, the microstructure of today's most advanced composites has yet to achieve the sophisticated hierarchy of hybrid materials built up by living organisms. We have assembled hard and tough multilayered nanocomposites, which contain alternating layers of Fe3O4 nanoparticles and a 3-hydroxy-tyramine (dopamine) substituted polymer (dopamine modified polymer), strongly cemented together by chelation through infiltration of the polymer into the Fe3O4 mesocrystal. With a Young's modulus of 17 ± 3 GPa and a hardness of 1.3 ± 0.4 GPa the nanocomposite exhibits high resistance against elastic as well as plastic deformation. Key fea…

research product

Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes.

Here we demonstrate a novel biosensing platform for the detection of lactoferrin (LFN) via metal-organic frameworks, in which the metal ions have accessible free coordination sites for binding, inside the single conical nanopores fabricated in polymeric membrane. First, monolayer of amine-terminated terpyridine (metal-chelating ligand) is covalently immobilized on the inner walls of the nanopore via carbodiimide coupling chemistry. Second, iron-terpyridine (iron-terPy) complexes are obtained by treating the terpyridine modified-nanopores with ferrous sulfate solution. The immobilized iron-terPy complexes can be used as recognition elements to fabricate biosensing nanodevice. The working pri…

research product

Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging.

Recently, the development of hybrid nanostructures consisting of various materials has attracted considerable interest. The assembly of different nanomaterials with specific optical, magnetic, or electronic properties to multicomponent composites can change and even enhance the properties of the individual constituents. Specifically tuning the structure and interface interactions within the nanocomposites has resulted in novel platforms of materials that may lead the way to various future technologies, such as synchronous biolabeling, protein separation and detection, heterogeneous catalysis, and multimodal imaging in biomedicine. Of the various kinds of nanomaterials, gold nanorods show an…

research product

Determination of the LD50 with the chick embryo chorioallantoic membrane (CAM) assay as a promising alternative in nanotoxicological evaluation

Toxicity tests in rodents are still considered a controversial topic concerning their ethical justifiability. The chick embryo chorioallantoic membrane (CAM) assay may offer a simple and inexpensive alternative. The CAM assay is easy to perform and has low bureaucratic hurdles. At the same time, the CAM assay allows the application of a broad variety of analytical methods in the field of nanotoxicological research. We evaluated the CAM assay as a methodology for the determination of nanotoxicity. Therefore we calculated the median lethal dose (LD50), performed in vivo microscopy and immunohistochemistry to identify organ-specific accumulation profiles, potential organ damage, and the kineti…

research product

Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution

Abstract Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pa…

research product

INFLUENCE OF THE CHEMICAL POTENTIAL ON THE CARRIER EFFECTIVE MASS IN THE THERMOELECTRIC SOLID SOLUTION Cu2Zn1-xFexGeSe4

In this paper, we describe the synthesis and characterization of the solid solution Cu 2 Zn 1-x Fe x GeSe 4. Electronic transport data have been analyzed using a single parabolic band model and have been compared to Cu 2+x Zn 1-x GeSe 4. The effective mass of these undoped, intrinsically hole conducting materials increases linearly with increasing carrier concentration, showing a non-parabolic transport behavior within the valence band.

research product

On the True Indium Content of In-Filled Skutterudites

The incongruently melting single-filled skutterudite InxCo4Sb12 is known as a promising bulk thermoelectric material. However, the products of current bulk syntheses contain always impurities of InSb, Sb, CoSb, or CoSb2, which prevent an unbiased determination of its thermoelectric properties. We report a new two-step synthesis of high-purity InxCo4Sb12 with nominal compositions x = 0.12, 0.15, 0.18, and 0.20 that separates the kieftite (CoSb3) formation from the topotactic filler insertion. This approach allows conducting the reactions at lower temperatures with shorter reaction times and circumventing the formation of impurity phases. The synthesis can be extended to other filled skutteru…

research product

Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene

Bioencapsulation is an intriguing way to immobilize biological materials, including cells, in silica, metal-oxides or hybrid sol-gel polymers. Until now only the sol-gel precursor technology was utilized to immobilize bacteria or yeast cells in silica. With the discovery of silicatein, an enzyme from demosponges that catalyzes the formation of poly(silicate), it became possible to synthesize poly(silicate) under physiological (ambient) conditions. Here we show that Escherichia coli can be transformed with the silicatein gene, its expression level in the presence of isopropyl beta-D-thiogalactopyranoside (IPTG) can be efficiently intensified by co-incubation with silicic acid. This effect co…

research product

Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate

Zinc phosphate, an important pigment in phosphate conversion coatings, forms protective films on rubbing surfaces. We have simulated the underlying reactions under shear by ball-milling zinc phosphate and monitored the reaction of hopeite (Zn3(PO4)2·4H2O) and the retarded recrystallization of the amorphous reaction product by powder X-ray diffraction (PXRD) and quantitative infrared (IR) spectroscopy. Abrasion of stainless steel was simulated by addition of pure 57Fe. The results provide insight into the chemistry of phosphate conversion coatings or during battery cycling of metal phosphates and give theoretical guidance for the preparation of amorphous phosphates. Thermal analysis revealed…

research product

Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films

Methylammonium lead halide perovskites (MAPbI3) are very sensitive to humid environments. We performed in situ scanning force microscopy and in situ X-ray diffraction measurements on MAPbI3 films to track changes in the film morphology and crystal structure upon repeated exposure to a high relative humidity environment (80%). We found that the appearance of monohydrate (MAPbI3·H2O) Bragg reflections coincided with the appearance of additional grain boundaries. Prolonging the exposure time to humidity induced more grain boundaries and steps in the MAPbI3 films, and the peak intensities of the monohydrate MAPbI3·H2O increased. The monohydrate was not stable under dry atmosphere and could be r…

research product

Effect of cation disorder on the magnetic properties ofSr2Fe1−xGaxReO6(0&lt;x&lt;0.7)double perovskites

The effect of diamagnetic dilution of the Fe sublattice on the structural and magnetic properties of the double perovskite Sr{sub 2}Fe{sub 1-x}Ga{sub x}ReO{sub 6} (0 =}0.4 is detected by x-ray structural analysis accompanied by the observation of a magnetically ordered and a paramagnetic phase in the corresponding Moessbauer spectra. Below 20% Ga content, Ga statistically dilutes the -Fe-O-Re-O-Fe- double-exchange pathways. Phase separation begins at 20% Ga substitution; between 20% and 40% ofmore » Ga content, the paramagnetic Ga-based phase does not contain any Fe. The Fe-containing, paramagnetic cubic phases which can be detected by Moessbauer spectroscopy first appear for x=0.4.« less

research product

ChemInform Abstract: New Cluster Condensation Modes in Early Transition Metal Thiophosphates: Synthesis, Structure and Properties of CsTa4P3S19, a Novel Layered Material.

The new layer compound CsTa4S5(S2)(PS4)3 was synthesized by the reaction of Ta metal in polythiophosphate melts. Its structure is based on Ta4S5(S2) clusters which are condensed by PS43– groups.

research product

Snapshots of the Formation of NaTi3O6(OH)·2H2O Nanowires: A Time-Resolved XRD/HRTEM Study

Layered titanates are important intermediates during the formation of TiO2-related nanostructures in hot concentrated base solution. Microwave-assisted hydrothermal techniques allow a time-resolved ex-situ analysis of the reaction in one-minute intervals by rapid heating and quenching followed by separation and structure analysis of the intermediates. By a combination of powder X-ray diffraction, high resolution electron microscopy (HRTEM), and selected area electron diffraction (SAED) the individual stages of the reaction could be identified. Sodium titanate nanosheets are formed within several minutes by digesting the crystalline TiO2-P25 precursor in NaOH. These nanosheets with a low sod…

research product

Nanoparticles as Enzyme Mimics

research product

Benzyl Alcohol Assisted Synthesis and Characterization of Highly Reduced Graphene Oxide (HRG)@ZrO2 Nanocomposites

We demonstrate a one-step solvothermal synthesis of HRG@ZrO2 nanocomposites using benzyl alcohol as solvent and stabilizing ligand. The as-synthesized HRG@ZrO2 hybrid nanocomposites showed a homogeneous distribution of the ZrO2 NPs (≈ 5 nm) onto HRG nanosheets. High resolution (HR)TEM, X-ray diffraction (XRD), and Raman spectroscopy confirmed the presence of cubic ZrO2. The presence of benzyl alcohol as stabilizing ligand was demonstrated by ultraviolet-visible (UV-vis), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The reduction of graphene oxide to HRG was also realized by X-ray photoelectron spectroscopy (XPS). A study of the HRG@ZrO2 formation mec…

research product

Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials

Owing to their physical and chemical properties, inorganic functional materials have tremendous impacts on key technologies such as energy generation and storage, information, medicine, and automotive engineering. Nature, on the other hand, provides evolution-optimized processes, which lead to multifunctional inorganic–bio-organic materials with complex structures. Their formation occurs under physiological conditions, and is goverened by a combination of highly regulated biological processes and intrinsic chemical properties. Nevertheless, insights into the molecular mechanisms of biomineralization open up promising perspectives for bioinspired and biomimetic design and the development of …

research product

Thermoelectric Transport in Cu7PSe6 with High Copper Ionic Mobility

Building on the good thermoelectric performances of binary superionic compounds like Cu2Se, Ag2Se and Cu2S, a better and more detailed understanding of phonon-liquid electron-crystal (PLEC) thermoelectric materials is desirable. In this work we present the thermoelectric transport properties of the compound Cu7PSe6 as the first representative of the class of argyrodite-type ion conducting thermoelectrics. With a huge variety of possible compositions and high ionic conductivity even at room temperature, the argyrodites represent a very good model system to study structure-property relationships for PLEC thermoelectric materials. We particularly highlight the extraordinary low thermal conduct…

research product

Cooperative High-Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion

Spin transitions are a spectacular example of molecular switching that can provoke extreme electronic and structural reorganizations in coordination compounds. A new 3D cyanoheterometallic framework, [Fe(pz)(Au(CN)2)2], has been synthesized in which a highly cooperative spin crossover has been observed at 367 and 349 K in heating and cooling modes, respectively. Mössbauer spectroscopy revealed a complete transition between the diamagnetic and paramagnetic states of the iron centres. The low-spin-to-high-spin transition induced a drastic structural distortion involving a large one-directional expansion (ca. 10.6%) and contraction (ca. 9.6%) of the lattice. Negative thermal expansion along th…

research product

Versatile wet-chemical synthesis of non-agglomerated CaCO3 vaterite nanoparticles.

Calcium carbonate (vaterite) nanoparticles of 20-60 nm size were obtained without stabilizing tensides by heating a dispersion of calcium bicarbonate (CaHCO(3)) in ethylene glycol for 30 minutes at 40 to 100 °C.

research product

Controlling phase formation in solids: rational synthesis of phase separated Co@Fe2O3 heteroparticles and CoFe2O4 nanoparticles

A wet chemical approach from organometallic reactants allowed the targeted synthesis of Co@Fe(2)O(3) heterodimer and CoFe(2)O(4) ferrite nanoparticles. They display magnetic properties that are useful for magnetic MRI detection.

research product

“Supramolecular” Solid-State Chemistry: Interpenetrating Diamond-Type Frameworks of U4+ Ions Linked byS,S′-Bidentate P2S62− Molecular Rods in UP4S12

Inseparably interwoven are three independent polymeric diamond-type U(P2 S6 )2 frameworks in the structure of the title compound. The linear P2 S6 units act as molecular rods linking the pseudotetrahedral U4+ centers. U(P2 S6 )2 may be viewed as a coordination polymer which is formed from U/P/S melts by the solid-state equivalent of the self-assembly reactions in solution.

research product

Synthesis and Magnetic Properties of FePt@MnO Nano-heteroparticles

Monodisperse FePt@MnO nano-heteroparticles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique. Both size and morphology of the individual domains could be controlled by adjustment of the synthetic parameters. As a consequence, different particle constructs, including dimers, dumbbell-like particles, and flowerlike particles, could be obtained by changing the polarity of the solvent. The FePt@MnO nano-heteroparticles were thoroughly characterized by high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses and superconducting quantum interference device (SQUID) magnetometry. Due to a sufficient lattice m…

research product

Graphene-type sheets of Nb(1-x)W(x)S2: synthesis and in situ functionalization.

Enlightened by the discovery of graphenes, a variety of inorganic analogues have been synthesized and characterized in recent years. Solvated Nb1−xWxS2 analogues of graphene-type sheets were prepared by lithiation and exfoliation of multistacked Nb1−xWxS2 coin roll nanowires (CRNWs), followed by in situ functionalization with gold nanoparticles to synthesize gold-loaded Nb1−xWxS2/Au nanocomposites. The Nb1−xWxS2 nanosheets and the corresponding Nb1−xWxS2/Au nanocomposites were characterized by high resolution electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS) and scanning force microscopy …

research product

Magnéli oxides as promising &lt;em&gt;n&lt;/em&gt;-type thermoelectrics

The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magneli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magneli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magneli oxides are encouraging for future research. Here, we …

research product

ChemInform Abstract: Hydrate Networks under Mechanical Stress - A Case Study for Co3(PO4)2·8H2O.

The mechanochemically (ball milling) induced loss of bound H2O in Co3(PO4)2·8H2O is investigated together with an associated phase transition and its kinetics by powder synchrotron XRD and quantitative IR spectroscopy.

research product

Genotoxic effects of zinc oxide nanoparticles

The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and …

research product

Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries**

Abstract Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced sp…

research product

Interaction of Alkaline Metal Cations with Oxidic Surfaces: Effect on the Morphology of SnO2 Nanoparticles

Reaction pathways to SnO(2) nanomaterials through the hydrolysis of hydrated tin tetrachloride precursors were investigated. The products were prepared solvothermally starting from hydrated tin tetrachloride and various (e.g., alkali) hydroxides. The influence of the precursor base on the final morphology of the nanomaterials was studied. X-ray powder diffraction (XRD) data indicated the formation of rutile-type SnO(2). Transmission electron microscopy (TEM) studies revealed different morphologies that were formed with different precursor base cations. Data from molecular dynamics (MD) simulations provide theoretical evidence that the adsorption of the cations of the precursor base to the f…

research product

Siliceous spicules in marine demosponges (example Suberites domuncula)

All metazoan animals comprise a body plan of different complexity. Since-especially based on molecular and cell biological data-it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan body plans is the formation of at least one axis that runs from the apical to the basal region; examples for this type of organization are the Porifera and the Cnidaria (diploblastic animals). It seems conceivable that the basis for the formation of the Bauplan in sponges is the construction of their skeleton by spicules. In Demospongiae (w…

research product

TiO2 Nanoparticles Functionalized with Non-innocent Ligands Allow Oxidative Photocyanation of Amines with Visible/Near-Infrared Photons

Photosynthesis is an efficient mechanism for converting solar light energy into chemical energy. We report on a strategy for the aerobic photocyanation of tertiary amines with visible and near-infrared (NIR) light. Panchromatic sensitization was achieved by functionalizing TiO2 with a 2-methylisoquinolinium chromophore, which captures essential features of the extended π-system of 2,7-diazapyrenium (DAP2+) dications or graphitic carbon nitride. Two phenolic hydroxy groups make this ligand highly redox-active and allow for efficient surface binding and enhanced electron transfer to the TiO2 surface. Non-innocent ligands have energetically accessible levels that allow redox reactions to chang…

research product

Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase)

Siliceous sponges can synthesize poly(silicate) for their spicules enzymatically using silicatein. We found that silicatein exists in silica-filled cell organelles (silicasomes) that transport the enzyme to the spicules. We show for the first time that recombinant silicatein acts as a silica polymerase and also as a silica esterase. The enzymatic polymerization/polycondensation of silicic acid follows a distinct course. In addition, we show that silicatein cleaves the ester-like bond in bis(p-aminophenoxy)-dimethylsilane. Enzymatic parameters for silica esterase activity are given. The reaction is completely blocked by sodium hexafluorosilicate and E-64. We consider that the dual function o…

research product

ChemInform Abstract: K2AuPS4 (I), Tl2AuPS4 (II), K2AuAsS4 (III), and KAu5P2S8 (IV): Syntheses, Structures, and Properties of Quaternary Gold Thiophosphate and Thioarsenate Compounds.

research product

Three‐Component Self‐Assembly Changes its Course: A Leap from Simple Polymers to 3D Networks of Spherical Host–Guest Assemblies

Angewandte Chemie / International edition 60(21), 12132 - 12142 (2021). doi:10.1002/anie.202103178

research product

Engineering the hypersonic phononic band gap of hybrid Bragg stacks.

We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one…

research product

Mononuclear coordination compounds based on a novel chelating triazole ligand: 1-vinyl-3-acetylamino-1,2,4-triazole

The synthesis, X-ray structure, magnetic and spectroscopic properties of new Co(II), Ni(II) and Cu(II) complexes with 1-vinyl-3-acetylamino-1,2,4-triazole (vaat) are reported. The crystal structures of [Ni(vaat)2(H2O)2](NO3)2 and [Cu(vaat)2(H2O)2]Cl2 have been determined by X-ray diffraction. In these mononuclear complexes, the metal ion is surrounded by two water molecules in axial positions and two oxygen and two nitrogen (N4) atoms coming from two trans-oriented chelating vaat molecules. Anions are noncoordinated and are involved in a hydrogen bonding network. The complex cations of [Cu(vaat)2(H2O)2]Cl2 are aligned within chains. In the structure of [Ni(vaat)2(H2O)2](NO3)2 the nitrate an…

research product

ChemInform Abstract: Syntheses, Crystal Structures, and Solid State NMR Investigations of K4M2P6S25 and K3M2P5S18 (M: Ti, Sn).

research product

ChemInform Abstract: Thermoelectric Transport in Cu7PSe6with High Copper Ionic Mobility.

The copper ion conducting argyorite-type title compound is synthesized from the elements (evacuated quartz ampule, 1323 K, 3 h, and 773 K, 72 h) and its thermoelectric transport properties are studied.

research product

Acid‐Cleavable Poly(ethylene glycol) Hydrogels Displaying Protein Release at pH 5

Abstract PEG is the gold standard polymer for pharmaceutical applications, however it lacks degradability. Degradation under physiologically relevant pH as present in endolysosomes, cancerous and inflammatory tissues is crucial for many areas. The authors present anionic ring‐opening copolymerization of ethylene oxide with 3,4‐epoxy‐1‐butene (EPB) and subsequent modification to introduce acid‐degradable vinyl ether groups as well as methacrylate (MA) units, enabling radical cross‐linking. Copolymers with different molar ratios of EPB, molecular weights (M n) up to 10 000 g mol−1 and narrow dispersities (Đ<1.05) were prepared. Both the P(EG‐co‐isoEPB)MA copolymer and the hydrogels showed pH‐…

research product

Hf27Si6P10, a novel metal-rich compound with P2 groups

The new ternary metal rich compound Hf27Si6P10 has been synthesized by reduction of HfP with Hf and Si; Hf27Si6P10 crystallizes in a new structure type, a characteristic and unexpected feature of which is the presence of P2 groups; the structural results are interpreted with the aid of high-level band structure calculations.

research product

Rational assembly and dual functionalization of Au@MnO heteroparticles on TiO2 nanowires

Au–MnO heteroparticles were immobilized on the surface of TiO2 nanowires and tagged subsequently with a fluorescent ligand. The immobilization of the Au@MnO heteroparticles was achieved by functionalizing the TiO2 nanowire support with a polymer containing catechol anchor groups for binding to the metal oxide surface and amine groups for conjugation to the Au domains of the Au@MnO heteroparticles. The Au domain of the resulting TiO2@Au–MnO nanocomposite could be functionalized selectively with a thiol-tagged 24 mer oligomer containing Texas red (SH-ODN-TXS red), whereas a green dye (NBD–Cl) could be anchored selectively to the TiO2 “support” using the free amine groups of the polymeric liga…

research product

Growth of fibrous aggregates of silica nanoparticles: Fibre growth by mimicking the biogenic silica patterning processes

We describe the self-assembly of discrete SiO2 nanofibers via grafting of silicatein side chains to a polymer backbone. The covalent binding of silicatein to the backbone of the polymer is based on the affinity of the nitrilotriacetic acid (NTA) side chain, which serves as a ligand for the immobilization of His-tagged silicatein. The surface charge and the bulkiness of the protein moieties prevent the entropically favoured coil formation of the polymer and force it to adopt an open chain structure after hydrolysis of the silica precursors. The probes were characterized by scanning force microscopy (SFM) and optical light microscopy. Surface complexation of the resulting silica nanoparticles…

research product

Book Review: Inorganic Biochemistry. An Introduction. By J. A. Cowan

research product

ChemInform Abstract: Interlocking Inorganic Screw Helices: Synthesis, Structure, and Magnetism of the Novel Framework Uranium Orthothiophosphates A11U7(PS4)13 (A: K, Rb).

research product

Zinc oxide nanoparticles for therapeutic purposes in cancer medicine.

The importance of zinc as a trace metal in the human body has long been overlooked. We now gradually discover that the impact of zinc on the health of our body might be as far-reaching as that of iron. Concurrently, nanomaterials containing zinc, in particular zinc oxide nanoparticles (ZnO NPs), are becoming increasingly attractive as innovative agents for medical applications. Zinc oxide is characterized by a good biocompatibility which allows the exploitation of its antibacterial, antifungal, antiviral, and anti-cancer qualities in a therapeutic setting. This perspective outlines the current state of knowledge concerning the interaction of zinc oxide nanoparticles with eukaryotic cells an…

research product

Dendritic Mesoporous Silica Nanoparticles for pH-Stimuli-Responsive Drug Delivery of TNF-Alpha

Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune stimulatory cytokine and natural endotoxin that can induce necrosis and regression in solid tumors. However, systemic administration of TNF-α is not feasible due to its short half-life and acute toxicity, preventing its widespread use in cancer treatment. Dendritic mesoporous silica nanoparticles (DMSN) are used coated with a pH-responsive block copolymer gate system combining charged hyperbranched polyethylenimine and nonionic hydrophilic polyethylenglycol to encapsulate TNF-α and deliver it into various cancer cell lines and dendritic cells. Half-maximal effective concentration (EC50 ) for loaded TNF-α is reduced by more than two…

research product

Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation.

Biomimetic materials have been gaining increasing importance for use as bone biomaterials, because they may provide regenerative alternatives for the use of autologous tissues for bone regeneration. We demonstrate a promising alternative for the use of biomimetic materials based on a biodegradable PEG hydrogel loaded with vaterite nanoparticles as mineral storage. Vaterite, the least stable CaCO3 polymorph, is stable enough to ensure the presence of a potential ion buffer for bone regeneration, but still has sufficient reactivity for the transformation from CaCO3 to hydroxyapatite (HA). A combination of powder X-ray diffraction (PXRD), electron microscopy, and Fourier-transform infrared (FT…

research product

Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols

Abstract Due to their excellent physicochemical properties and synergistic effect, graphene metallic NPs based nanocomposites have gained significant attention in various technological fields including catalysis. Here we demonstrate a single pot, facile and environmental friendly synthesis of catalytically active palladium(Pd)@graphene nanocomposites (SP-HRG-Pd) by the simultaneous reduction of graphene oxide (GRO) and PdCl 2 using Salvadora persica L. (miswak) root extract (RE) as bioreductant. The synthesis of SP-HRG-Pd was confirmed by various spectroscopic and microscopic techniques, including ultraviolet–visible (UV–vis), Fourier-transform infrared (FT-IR), Raman and X-ray photoelectro…

research product

Combined Experimental and Theoretical Investigation of Heating Rate on Growth of Iron Oxide Nanoparticles

Thermal decomposition is a promising route for the synthesis of highly monodisperse magnetite nanoparticles. However, the apparent simplicity of the synthesis is counterbalanced by the complex interplay of the reagents with the reaction variables that determine the final particle size and dispersity. Here, we present a combined experimental and theoretical study on the influence of the heating rate on crystal growth, size, and monodispersity of iron oxide nanoparticles. We synthesized monodisperse nanoparticles with sizes varying from 6.3 to 27 nm simply by controlling the heating rate of the reaction. The nanoparticles show size-dependent superparamagnetic behavior. Using numerical calcula…

research product

Fabrication of a Silica Coating on Magnetic γ-Fe2O3 Nanoparticles by an Immobilized Enzyme

Silicatein, a hydrolytic protein encountered in marine sponges, was immobilized on maghemite (γ-Fe2O3) nanoparticles that were surface functionalized with a reactive mulfunctional polymer. This polymer carries an anchor group based on dopamine which is capable of binding to the γ-Fe2O3 surface and a reactive functional group which allows binding of various biomolecules onto inorganic nanoparticles. This functional nitrilotriacetic acid (NTA) group allows immobilization of His-tagged silicatein on the surface of the γ-Fe2O3 nanoparticles. The surface-bound protein retains its native hydrolytic activity to catalyze formation of silica through copolymerization of alkoxysilanes Si(OR)4. Functio…

research product

A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes.

Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3 ) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2 SO4 ) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g-1 at a current density of 0.5 A g-1 , with an associated high energy density of 93 Wh kg-1 at a power density of 500 W kg-1 in a wide 1.6 V ope…

research product

Pathogen-Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells

Here, design of the first pathogen-mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced …

research product

ChemInform Abstract: Tl2Au4S3: x = 4/3 Member of the Series A2-xAuxQ. Preparation and an Analysis of Its Gold-Gold Bonding.

research product

Magnetic-Field-Induced Locomotion of Glass Fibers on Water Surfaces: Towards the Understanding of How Much Force One Magnetic Nanoparticle Can Deliver

research product

The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions

A microwave-assisted reaction pathway to rutile SnO2nanorods was investigated. The microwave-treatment significantly reduces the reaction time compared to standard hydro-/solvothermal techniques. By moving the overall process into a shorter time slot, the growth and crystal formation during the reaction could be monitored via snapshots by trapping the intermediates through quenching. To gain a better insight into the template-free growth of one-dimensional (1D) nanostructures, a parameter-dependent (various temperatures/pressures and times were investigated) study was carried out. For all materials, the phase purity and crystallite sizes were determined by X-ray powder diffraction (XRD). Th…

research product

From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of Pearson Hardness

A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…

research product

Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels.

Inspired from the funtioning and responsiveness of biological ion channels, researchers attempt to develop biosensing systems based on polymer and solid-state nanochannels. The applicability of these nanochannels for detection/sensing of any foreign analyte in the surrounding environment depends critically on the surface characteristics of the inner walls. Attaching recognition sites to the channel walls leads to the preparation of sensors targeted at a specific molecule. There are many nanochannel platforms for the detection of DNA and proteins, but only a few are capable of detecting small molecules. Here, we describe a nanochannel platform for the detection of hydrogen peroxide, H(2)O(2)…

research product

Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption

Abstract Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500 mg g−1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectiv…

research product

Spin-State-Dependent Redox-Catalytic Activity of a Switchable Iron(II) Complex

The spin state of catalytically active 3d metal centers plays a significant role for their activity in enzymatic processes and organometallic catalysis. Here we report on the catalytic activity of a Fe(II) coordination compound that can undergo a cooperative switch between low-spin (LS) and high-spin (HS) states. Catalytic measurements within 291 - 318 K temperature region reveal a drastic drop of the catalytic activity upon conversion of metallic centers from the LS to the HS form. For a thermoswitchable [Fe(NH2trz)3]Br2 complex (Tup = 305 K), an activation energy is found to be considerably lower for the LS state (158 kJ mol-1) comparing to the HS state (305 kJ mol-1). Mossbauer analysis …

research product

Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity

Superoxide dismutases (SOD) are a group of enzymes that catalyze the dismutation of superoxide (O2−) radicals into molecular oxygen (O2) and H2O2 as a first line of defense against oxidative stress. Here, we show that glycine-functionalized copper(II) hydroxide nanoparticles (Gly-Cu(OH)2 NPs) are functional SOD mimics, whereas bulk Cu(OH)2 is insoluble in water and catalytically inactive. In contrast, Gly-Cu(OH)2 NPs form water-dispersible mesocrystals with a SOD-like activity that is larger than that of their natural CuZn enzyme counterpart. Based on this finding, we devised an application where Gly-Cu(OH)2 NPs were incorporated into cigarette filters. Cigarette smoke contains high concent…

research product

ChemInform Abstract: Biofabrication of Biosilica-Glass by Living Organisms

research product

Self-assembled FeCo/gelatin nanospheres with rapid magnetic response and high biomolecule-loading capacity.

research product

Solid State Fluorination on the Minute Scale: Synthesis of WO 3− x F x with Photocatalytic Activity

research product

ChemInform Abstract: Ta1.09Fe2.39Te4, a New Non-Stoichiometric Ternary Tantalum Telluride.

Abstract Ta1.09Fe2.39Te4 was prepared by chemical transport from the elements in sealed silica tubes in a temperature gradient from 700 to 600 °C. It crystallizes in the monoclinic space group P2/m with a = 6.162(2) A , b = 7.852(3) A , c = 7.250(3) A , β = 95.32(3)° and Z = 2 . Its structure can be derived from a hexagonal close packing of tellurium atoms with tantalum and iron atoms in octahedral voids and additional iron atoms in tetrahedral voids. The structure is closely related to the structures of MM'Te2 (MNb, Ta; M′Fe, Co, Ni) and MxFeγTe2 (MNb, x = 0.89, γ = 0.93; MTa, x = 0.77, γ = 0.90).

research product

Metall oder Nichtmetall? Das ist hier die Frage!: Festkörperphysik für Chemiker

Festkorperphysik ist viel zu spannend, um sie allein den Physikern zu uberlassen. Vor der Untersuchung der physikalischen Eigenschaften von Festkorpern steht namlich deren Synthese, und dies ist das Geschaft des Chemikers. Leider hort das Interesse (und meist auch das Verstandnis) vieler Chemiker fur die Eigenschaften einer Substanz etwa da auf, wo es fur den Physiker interessant wird. Ein wesentlicher Grund dafur ist, dass der Chemiker Grundbegriffe der Festkorperphysik nicht kennt oder bestenfalls eine vage Vorstellung von ihnen hat. Dieses Defizit konnte zwar durch die Lekture eines Festkorperphysik-Lehrbuchs behoben werden, doch ist die abstrakte mathematische Ausdrucksweise der Physike…

research product

ChemInform Abstract: Rough Surfaces by Design: Gold Colloids Tethered to Gold Surfaces as Substrates for CaCO3 Crystallization.

research product

Hydrogen Bonding in Amorphous Alkaline Earth Carbonates

Amorphous intermediates play a crucial role during the crystallization of alkaline earth carbonates. We synthesized amorphous carbonates of magnesium, calcium, strontium, and barium from methanolic solution. The local environment of water and the strength of hydrogen bonding in these hydrated modifications were probed with Fourier transform IR spectroscopy,

research product

Crystal structure and magnetism of the double perovskites A2FeReO6 (A=Ca, Sr, Ba)

Abstract We synthesized a series of double perovskites A 2 FeReO 6 (A=Ca, Sr, Ba) with Curie temperatures above room-temperature. Neutron and X-ray diffraction analysis have been performed in order to determine the structural and (local) magnetic properties of these materials. While Ba 2 FeReO 6 stays cubic over the whole temperature range we examined, the Sr-compound shows a tetragonal distortion of the perovskite structure which does not completely vanish up to about 520 K far above T C . Ca 2 FeReO 6 has a monoclinic unit cell at high temperatures. Below 400 K a phase separation in two monoclinic phases with identical cell volume is observed in neutron scattering.

research product

Mercaptophenol-Protected Gold Colloids as Nuclei for the Crystallization of Inorganic Minerals:  Templated Crystallization on Curved Surfaces

The self-assembly of monolayers of thiols on gold(111) surfaces yields substrates that are able to template in a controlled manner, the nucleation and growth of crystals of calcium carbonate from solution. In the absence of additives, various factors such as the nature of the thiol, the temperature, and the pH are now established as influencing the nature and relative amounts of the different CaCO3 phases (calcite, vaterite, and aragonite). Recently, we have been able to extend the use of thiol/gold self-assembled monolayers as templates for the growth of inorganic crystals by utilizing protected gold colloids instead of flat gold surfaces. The thiol monolayers that protect the colloids pro…

research product

Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

Methylammonium lead iodide (MAPbI3) perovskite shows an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with X-ray diffraction, the preferred domain orientation is suggested to be the a1–a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film t…

research product

ChemInform Abstract: Solution Synthesis of a New Thermoelectric Zn1+xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography.

Thermoelectric nanoparticles of the nominal composition Zn4Sb3 are prepared by heating Sb nanoparticles with a 9-fold excess of Zn particles (synthesized by reaction of SbCl3 or ZnCl2 with Li[Et3BH] in THF at room temperature, and about 65 °C, respectively) in trioctylamine at about 300 °C for 225 min.

research product

Stable amorphous calcium oxalate: synthesis and potential intermediate in biomineralization.

Amorphous calcium oxalate nanoparticles with sizes of 10–30 nm were synthesized at room temperature by the hydrolysis of a dimethyl oxalate from ethanol solution.

research product

The Elusive Structure of Magadiite, Solved by 3D Electron Diffraction and Model Building

In addition to a great swelling ability, layered silicates also allow the functionalization of their interlayer region to form various robust green materials that are used as CO2 adsorbents, drug c...

research product

Thermoelectrics: From history, a window to the future

Thermoelectricity offers a sustainable path to recover and convert waste heat into readily available electric energy, and has been studied for more than two centuries. From the controversy between Galvani and Volta on the Animal Electricity, dating back to the end of the XVIII century and anticipating Seebeck’s observations, the understanding of the physical mechanisms evolved along with the development of the technology. In the XIX century Ørsted clarified some of the earliest observations of the thermoelectric phenomenon and proposed the first thermoelectric pile, while it was only after the studies on thermodynamics by Thomson, and Rayleigh’s suggestion to exploit the Seebeck effect for …

research product

Extended release and enhanced bioavailability of moxifloxacin conjugated with hydrophilic cellulose ethers.

Macromolecular prodrugs (MPDs) of moxifloxacin were fabricated based on hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC). UV/Vis spectrophotometry was employed to determine covalently loaded drug content (DC) of each conjugate. The degree of substitution (DS) of moxifloxacin attained ranged from 0.27 to 0.38 (HPC) and 0.19 to 0.26 (HEC) per anhydroglucose unit (AGU), respectively. Transmission electron microscopic analyses showed that HPC-moxifloxacin conjugates self-assembled into nanowires of ∼ 30 nm diameters while HEC-moxifloxacin conjugates self-assembled into nanoparticles of 150-350 nm. In vitro drug release studies revealed that 15 and 49% moxifloxacin release occurred f…

research product

Interlocking inorganic screw helices: synthesis, structure, and magnetism of the novel framework uranium orthothiophoshates A11U7(PS4)13 (A = K, Rb).

The novel quaternary uranium thiophosphate K11U7(PS4)13 has been synthesized by reacting uranium metal, K2S, S, and P2S5 at 700 degrees C in an evacuated silica tube. The crystal structure was determined by single crystal X-ray diffraction techniques. K11U7(PS4)13 crystallizes in the tetragonal space group I42d (a = 32.048(2) A, c = 17.321(1) A, Z = 8). The structure contains a tunnel framework composed of eight interlocking uranium U7(PS4)13 screw helices, with alkali metal cations residing inside the framework channels. The uranium atoms are coordinated in a bi- or tricapped trigonal prismatic fashion. The screw helices are built up from uranium atoms interconnected by PS4 tetrahedral uni…

research product

Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy

Superparamagnetic MnO nanoparticles were functionalized using a hydrophilic ligand containing protoporphyrin IX as photosensitizer. By virtue of their magnetic properties these nanoparticles may serve as contrast enhancing agents for magnetic resonance imaging (MRI), while the fluorescent target ligand protoporphyrin IX allows simultaneous tumor detection and treatment by photodynamic therapy (PDT). Caki-1 cells were incubated with these nanoparticles. Subsequent exposure to UV light lead to cell apoptosis due to photoactivation of the photosensitizer conjugated to the nanoparticles. This method offers great diagnostic potential for highly proliferative tissues, including tumors. In additio…

research product

Drug Delivery: Dendritic Mesoporous Silica Nanoparticles for pH-Stimuli-Responsive Drug Delivery of TNF-Alpha (Adv. Healthcare Mater. 13/2017)

research product

Controlling the Morphology of Au–Pd Heterodimer Nanoparticles by Surface Ligands

Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@…

research product

Comparison of Hybrid Blends for Solar Cell Application

In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar cell devices. Blends were fabricated from either poly(hexylthiophene) P3HT or poly(triphenylamine) PTPA mixed with nanocrystalline TiO 2 rods. In this manner, we compare two different hole conducting polymers in their performance in photovoltaic devices, while experimental conditions are kept identical. We find that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of impor…

research product

Extraordinary Performance of Carbon‐Coated Anatase TiO 2 as Sodium‐Ion Anode

The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the …

research product

ChemInform Abstract: TaNi2.05Te3, a Novel Telluride with “Stuffed” TaFe1+xTe3 Structure.

research product

Crystallization of SrCO3 on a self-assembled monolayer substrate: an in-situ synchrotron X-ray study

Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the gr…

research product

How do different surface modification strategies affect the properties of MnO nanoparticles for biomedical applications? Comparison of PEGylated and SiO2-coated MnO nanoparticles

ABSTRACTMnO nanoparticles (NPs) were surface functionalized by two different approaches, (1) using a dopamine-poly(ethylene glycol) (PEG) (DA-PEG) ligand and (2) by encapsulation within a thin silica shell applying a novel approach. Both MnO@DA-PEG and MnO@SiO2 NPs exhibited excellent long-term stability in physiological solutions. In addition, the cytotoxic potential of both materials was comparatively low. Furthermore, owing to the magnetic properties of MnO NPs, both MnO@DA-PEG and MnO@SiO2 lead to a shortening of the longitudinal relaxation time T1 in MRI. In comparison to the PEGylated MnO NPs, the presence of a thin silica shell led to a greater stability of the MnO core itself by pre…

research product

Synthesis and characterization of carbon coated sponge-like tin oxide (SnOx) films and their application as electrode materials in lithium-ion batteries

Nanoporous metal oxides are widely used for the development of various functional nanostructures. We report on the synthesis of sponge-like tin oxide films on copper foil by anodization of electrochemically deposited tin films. The thin films are functionalized using a surface-anchoring carbon precursor-polymer (poly(acrylonitrile-b-dopamine acrylamide)) followed by annealing at elevated temperature to convert the polymer coating into a carbonaceous coating. The as prepared and the carbon coated films are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. Subsequently, both SnOx films are employed as a…

research product

Phasenselektion von Calciumcarbonat durch die Chiralität adsorbierter Aminosäuren

research product

Nanozymes in Nanofibrous Mats with Haloperoxidase-like Activity To Combat Biofouling.

Electrospun polymer mats are widely used in tissue engineering, wearable electronics, and water purification. However, in many environments, the polymer nanofibers prepared by electrospinning suffer from biofouling during long-term usage, resulting in persistent infections and device damage. Herein, we describe the fabrication of polymer mats with CeO2–x nanorods that can prevent biofouling in an aqueous environment. The embedded CeO2–x nanorods are functional mimics of natural haloperoxidases that catalyze the oxidative bromination of Br– and H2O2 to HOBr. The generated HOBr, a natural signaling molecule, disrupted the bacterial quorum sensing, a critical step in biofilm formation. The pol…

research product

Synthesis of Fullerene- and Nanotube-Like SnS2 Nanoparticles and Sn/S/Carbon Nanocomposites

SnS2 nested fullerene-type (IF) nanoparticles, nanotubes, and SnS2/C hybrid nanostructures were obtained by vapor transport starting from elemental tin and CS2. The reaction was carried out in a single-step process by heating elemental tin metal powder in a horizontal tube furnace at 800−1000 °C. TEM analysis allowed proposing a plausible mechanism for the formation of fullerene-like particles of SnS2 as well as tubes and scrolls from nanosheets of SnS2. Pure material could be obtained by optimizing the reaction based on a product analysis using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) combined with energy-dispersive X-ray spectroscopy (EDX…

research product

IF-ReS2 with Covalently Linked Porphyrin Antennae

The preparation of inorganic and organic hybrid materials, of metals or semiconductor systems which are functionalized with functional molecules to fabricate devices — nanotechnology — is currently an area of intense activity in both fundamental science and applied science on an international scale. Principally, nanotechnology aims at manipulating atoms, molecules, and nanosize particles in a precise and controlled manner in order to build materials with a fundamentally new organization and novel properties. The embryonic stage of nanotechnology is atomic assembly, whereas the mature form of nanotechnology will be molecular assembly to make nano-building blocks for the design of nanocomposi…

research product

High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6

Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag8SiSe6, which exhibits promising thermoelectric performance close to room temperature.

research product

Magneli-type tungsten oxide nanorods as catalysts for the selective oxidation of organic sulfides

Selective oxidation of thioethers is an important reaction to obtain sulfoxides as synthetic intermediates for applications in the chemical industry, medicinal chemistry and biology or the destruction of warfare agents. The reduced Magneli-type tungsten oxide WO3−x possesses a unique oxidase-like activity which facilitates the oxidation of thioethers to the corresponding sulfoxides. More than 90% of the model system methylphenylsulfide could be converted to the sulfoxide with a selectivity of 98% at room temperature within 30 minutes, whereas oxidation to the corresponding sulfone was on a time scale of days. The concentration of the catalyst had a significant impact on the reaction rate. R…

research product

Different Dissolution Media Lead to Different Crystal Structures of Talinolol with Impact on Its Dissolution and Solubility

During the performance of dissolution tests with immediate and controlled-release talinolol tablets it was detected that the type of the buffer used as dissolution medium had a strong influence on the solubility and the dissolution behavior of the drug. It was proven that talinolol appeared in different crystal structures with strongly differing solubilities when pure water, acetate, or phosphate buffers were employed as dissolution media. The resulting crystal structures were characterized by means of light microscopy, differential scanning calorimetry, and X-ray powder diffraction. All methods were adjuvant to detect changes in talinolol crystal structures. The different solubility and di…

research product

ChemInform Abstract: “Supramolecular” Solid-State Chemistry: Interpenetrating Diamond-Type Frameworks of U4+ Ions Linked by S,S′-Bidentate P2S2-6 Molecular Rods in UP4S12.

research product

Crystallization of Vaterite Nanowires by the Cooperative Interaction of Tailor-Made Nucleation Surfaces and Polyelectrolytes

The concepts of template-induced crystallization on self-assembled monolayers (SAMs) and the use of polymer additives are combined into a new strategy, where, through the cooperative interaction of a SAM matrix involved in the nucleation process, poly(acrylic acid), a dissolved polyelectrolyte, and the dissolved ions, hierarchically ordered mineral structures are formed. The adsorption of poly(acrylic acid) to the SAM is monitored using a quartz microbalance. Transmission electron microscopy measurements on samples that are taken from polyacrylate solution in short intervals after the start of the reaction reveals that nanometer-sized particles pre-formed in solution are being attached to t…

research product

Scanning Probe Microscopy Study of the Metal-Rich Layered Chalcogenides TaM2Te2 (M = Co, Ni)

The compounds TaNi2Te2 and TaCo2Te2 have been examined by scanning tunneling and atomic force microscopy. The title phases crystallize in layered structures with metal slabs sandwiched by tellurium atoms. Scanning probe microscope images of the surfaces of these materials arise from the surface tellurium atoms anddepending on the experimental conditionscan show very different features. The images have been simulated through surface charge densities calculated within the Extended Huckel and LMTO frameworks.

research product

Thermoelectric properties of spark-plasma sintered nanoparticular FeSb2prepared via a solution chemistry approach

Nanoparticular FeSb2 was prepared in solution from cyclopentadienyl iron(ii) dicarbonyl dimer [Fe(Cp(CO)2)]2 and antimony nanoparticles. Spark plasma sintering was used as consolidation method to maintain the particle size. The thermoelectric performance of FeSb2 is limited by its high thermal conductivity. In this work, the thermal conductivity was suppressed by nearly 80% compared to the bulk value by introducing grain boundary scattering of phonons on the nanoscale. The thermoelectric properties of the consolidated FeSb2 emphasize the possibility of altering thermal transport of promising thermoelectric compounds by phonon scattering by engineering the interfaces at the nanoscale.

research product

Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.

Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanopar…

research product

Large Scale MOCVD Synthesis of Hollow ReS2 Nanoparticles with Nested Fullerene-Like Structure

The synthesis of ReS2 onionlike nanoparticles by means of a high-temperature MOCVD process starting from Re2(CO)10 and elemental sulfur is reported. The reaction is carried out in a two-step proces...

research product

Morphosynthesis of Strontianite Nanowires Using Polyacrylate Templates Tethered onto Self-Assembled Monolayers

Strontianite nanowires have been synthesized on self-assembled monolayers (SAM) in the presence of polyacrylate templates. The morphology of this product exhibits characteristic differences from that of products obtained in the absence of polyacrylate. It is demonstrated that the template-induced crystallization process involves the interaction between the SAM surface, polyacrylate (a dissolved polyelectrolyte), and the cations/anions in solution. By the combination of these components, hierarchically ordered mineral hybrid structures are formed.

research product

Self‐Organized Arrays of SnO 2 Microplates with Photocatalytic and Antimicrobial Properties

research product

ChemInform Abstract: Syntheses, Structures, and Properties of New Quaternary Gold-Chalcogenides: K2Au2Ge2S6, K2Au2Sn2Se6, and Cs2Au2SnS4.

research product

Synthesis and Antibody Binding of Highly Fluorinated Amphiphilic MUC1 Glycopeptide Antigens

The analysis of humoral immune responses is of great importance for basic and clinical research. Mapping the structural requirements of epitope recognition with modified tumor-associated carbohydrate antigens allows both the development of biomarkers and the design of synthetic anticancer vaccines. For this purpose, double-tailed hydrocarbon/fluorocarbon membrane anchors have been prepared and conjugated to a TN dipeptide. Furthermore, a novel hydrophobized MUC1 tandem repeat glycopeptide antigen was fully assembled on a solid support and its specific binding to different mouse anti-MUC1 antibodies was demonstrated through ELISA, QCM, and SPR measurements. Such functional fluorous MUC1 anti…

research product

CeO2−x nanorods with intrinsic urease-like activity

The large-scale production and ecotoxicity of urea make its removal from wastewater a health and environmental challenge. Whereas the industrial removal of urea relies on hydrolysis at elevated temperatures and high pressure, nature solves the urea disposal problem with the enzyme urease under ambient conditions. We show that CeO2−x nanorods (NRs) act as the first and efficient green urease mimic that catalyzes the hydrolysis of urea under ambient conditions with an activity (kcat = 9.58 × 101 s−1) about one order of magnitude lower than that of the native jack bean urease. The surface properties of CeO2−x NRs were probed by varying the Ce4+/Ce3+ ratio through La doping. Although La substit…

research product

ChemInform Abstract: NbxRu6-xTe8, New Chevrel-Type Clusters Containing Niobium and Ruthenium.

research product

Designed peptides for biomineral polymorph recognition: a case study for calcium carbonate

With their unique ability for substrate recognition and their sequence-specific self-assembly properties, peptides play an important role in controlling the mineralization of inorganic materials in natural systems and in controlling the assembly of soft materials into complex structures required for biological functions. Here we report the use of an engineered heptapeptide that can differentiate between the crystalline anhydrous polymorphs of calcium carbonate. This peptide contains the positively charged amino acid arginine as well as proline rather than the prototypical negatively charged aspartate or glutamate units. Its affinity to vaterite compared to aragonite was demonstrated by fluo…

research product

Functionalized Magnetic Nano-particles for Selective Targeting and Sensing of Cells

research product

From Single Molecules to Nanoscopically Structured Functional Materials

AbstractThe synthesis of MS2 (M = Mo, W) onion-like nanoparticles by means of a high temperature MOCVD process starting from W(CO)6 and elemental sulfur is reported. The reaction can also be carried out in two steps where the intermediate amorphous WS2 nanoparticles formed through the high temperature reaction of tungsten and sulfur in the initial phase of the reaction are isolated and converted in a separate annealing step to onion-type WS2 nanoparticles. Based on a study of the temperature dependence of the reaction a set of conditions could be derived where onion-like structures were formed in a one-step reaction. Onion-like structures obtained in the single-step process were filled, whe…

research product

Metal−Metal Bonding and Metallic Behavior in Some ABO2 Delafossites

We present results of ab initio band structure calculations on some ABO2 delafossite oxides that have both the A and B sites occupied by transition metals. This class of materials includes insulators as well as some of the most conducting oxides. The calculations have been performed in order to understand the nature of the metallic and insulating states and the extensive metal−metal bonding displayed by these materials. The effect of polytypism on the electronic structure is examined. Among the interesting aspects of the electronic structure of these materials are the contributions from both A and B atoms to states near the Fermi energy and the highly disperse nature of bands derived from t…

research product

Snapshots of calcium carbonate formation – a step by step analysis

Abstract Recent advances in our understanding of CaCO3 nucleation from solution have provoked new and challenging questions. We have studied CaCO3 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate …

research product

New Insights into the Crystallization Process of Calcium Carbonate by a Contact-Free in situ Scattering Technique using a Levitating Drop Method

research product

ChemInform Abstract: Crystal Structures of New Ternary Compounds in RE-Pt-Pb and RE-Au-Pb Systems (RE = Rare Earth Metal).

Abstract The crystal structures of the compounds RE 2 Pt 2 Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Mo 2 FeB 2 structure type, space group P 4/ mbm , Pearson code tP10 ), REPtPb (RE = La, Ce, Pr, Nd, Sm; ZrNiAl structure type, space group P 6 ¯ 2 m , Pearson code hP9 ), RE 2 Au 2 Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Er 2 Au 2 Sn structure type, space group P 4 2 / mnm , Pearson code tP20 ) and REAuPb (RE = Tm, Yb and Lu) were determined using X-ray powder diffraction.

research product

Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.

Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general…

research product

Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: reduced thermal conductivity through microstructure engineering

The thermoelectric properties of the Magneli phase WO2.90 were investigated, with special attention to how the thermoelectric performance can be altered by changing its microstructure. Spark plasma sintering (SPS) allowed the direct preparation of large amounts of consolidated material. Adding Ta2O5 to the reaction mixture lead to the formation of solid solutions W1−xTaxO2.90via a concurrent reaction between WO3 and Ta2O5 during the SPS treatment. In addition, micron-sized inclusions containing tungsten surrounded by WOx embedded in a WO2.90 matrix were formed, which act as additional scattering centers. As a result, the thermal conductivity of the Ta-containing samples was reduced by ≈30% …

research product

The solubility of Co in TiO2 anatase and rutile and its effect on the magnetic properties

Co-doped anatase and rutile bulk-samples prepared by the sol-gel technique are found to be paramagnetic at room-temperature. Only further annealing in Ar/H{sub 2} gas results in a ferromagnetic behavior. X-ray diffraction and electron-microscope studies reveal for low doping levels =4%. The observed Co oxides are reduced by Ar/H{sub 2} to Co metal. The room-temperature ferromagnetism can therefore be traced back to a segregation of metallic Co. - Graphical abstract: Co-doped anatase and rutile bulk-samples prepared by the sol-gel technique are paramagnetic at room-temperature. Further annealing in Ar/H{sub 2} gas results in a ferromagnetic behavior. X-ray diffraction and electron-microscope…

research product

Towards higher zT in early transition metal oxides: optimizing the charge carrier concentration of the WO3-x compounds

Abstract Thermoelectric devices are believed to play an important role in the energy research for the next decades. Thanks to their low costs coupled with high stability and sustainability, metal oxides are very promising materials even if their efficiencies still need improvements to ensure a wide applicability. Slightly reduced early transition metal oxides show intrinsic defects in the crystal structure which guarantee very low values of the thermal conductivity. The challenge to fulfil the “phonon-glass electron-crystal” concept is to decouple the optimization of the electronic properties from the thermal transport properties. In this contribution we report the optimization of the charg…

research product

High-speed solid state fluorination of Nb2O5 yields NbO2F and Nb3O7F with photocatalytic activity for oxygen evolution from water

Solid state reactions are slow because the diffusion of atoms or ions through the reactant, intermediate and crystalline product phases is the rate-limiting step. This requires days or even weeks of high temperature treatment, and consumption of large amounts of energy. We employed spark-plasma sintering, an engineering technique that is used for high-speed consolidation of powders with a pulsed electric current passing through the sample to carry out the fluorination of niobium oxide in minute intervals. The approach saves time and large amounts of waste energy. Moreover, it allows the preparation of fluorinated niobium oxides on a gram scale using poly(tetrafluoroethylene) (®Teflon) scrap…

research product

Particles of vaterite, a metastable CaCO3polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration

We have previously described a promising alternative to conventional synthetic bone biomaterials using vaterite, a metastable CaCO3 polymorph that increases the local Ca2+ concentration in vitro and leads to an oversaturation of phosphate, the primary bone mineral. This stimulates a natural bone-like mineralisation in a short period of time. In this study, sterile and endotoxin-free vaterite particles were synthesised in a nearly quantitative yield. The 500-1,000 nm vaterite particles did not exhibit any cytotoxic effects as measured by MTS, lactate dehydrogenase, or crystal violet assays on the human osteoblast cell line (MG-63) exposed to concentrations up to 500 μg/ml vaterite up to 72 h…

research product

Haloperoxidase Mimicry by CeO2−xNanorods Combats Biofouling

CeO2-x nanorods are functional mimics of natural haloperoxidases. They catalyze the oxidative bromination of phenol red to bromophenol blue and of natural signaling molecules involved in bacterial quorum sensing. Laboratory and field tests with paint formulations containing 2 wt% of CeO2-x nanorods show a reduction in biofouling comparable to Cu2 O, the most typical biocidal pigment.

research product

Crystal structures of new ternary compounds in RE–Pt–Pb and RE–Au–Pb systems (RE=rare earth metal)

Abstract The crystal structures of the compounds RE 2 Pt 2 Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Mo 2 FeB 2 structure type, space group P 4/ mbm , Pearson code tP10 ), REPtPb (RE = La, Ce, Pr, Nd, Sm; ZrNiAl structure type, space group P 6 ¯ 2 m , Pearson code hP9 ), RE 2 Au 2 Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Er 2 Au 2 Sn structure type, space group P 4 2 / mnm , Pearson code tP20 ) and REAuPb (RE = Tm, Yb and Lu) were determined using X-ray powder diffraction.

research product

Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass.

Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting i…

research product

Magnetism of monomer MnO and heterodimer FePt@MnO nanoparticles

We report about the magnetic properties of antiferromagnetic (AF) MnO nanoparticles (NPs) with different sizes (6--19 nm). Using a combination of polarized neutron scattering and magnetometry, we were able to resolve previously observed peculiarities. Magnetometry, on the one hand, reveals a peak in the zero-field-cooled (ZFC) magnetization curves at low temperatures $(\ensuremath{\sim}25$ K) but $no$ feature around the N\'eel temperature at 118 K. On the other hand, polarized neutron scattering shows the expected behavior of the AF order parameter vanishing around 118 K. Moreover, hysteresis curves measured at various temperatures reveal an exchange-bias effect, indicating a coupling of an…

research product

Abstract 857: Metal oxide nanoparticles as adjuvant for radiation therapy

Abstract Background: Radiation therapy comprises a fundamental component of modern tumor treatment. Unfortunately, its success is limited by the development of radiation resistances. The emerging field of nanotechnology offers great opportunities for diagnosing, imaging, as well as treating cancer. Metal oxide nanoparticles in particular zinc oxide nanoparticles (ZnO-NP) have been shown to display a selective cytotoxic effect on tumor cells via a yet unknown mechanism. Most likely the generation of reactive oxygen species (ROS), breakdown of mitochondria and DNA damage are involved. The success of radiation therapy equally relies on the generation of ROS, which develop their cytotoxic poten…

research product

Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide

The environmentally friendly synthesis of nanomaterials using green chemistry has attracted tremendous attention in recent years due to its easy handling, low cost, and biocompatibility. Here we demonstrate a facile and efficient route for the synthesis of highly reduced graphene oxide (PE-HRG) by the green reduction of graphene oxide (GRO) using the Pulicaria glutinosa plant extract (PE). The phytomolecules present in the P. glutinosa extract are not only responsible for the reduction of GRO, but also for the functionalization of the surface of the PE-HRG nanosheets and stabilize them in various solvents, thereby limiting the use of any other external and harmful chemical reductants and su…

research product

Structural and Optical Study of Ga3+ Substitution in CuInS2 Nanoparticles Synthesized by a One-Pot Facile Method

A one-pot method was used to synthesize CuInxGa1–xS2 nanoparticles by substituting In3+ with Ga3+. The samples with composition of gallium ranging from 0% to 100% were synthesized by solving copper chloride, indium trichloride, gallium acetylacetonate, and thiourea as precursors in 1-octadecene, oleylamine, and oleic acid as noncoordinating, coordinating, and capping agent solvents, respectively. Depending on the chemical composition and synthesis conditions, the morphology of the as-synthesized nanoparticles obtained was trigonal, semitrigonal, hexagonal, and quasi-spherical. X-ray photoelectron spectroscopy and X-ray diffraction confirmed that Ga3+ substituted In3+ without any segregation…

research product

Role of Water During Crystallization of Amorphous Cobalt Phosphate Nanoparticles

The transformation of amorphous precursors into crystalline solids and the associated mechanisms are still poorly understood. We illuminate the formation and reactivity of an amorphous cobalt phosphate hydrate precursor and the role of water for its crystallization process. Amorphous cobalt phosphate hydrate nanoparticles (ACP) with diameters of ∼20 nm were prepared in the absence of additives from aqueous solutions at low concentrations and with short reaction times. To avoid the kinetically controlled transformation of metastable ACP into crystalline Co3(PO4)2 × 8 H2O (CPO) its separation must be fast. The crystallinity of ACP could be controlled through the temperature during precipitati…

research product

CCDC 1422402: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1422398: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1422396: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1422397: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 2050950: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1986756: Experimental Crystal Structure Determination

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

research product

CCDC 1838583: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 2047572: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1960938: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1960940: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1422405: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1422399: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 2047569: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 2047574: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 2047573: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1422403: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1838587: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 1478973: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Bohdan O. Golub, Vadim Ksenofontov, Igor O. Fritsky, Wolfgang Tremel|2016|New J.Chem.|40|9012|doi:10.1039/C6NJ01472K

research product

CCDC 2047567: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1838584: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 2047568: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886599: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886601: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1838585: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 1838588: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 1422404: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 2047570: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 2047571: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886604: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886605: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1960939: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1429729: Experimental Crystal Structure Determination

Related Article: Enrico Mugnaioli, Iryna Andrusenko, Timo Schüler, Niklas Loges, Robert E. Dinnebier, Martin Panthöfer, Wolfgang Tremel, Ute Kolb|2012|Angew.Chem.,Int.Ed.|51|7041|doi:10.1002/anie.201200845

research product

CCDC 1986758: Experimental Crystal Structure Determination

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

research product

CCDC 1429728: Experimental Crystal Structure Determination

Related Article: Enrico Mugnaioli, Iryna Andrusenko, Timo Schüler, Niklas Loges, Robert E. Dinnebier, Martin Panthöfer, Wolfgang Tremel, Ute Kolb|2012|Angew.Chem.,Int.Ed.|51|7041|doi:10.1002/anie.201200845

research product

CCDC 1886603: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1838586: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

research product

CCDC 1422400: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product

CCDC 1886602: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 2047575: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 2067328: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886598: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1886600: Experimental Crystal Structure Determination

Related Article: Eugenia Peresypkina, Kevin Grill, Barbara Hiltl, Alexander V. Virovets, Werner Kremer, Jan Hilgert, Wolfgang Tremel and Manfred Scheer|2021|Angew.Chem.,Int.Ed.|60|12132|doi:10.1002/anie.202103178

research product

CCDC 1422401: Experimental Crystal Structure Determination

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

research product